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ABSTRACT
In this paper, we study the heterogeneous facility location game

with fractional preferences under resource constraints. In this

model, a group of agents are positioned along the interval [0, 1],
where each agent has position information and fractional prefer-

ences indicated as support weights for facilities. Our main focus

is to design mechanisms that choose and locate one facility out

of two facilities while motivating agents to truthfully report their

information, aiming to approximately maximize the social utility,

defined as the sum of utilities of all agents.

Based on the types of private information held by agents, we

consider three different settings. For the known-preferences setting,

we provide a deterministic group strategy-proof mechanism with 2-

approximation and a randomized group strategy-proof mechanism

with
4

3
-approximation. We also provide lower bounds of 2 on the ap-

proximation ratio for any deterministic strategy-proof mechanism

and 1.043 for any randomized strategy-proof mechanism. For the

known-positions setting and the general setting, we present a de-

terministic group strategy-proof mechanism with 6-approximation

and a randomized strategy-proof mechanism with 4-approximation,

respectively. Furthermore, we give lower bounds of 1.554 for any de-

terministic strategy-proof mechanism and 1.2 for any randomized

strategy-proof mechanism in the known-positions setting. Finally,

we extend the model to the scenario of choosing 𝑘 facilities out

of𝑚 facilities. For the known-preferences setting, we provide a 2-

approximate deterministic group strategy-proof mechanism, which

is also the best deterministic strategy-proof mechanism. For the

known-positions setting, when 𝑘 ≥ 2, we give a lower bound of

2 − 1

𝑘
for any deterministic strategy-proof mechanism.

KEYWORDS
Facility location game; Fractional preferences; Algorithmic mecha-

nism design; Approximation

ACM Reference Format:
Jiazhu Fang and Wenjing Liu. 2024. Facility Location Games with Frac-

tional Preferences and Limited Resources. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
The facility location game is a cross-disciplinary topic in economics,

operations research, and computer science, and it is a significant

problem in algorithmic mechanism design. The classical facility

location game captures the scenario where a government plans to

build a public facility (e.g., a stadium) near a road, and a group of

self-interested agents with private positions are distributed along

this road. The agents are required to report their private positions,

and the government uses a mechanism to determine the location of

the facility based on the information provided by the agents. Since

the mechanism is common knowledge, each self-interested and

rational agent may strategically misreport their private position to

manipulate the location of the facility, thus increasing their own

utility. Therefore, the government’s goal is to design a strategy-

proof mechanism where no agent can benefit from misreporting,

to determine the location of the facility. Typically, we also consider

optimizing some social objective function, such as maximizing the

social utility (i.e., the sum of utilities of all agents). However, when

money transfer is not allowed, it is not always possible to design a

mechanism that is strategy-proof and achieves the maximum social

utility. Hence, Procaccia and Tennenholtz [30] studied the facility

location game from the perspective of approximation algorithms,

measuring the performance of strategy-proof mechanisms using

approximation ratios, and proposing approximate mechanism de-

sign without money for facility location games. Subsequently, with

the introduction of many variants, this field has flourished.

One noteworthy research direction is the extension of the single

facility location game to the two facility location game. By altering

agent preferences and facility types, both homogeneous facility

location and heterogeneous facility location models have been in-

troduced. The homogeneous facility location game captures the

scenario where the government plans to build two identical facil-

ities (e.g., bus stops) on a road, and each resident wishes to be as

close as possible to their nearest facility. In comparison to homoge-

neous facility location, the heterogeneous facility location game is

more versatile. We consider scenarios where the government plans

to build two different facilities (e.g., a hospital and a plaza) on a

road, and different residents may have different preferences for the

facility: some may prefer to be as close to the facility as possible,

some may prefer to be as far away from the facility as possible, and

others may be indifferent to the location of the facility. In this case,

the utility of the residents depends not only on the distances to the

facilities but also on their preferences for the facilities. It is evident

that preferences play a crucial role in facility location problems.

Besides the above preference types, Fong et al. [19] introduces frac-

tional preferences, where the preferences of residents indicate how

often they use two facilities.
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However, in real-life situations, considering factors like budget

constraint and resource limitation, it may not be feasible to build

both facilities simultaneously, requiring a choice between the two.

Elkind et al. [11] and Deligkas et al. [9], consider a scenario in which

certain facilities are chosen and located from a set of candidate

facilities. However, the preferences of residents for facilities are

often not straightforward supportive or indifferent. For example,

the government plans to build a sports facility on a street with

two candidate options, a basketball court and a badminton court.

Each resident may have different preferences based on their degree

of fondness for the two sports. If a resident is deeply passionate

about basketball but has little interest in badminton, they may

obtain 100% happiness from the building of a basketball court. If

a resident enjoys both basketball and badminton but has different

levels of preference for each, say 70% affinity for basketball and a

30% interest in badminton, choosing to build the badminton court

would only yield 30% happiness for her since she will not be able

to play basketball.

To capture the scenarios described above, we consider a model

where one facility is chosen from two candidate facilities and lo-

cated on the line segment [0, 1]. The agents with private positions

and fractional preferences, indicated as support weights for facili-

ties, are distributed along this line segment. The utilities of agents

depend not only on the distance to the facility but also on their pref-

erences for the chosen facility. According to the private information

held by the agent, we consider the following three scenarios:

• Known-preferences setting: The preference is public infor-

mation, and the position is private information. Each agent

can only misreport her own position.

• Known-positions setting: The position is public information,

and the preference is private information. Each agent can

only misreport her own preference.

• General setting: Both the position and preference are private

information. Each agent can simultaneously misreport her

position and preference.

Our objective is to design a mechanism that chooses and locates one

facility out of two facilities while motivating agents to truthfully

report their positions and preferences, aiming to approximately

maximize the social utility, where the social utility is defined as the

sum of utilities of all agents.

1.1 Related Work
There are numerous works in the literature on facility location

games, andwe briefly introduce thosemost relevant to our study. Fa-

cility location games can be traced back to the work of Moulin [28],

which characterized strategy-proof, Pareto-efficient, and anony-

mous mechanisms as a class of generalized median mechanisms

when the preferences of agents are single-peaked on a line. Procac-

cia and Tennenholtz [30] studied the facility location game from

the perspective of approximation algorithms, measuring the perfor-

mance of strategy-proof mechanisms using approximation ratios.

Subsequently, the model was extended to different metric spaces

[1, 10, 15, 16, 27, 34], various utility functions [17, 20], diverse so-

cial objectives [4, 13, 23, 26], other incentives [21, 29, 33, 35], and

several other models [2, 3, 14, 18, 25, 37].

Procaccia and Tennenholtz [30] first investigated the case of two

homogeneous facilities with two types of social objectives, where

the costs of agents are the distances from their positions to the near-

est facility. Subsequently, Lu et al. [24] improved the lower bound

for deterministic strategy-proof mechanisms under the social cost

to an asymptotically tight bound, and Fotakis and Tzamos [20]

ultimately raised to asymptotically bound of 𝑛 − 2. Filos-Ratsikas et

al. [17] extended single-peaked preference to double-peaked prefer-

ence, where each agent has two most preferred positions. Cheng et

al. studied the obnoxious facility location model [7] and extended it

to trees and circles [8], where the preference of each agent is to be

as far away from facilities as possible. Zou and Li [38] and Feigen-

baum and Sethuraman [12] introduced the dual preference model,

combining the standard facility location model with the obnoxious

facility location model, where the preference of each agent is either

to be as far away from facilities as possible or as close as possible.

Serafino and Ventre [31, 32] were the first to study two heteroge-

neous facility location model where the cost of an agent is the sum

of distances to both facilities. Subsequently, Chen et al. [6] proposed

the optional preference model for the facility location game with

two heterogeneous facilities on a line, where the preferences of

agents for facilities are either supportive or indifferent. Later, Li et

al. [22] generalized it to more general metric spaces and improved

the upper bound for the minimum distance cost function compared

to [6]. Anastasiadis and Deligkas [2] combined dual preference

and optional preference, considering the triple-preference model

where the preferences of agents for facilities are either supportive,

obnoxious, or indifferent. Xu et al. [36] studied the facility location

game with minimum distance requirement, where two facilities

need to be located with a constraint that the distance between the

facility positions must be at least a specified value. Fong et al. [19]

proposed the fractional preference model for the facility location

game with two facilities that serve the similar purpose on a line,

where the preferences of agents indicate how often they use to

facilities. For a more detailed overview of these models, please refer

to a survey by Chan et al. [5].

The model closest to ours may be [9, 11]. Elkind et al. [11] con-

sidered choosing 𝑘 facilities out of𝑚 facilities and locating them

at candidate positions. They introduced a multi-winner facility lo-

cation model, which combines facility location and multi-winner

voting with approval ballots, where the preferences of agents for

facilities depend on the positions of facilities. Deligkas et al. [9]

considered the selection of one facility from two facilities, where

agents have approval preferences for the facility, and extended it

to a more general model of choosing 𝑘 out of𝑚 facilities. In our

model, we further investigate the case where agents have fractional

preferences for facilities, which can be regarded as an extension

of the preference domain in [9]. However, due to the existence of

the preference (1, 1) in the approval preference model, our model

cannot encompass all instances in the approval preference model.

This also implies that the lower bound of the problem in our model

may not necessarily adhere to the lower bounds stated in [9].

1.2 Our Contribution
We consider the utility version of agents and first study the model of

choosing one facility from two facilities when agents have fractional

preferences for facilities. For three different settings, we investigate
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Table 1: A summary of our results. UB and LB stand for upper
bound and lower bound, respectively. SP and GSP stand for
strategy-proof and group strategy-proof, respectively. The
lower bound of 1.4 (marked with ★) can be improved to 1.554,
as detailed in Appendix.

Setting Deterministic Randomized

Known-preferences

UB: 2 GSP (Mech.3.1)

LB: 2 SP (Them.3.2)

UB:
4

3
GSP (Mech.3.2)

LB:1.043 SP (Them.3.6)

Known-positions

UB: 6 GSP (Mech.4.1)

LB:1.4★ SP (Them.4.2)

UB: 4 SP (Mech.4.2)

LB: 1.2 SP (Them.4.5)

General

UB: 6 GSP (Mech.4.1)

LB: 2 SP (Them.3.2)

UB: 4 GSP (Mech.5.2)

LB: 1.2 SP (Them.4.5)

both deterministic and randomized strategy-proof mechanisms.

These results are summarized in Table 1.

In the known-preferences setting, we first provide a determinis-

tic group strategy-proof mechanism with 2-approximation which

is also the best deterministic strategy-proof mechanism. By assign-

ing a probability distribution to the two possible outputs of the

above mechanism, we obtain a class of randomized mechanisms.

By appropriately setting the probability distribution, we achieve

a randomized group strategy-proof mechanism with approxima-

tion ratio of
4

3
. Finally, we provide a lower bound of 1.043 for any

randomized strategy-proof mechanism.

In the known-positions setting, a deterministic group strategy-

proof mechanism with 6-approximation can be obtained from the

results in the general setting. Subsequently, we provide a lower

bound of 1.554 for any deterministic strategy-proof mechanism.

Then, we present a randomized strategy-proof mechanism with

4-approximation. Finally, we provide a lower bound of 1.2 for any

randomized strategy-proof mechanism.

In the general setting, we first introduce a deterministic group

strategy-proof mechanismwith 6-approximation. For any determin-

istic strategy-proof mechanism, the lower bound of 2 for the setting

of known-preferences also applies to this setting. Subsequently, we

introduce a randomized group strategy-proof mechanism with 4-

approximation. Similarly, for any randomized strategy-proof mech-

anism, the lower bound of 1.2 for the setting of known-positions

also applies to this setting.

Finally, we extend the model to a more general scenario, choos-

ing 𝑘 facilities out of𝑚 distinct facilities and locating them. For

the known-preferences setting, we extend the deterministic group

strategy-proof mechanism under the model of choosing one facility

out of two facilities, obtaining a deterministic group strategy-proof

mechanism with 2-approximation and prove that this approxima-

tion ratio is the best achievable among all deterministic strategy-

proof mechanisms. For the known-positions setting, we provide a

lower bound of 2 − 1

𝑘
for any deterministic strategy-proof mecha-

nism when 𝑘 ≥ 2, and a lower bound of 1.554 when 𝑘 = 1. Similarly,

for the general setting, the lower bound of 2 for the setting of

known-preferences also applies.

1.2.1 Paper Organization. In Section 2, we formalize our model. In

Section 3, Section 4, and Section 5, we consider deterministic and

randomized strategy-proof mechanisms in the settings of known-

preferences, known-positions, and general case, respectively. In

Section 6, we study an extended model where we choose 𝑘 facilities

from𝑚 facilities. In Section 7, we summarize our work and discuss

some open questions.

2 PRELIMINARIES
Given a set of agents, 𝑁 = {1, . . . , 𝑛} where each agent 𝑖 ∈ 𝑁 has a

position 𝑥𝑖 ∈ [0, 1] and a fractional preference 𝑝𝑖 = (𝑝𝑖,1, 𝑝𝑖,2) over
two facilities 𝐹1 and 𝐹2, where 0 ≤ 𝑝𝑖,1, 𝑝𝑖,2 ≤ 1 and 𝑝𝑖,1 + 𝑝𝑖,2 = 1,

we aim to design a mechanism to choose one facility from a set

of facilities {𝐹1, 𝐹2} and locate it at [0, 1]. To simplify our analysis,

we assume 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛 without loss of generality. We use

x = (𝑥1, . . . , 𝑥𝑛) and p = (𝑝1, . . . , 𝑝𝑛) to denote the position profile
and preference profile of the 𝑛 agents, respectively. The distance

between any two points 𝑥,𝑦 ∈ [0, 1] is 𝑑 (𝑥,𝑦) = |𝑥 − 𝑦 |. Denote an
instance by 𝐼 (x, p) or simply by 𝐼 .

A (deterministic) mechanism is a function 𝑓 which maps an

instance 𝐼 (x, p) consisting of the position and preference pro-

file of the 𝑛 agents to an output (𝐹 𝑗 , 𝑦 𝑗 ) consisting of a facility

𝐹 𝑗 ∈ {𝐹1, 𝐹2} that is to be located at 𝑦 𝑗 ∈ [0, 1]. For a given

output (𝐹 𝑗 , 𝑦 𝑗 ), the utility of each agent 𝑖 ∈ 𝑁 is defined as

𝑢𝑖 ((𝐹 𝑗 , 𝑦 𝑗 ), (𝑥𝑖 , 𝑝𝑖 )) = 𝑝𝑖, 𝑗 · (1 − 𝑑 (𝑥𝑖 , 𝑦 𝑗 )), which depends both

on the distance of the agent from the facility position and on her

preference for the chosen facility.

A randomized mechanism maps an instance 𝐼 to an output that

places facility 𝐹 𝑗 ∈ {𝐹1, 𝐹2} at 𝑦 𝑗 ∈ [0, 1] with some cumulative

distribution function 𝑞𝐹 𝑗 (·) such that

∑
𝑗∈{1,2}

∫
1

0
𝑑𝑞𝐹 𝑗 (𝑦 𝑗 ) = 1.

We denote the probability distribution that the mechanism outputs

for the two facilities as q = (𝑞𝐹1 , 𝑞𝐹2 ), and the (expected) utility of

each agent 𝑖 ∈ 𝑁 is

𝑢𝑖 (q, (𝑥𝑖 , 𝑝𝑖 )) =
∑︁

𝑗∈{1,2}
𝑝𝑖, 𝑗 ·

∫
1

0

(1 − |𝑥𝑖 − 𝑦 𝑗 |)𝑑𝑞𝐹 𝑗 (𝑦 𝑗 ) .

Given a mechanism 𝑓 , every agent can deliberately misreport her

private information, encompassing personal position and prefer-

ence, with the aim of manipulating the output of the mechanism

and achieving a higher utility. A mechanism 𝑓 is strategy-proof
(SP) if no agent can benefit from misreporting, regardless of the

reports of the others, that is, for every 𝑖 ∈ 𝑁 ,

𝑢𝑖 (𝑓 (x, p), (𝑥𝑖 , 𝑝𝑖 )) ≥ 𝑢𝑖
(
𝑓 (x′, p′), (𝑥𝑖 , 𝑝𝑖 )

)
,

for any 𝑥𝑖 , 𝑥
′
𝑖
∈ [0, 1], any 𝑝𝑖 , 𝑝′𝑖 ∈ [0, 1]2, any x−𝑖 ∈ [0, 1]𝑛−1 and

any p−𝑖 ∈ [0, 1]2𝑛−2, where (x′, p′) = ((𝑥 ′
𝑖
, x−𝑖 ), (𝑝′𝑖 , p−𝑖 )), x−𝑖 =

(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) and p−𝑖 = (𝑝1, . . . , 𝑝𝑖−1, 𝑝𝑖+1, . . . , 𝑝𝑛).
Similarly, a randomized mechanism is strategy-proof in expectation

if no agent can increase her expected utility by misreporting. A

mechanism 𝑓 is group strategy-proof (GSP), if no coalition of agents
can increase the utility of each member by misreporting, regardless

of the reports of other agents.

Given an instance 𝐼 (x, p), our goal is to design strategy-proof

mechanisms to choose a single facility 𝐹 𝑗 from two facilities 𝐹1,

𝐹2 and locate it at 𝑦 𝑗 to maximize the social utility, where so-

cial utility is defined as the sum of the utilities of all agents, that

is, 𝑆𝑈 ((𝐹 𝑗 , 𝑦 𝑗 ), 𝐼 ) =
∑
𝑖∈𝑁 𝑢𝑖 ((𝐹 𝑗 , 𝑦 𝑗 ), (𝑥𝑖 , 𝑝𝑖 )). For instance 𝐼 , let

𝑆𝑈 (𝑓 (𝐼 ), 𝐼 ) = ∑
𝑖∈𝑁 𝑢𝑖 ((𝑓 (𝐼 ), (𝑥𝑖 , 𝑝𝑖 )) be the social utility obtained

by mechanism 𝑓 and 𝑂𝑃𝑇 (𝐼 ) = 𝑚𝑎𝑥 (𝐹 𝑗 ,𝑦 𝑗 )𝑆𝑈 ((𝐹 𝑗 , 𝑦 𝑗 ), 𝐼 ) be the

maximum social utility. A strategy-proof mechanism 𝑓 achieves an
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approximation ratio of 𝛼 ≥ 1 if for every instance 𝐼 ,

𝑂𝑃𝑇 (𝐼 ) ≤ 𝛼 · 𝑆𝑈 (𝑓 (𝐼 ), 𝐼 ).
Based on the private information held by each agent, we proceed

to explore the following three cases:

1. In the known-preferences setting, the preference of each

agent is assumed to be public and the position is private. The

agents can misreport only their positions.

2. In the known-positions setting, the position of each agent

is assumed to be public and the preference is private. The

agents can misreport only their preferences.

3. In the general setting, both the position and the preference

of each agent are private information. The agents can simul-

taneously misreport their positions and preferences.

Note that the positive results in the general setting, which en-

compasses the (group) strategy-proof mechanisms with proven

approximation guarantees, are also applicable as positive results

for the setting with known-preferences and known-positions. Simi-

larly, the negative results in the restrictive setting, representing the

lower bounds on the approximation ratio of the (group) strategy-

proof mechanisms, can be considered as the negative results for

the general setting.

3 KNOWN-PREFERENCES SETTING
In this section, we explore the scenario where preferences are dis-

cernible. We assume that the preferences of the agents are public

information and the positions are private information. Therefore,

agents can only misreport their positions.

3.1 Deterministic mechanism
We begin by focusing on deterministic mechanisms. Our first result

is that combining the ideas of weighting and median presents a

deterministic GSP mechanism with approximation ratio of 2 in

the known-preferences setting. The high-level idea is that we first

assign weights to two facilities based on the preferences of agents,

and choose the facility with higher total weight, then the facility is

located at the "median" (according to the chosen facility’s weights)

agent’s position. We further show that the approximation ratio of

this mechanism is the best of all deterministic SP mechanisms.

Mechanism 3.1. Given an instance 𝐼 (x, p), let 𝑛 𝑗 =
∑𝑛
𝑖=1 𝑝𝑖, 𝑗 and

define𝑚 𝑗 = argmin𝑘

{∑𝑘
𝑖=1 𝑝𝑖, 𝑗 ≥

1

2
𝑛 𝑗

}
for 𝑗 ∈ {1, 2}. Locate 𝐹1 at

the position 𝑥𝑚1
of agent𝑚1 if 𝑛1 ≥ 𝑛2, and otherwise locate 𝐹2 at

the position 𝑥𝑚2
of agent𝑚2.

In the following we give a key lemma.

Lemma 3.1. Given an instance 𝐼 (x, p), for 𝑗 ∈ {1, 2}, let
𝑆𝑈 ((𝐹 𝑗 , 𝑥𝑚 𝑗

), 𝐼 ) be the social utility when 𝐹 𝑗 is chosen and located
at the position 𝑥𝑚 𝑗

of agent𝑚 𝑗 . We have

1

2

· 𝑛 𝑗 ≤ 𝑆𝑈 ((𝐹 𝑗 , 𝑥𝑚 𝑗
), 𝐼 ) ≤ 𝑛 𝑗 .

Due to length limitation, most of the proofs are included
in Appendix.

Theorem 3.1. In the known-preferences setting, Mechanism 3.1 is
a deterministic GSP mechanism with approximation ratio of 2.

Proof. We first show that the mechanism is GSP, that is, for any

instance 𝐼 and any group 𝐺 of agents with any misreport, there

exists at least one member who cannot benefit from it. Assume

that the output of the mechanism is (𝐹 𝑗 , 𝑥𝑚 𝑗
) when all members in

𝐺 truthfully report their positions. According to the mechanism,

misreports on position do not affect which facility to be chosen.

Therefore, for any misreport by 𝐺 , the mechanism still chooses 𝐹 𝑗 .

Note that if the misreport by 𝐺 cannot change the location of 𝐹 𝑗 ,

then none of the agents in 𝐺 can benefit from misreporting. If the

misreport by𝐺 changes the location of 𝐹 𝑗 to𝑦
′ > 𝑥𝑚 𝑗

, then𝐺 must

contain some agent 𝑖 with position 𝑥𝑖 ≤ 𝑥𝑚 and preference 𝑝𝑖, 𝑗 > 0,

but misreports a position 𝑥 ′
𝑖
> 𝑥𝑚 . Clearly, agent 𝑖 cannot benefit

from the misreport. The analysis is similar in the case of 𝑦′ < 𝑥𝑚 𝑗
.

We now analyze the approximation ratio of the mechanism. Let

𝐹𝑘 be the facility chosen by the mechanism and 𝐹𝑜 be the facility

chosen by optimal solution for instance 𝐼 . By Lemma 3.1, we have

1

2

· 𝑛𝑘 ≤ 𝑆𝑈 ((𝐹𝑘 , 𝑥𝑚𝑘
), 𝐼 ) ≤ 𝑛𝑘 .

Considering 𝐹𝑜 , since the maximum possible utility of each agent

𝑖 is 𝑝𝑖,𝑜 , we have

𝑂𝑃𝑇 (𝐼 ) ≤
∑︁
𝑖∈𝑁

𝑝𝑖,𝑜 = 𝑛𝑜 .

Therefore,

𝑆𝑈 ((𝐹𝑘 , 𝑥𝑚𝑘
), 𝐼 ) ≥ 1

2

· 𝑛𝑘 ≥ 1

2

· 𝑛𝑜 ≥ 1

2

·𝑂𝑃𝑇 (𝐼 ),

where the second inequality holds because 𝐹𝑘 is the facility with

the highest total weight, that is, 𝑛𝑘 ≥ 𝑛
3−𝑘 . □

[9] provides a lower bound of 2 for any deterministic SP mecha-

nism in the approval preference model under the known-preference

setting. We observe that the instance utilized in their proof are ap-

plicable to our model as well.

Theorem 3.2. In the known-preferences setting, there is no deter-
ministic SP mechanism with approximation ratio better than 2.

3.2 Randomized mechanism
In this subsection, we consider randomizedmechanisms.We present

a class of randomizedmechanisms obtained by assigning probability

distributions to the two possible outputs of Mechanism 3.1. By

setting an appropriate probability distribution, a randomized SP

mechanism with approximation ratio of
4

3
can be achieved, which

is also the best in such class of mechanisms. Finally, we provide a

lower bound of 1.043 on the approximation ratio of any randomized

SP mechanism in the known-preferences setting.

Mechanism 3.2. Given an instance 𝐼 (x, p), locate 𝐹1 at 𝑥𝑚1
with

probability 𝛾 (p) and 𝐹2 at 𝑥𝑚2
with probability 1 − 𝛾 (p), where

𝛾 (·) ∈ [0, 1] is a function of p.

Lemma 3.2. In the known-preferences setting, Mechanism 3.2 is
GSP.

Proof. Since Mechanism 3.2 is a probability distribution over

two deterministic GSP mechanisms, wherein the selection of prob-

abilities depends solely on the known-preferences of agents, any

group 𝐺 has no incentive to misreport their positions. This implies

that Mechanism 3.2 is GSP. □
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It is natural to choose a facility according to its support weight,

which is described as follows.

Theorem 3.3. In the known-preferences setting, setting 𝛾 =
𝑛1

𝑛1+𝑛2

,
Mechanism 3.2 is a GSP mechanism with approximation ratio of
1+

√
3

2
≈ 1.366.

Next, by appropriately adjusting 𝛾 (p), we can obtain a SP mech-

anism with approximation ratio of
4

3
.

Theorem 3.4. In the known-preferences setting, setting 𝛾 ={
3𝑛1−2𝑛2

4𝑛1−2𝑛2

, 𝑛1 ≥ 𝑛2
𝑛2

4𝑛2−2𝑛1

, 𝑛1 < 𝑛2
, Mechanism 3.2 is a GSP mechanism with ap-

proximation ratio of 4

3
.

Theorem 3.5. In the known-preferences setting, the approxima-
tion ratio of SP mechanisms obtained by any probability distribution
determined by 𝛾 in Mechanism 3.2 is at least 4

3
.

Theorem 3.6. In the known-preferences setting, there is no ran-
domized SP mechanism with approximation ratio better than 24

23
≈

1.043.

4 KNOWN-POSITIONS SETTING
In this section, we discuss the scenario where the positions of the

agents are known. We assume that the positions of the agents are

public information, while the preferences are considered private

information. Therefore, the agents can only misreport their prefer-

ences.

4.1 Deterministic mechanism
In the known-position setting, we first present a deterministic GSP

mechanism with approximation ratio of 6. Furthermore, we provide

a lower bound of 1.4 on the approximation ratio for any determinis-

tic SP mechanism, which can be improved to 1.554 by appropriately

increasing the number of agents and adjusting preferences, as de-

tailed in Appendix.

Mechanism 4.1. Given an instance 𝐼 (x, p), Let 𝑛𝐹 𝑗 be the number
of agents 𝑖 with 𝑝𝑖, 𝑗 > 𝑝𝑖,3− 𝑗 for 𝑗 ∈ {1, 2}. Locate 𝐹1 at 1

2
if𝑛𝐹1 ≥ 𝑛𝐹2

and otherwise locate 𝐹2 at 1

2
.

Theorem 4.1. In the known-positions setting, Mechanism 4.1 is a
deterministic GSP mechanism with approximation ratio of 6.

Proof. In the general setting, Mechanism 4.1 is also GSP. To

avoid verbosity, the proof is omitted here. Please refer to Theorem

5.1 for the specific proof of the approximation ratio and strategy-

proofness of Mechanism 4.1. □

Before giving the proof of the lower bound, we first give a prop-

erty of the SP mechanism, which was proposed by Lu et al. [24].

We provide its proof under our model.

Lemma 4.1. [24] In an SP mechanism, a coalition of agents with
the same position and preference cannot benefit even if they misreport
simultaneously.

Theorem 4.2. In the known-positions setting, there is no deter-
ministic SP mechanism with approximation ratio better than 7

5
.

4.2 Randomized mechanism
In this subsection, our main result is to present a randomized mech-

anism that is both SP and 4-approximate under the known-positions

setting. Additionally, we provide a lower bound of 1.2 on the ap-

proximation ratio for any randomized SP mechanism in the known-

positions setting.

Mechanism 4.2. Given an instance 𝐼 (x, p), let 𝑙 𝑗 be the leftmost
agent with 𝑝𝑖, 𝑗 > 0 and 𝑟 𝑗 be the rightmost agent with 𝑝𝑖, 𝑗 > 0 for

𝑗 ∈ {1, 2}. Locate 𝐹 𝑗 at
𝑥𝑙 𝑗 +𝑥𝑟 𝑗

2
with probability 1

2
.

We first demonstrate that Mechanism 4.2 is not GSP by a simple

instance.

Theorem 4.3. Mechanism 4.2 is not GSP.

Theorem 4.4. In the known-positions setting, Mechanism 4.2 is
an SP mechanism with approximation ratio of 4.

Now, we present an example to demonstrate the tightness of the

approximation ratio of Mechanism 4.2. We consider an instance 𝐼 ,

where there are 𝑛 − 1 agents with the same preference (𝜀, 1 − 𝜀)
positioned at 0, and one agent with the preference ( 1

2
, 1
2
) positioned

at 1, where 𝜀 is a sufficiently small positive value. For 𝐼 , the optimal

solution is to locate 𝐹2 at 0, resulting in an optimal social utility of

(𝑛 − 1) · (1 − 𝜀). The expected social utility of the mechanism is

𝑆𝑈 (𝑓 (𝐼 ), 𝐼 ) = 1

2

· ( 1
2

· 1
2

+ (𝑛 − 1) · 1
2

· 𝜀)

+ 1

2

· ( 1
2

· 1
2

+ (𝑛 − 1) · 1
2

(1 − 𝜀))

=
1

4

+ 1

4

· (𝑛 − 1) .

Therefore, the approximation ratio is at least

(𝑛 − 1) · (1 − 𝜀)
1

4
+ 1

4
· (𝑛 − 1)

= 4 · (1 − 𝜀) − 4

𝑛
(1 − 𝜀) → 4 − 4

𝑛
,

when 𝜀 tends to 0.

Theorem 4.5. In the known-positions setting, there is no random-
ized SP mechanism with approximation ratio better than 6

5
.

5 GENERAL SETTING
In this section, we assume that the positions and preferences of

the agents are private information, and agents can simultaneously

misreport both their positions and preferences.

5.1 Deterministic mechanism
For the scenario where agents can simultaneously misreport both

their locations and preferences, our first main result is a determin-

istic GSP mechanism with approximation ratio of 6. Additionally,

based on the result from Theorem 3.2, we derive a lower bound of 2

on the approximation ratio for any deterministic SP mechanism in

the general setting. It remains an open question to either improve

the lower bound on the approximation ratio or design a mechanism

with approximation ratio better than 6 to narrow the gap.

We first provide an example to demonstrate that Mechanism 3.1

is no longer SP in this setting. Consider an instance 𝐼 with three

agents, who are positioned at 0 with preferences ( 3
8
, 5
8
), ( 3

8
, 5
8
) and

( 5
8
, 3
8
) respectively. For this instance, Mechanism 3.1 locates 𝐹2 at 0
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and the utility of the agent with the preference ( 5
8
, 3
8
) is 3

8
. However,

if she misreports her preference as (1, 0), Mechanism 3.1 will locate

𝐹1 at 0 and her utility 𝑖 will increase to 5

8
.

Note that Mechanism 3.1 is not SP primarily because it chooses

the facility with the highest total weight, which always motivates

agents to report a higher weight for the facility they prefer. To

address this issue, we adopt a voting-based approach instead of the

weighted approach.

Specifically, we categorize all the agents as three types:

1. 𝐹1 agent: If 𝑝𝑖,1 > 1

2
> 𝑝𝑖,2, indicate that agent 𝑖 votes for 𝐹1.

2. 𝐹2 agent: If 𝑝𝑖,2 > 1

2
> 𝑝𝑖,1, indicate that agent 𝑖 votes for 𝐹2.

3. 𝐹1,2 agent: If 𝑝𝑖,1 = 𝑝𝑖,2 =
1

2
, indicate that agent 𝑖 is indiffer-

ent between the two facilities.

It is worth noting that when choosing which facility to locate at

1

2
, the preferences of 𝐹1,2 agents can be disregarded. Hence, an

intuitive idea would be to locate 𝐹1 at
1

2
if the number of 𝐹1 agents

is no less than the number of 𝐹2 agents, and locate 𝐹2 at
1

2
otherwise.

See Mechanism 4.1 for details.

Theorem 5.1. Mechanism 4.1 is a deterministic GSP mechanism
with approximation ratio of 6.

Proof. We first show that the mechanism is GSP, i.e., for any in-

stance 𝐼 and any group𝐺 of agents with any misreport, there exists

at least one member who cannot benefit from it. The mechanism

only has two possible outputs, either locating 𝐹1 at
1

2
or locating 𝐹2

at
1

2
. Without loss of generality, we assume the mechanism outputs

𝐹1 at
1

2
when all members in𝐺 truthfully report their positions and

preferences. Note that for 𝐹1 agents and 𝐹1,2 agents, they already

achieve the highest utility among all possible output results of the

mechanism. Thus, if 𝐺 contains 𝐹1 agents or 𝐹1,2 agents, they can-

not benefit from misreporting. If 𝐺 only contains 𝐹2 agents, any

misreport of𝐺 will not alter the fact that 𝑛𝐹1 ≥ 𝑛𝐹2 , and the output

of mechanism remains unchanged. Therefore, none of the agents

in 𝐺 can benefit from misreporting.

We now analyze the approximation ratio of the mechanism. Let

𝑁𝐹1 ,𝑁𝐹2 , and𝑁𝐹1,2 be the set of 𝐹1 agents, 𝐹2 agents, and 𝐹1,2 agents,

respectively. Let 𝑛𝐹1 , 𝑛𝐹2 , and 𝑛𝐹1,2 be the number of 𝐹1 agents, 𝐹2
agents, and 𝐹1,2 agents, respectively. Thus, we have𝑛𝐹1+𝑛𝐹2+𝑛𝐹1,2 =
𝑛. Without loss of generality, we assume that the mechanism locates

𝐹1 at
1

2
. Hence, 𝑛𝐹1 ≥ 𝑛𝐹2 . We now proceed to analyze different

cases for the optimal facility.

Case 1: If the optimal facility is 𝐹1, located at 𝑦1, then

𝑂𝑃𝑇 (𝐼 )
𝑆𝑈 ((𝐹1, 1

2
), 𝐼 )

=

∑
𝑖∈𝑁 𝑝𝑖,1 (1 − 𝑑 (𝑥𝑖 , 𝑦1))∑
𝑖∈𝑁 𝑝𝑖,1 (1 − 𝑑 (𝑥𝑖 , 1

2
))

≤
∑
𝑖∈𝑁 𝑝𝑖,1 · 1∑
𝑖∈𝑁 𝑝𝑖,1 · 1

2

= 2,

where the inequality holds because the distance from each agent to

the optimal facility is greater than or equal to 0 and the distance to

1

2
is less than or equal to

1

2
.

Case 2: If the optimal facility is 𝐹2, located at 𝑦2, then

𝑂𝑃𝑇 (𝐼 )
𝑆𝑈 ((𝐹1, 1

2
), 𝐼 )

=

∑
𝑖∈𝑁 𝑝𝑖,2 (1 − 𝑑 (𝑥𝑖 , 𝑦2))∑
𝑖∈𝑁 𝑝𝑖,1 (1 − 𝑑 (𝑥𝑖 , 1

2
))

≤
∑
𝑖∈𝑁 𝑝𝑖,2 · 1∑
𝑖∈𝑁 𝑝𝑖,1 · 1

2

=

∑
𝑖∈𝑁𝐹

1

𝑝𝑖,2 +
∑
𝑖∈𝑁𝐹

1,2

1

2
+∑

𝑖∈𝑁𝐹
2

𝑝𝑖,2

1

2

∑
𝑖∈𝑁𝐹

1

𝑝𝑖,1 +
∑
𝑖∈𝑁𝐹

1,2

1

4
+ 1

2

∑
𝑖∈𝑁𝐹

2

𝑝𝑖,1

≤
∑
𝑖∈𝑁𝐹

1

1

2
+∑

𝑖∈𝑁𝐹
1,2

1

2
+∑

𝑖∈𝑁𝐹
2

1

1

2

∑
𝑖∈𝑁𝐹

1

1

2
+∑

𝑖∈𝑁𝐹
1,2

1

4

=

1

2
𝑛𝐹1 + 1

2
𝑛𝐹1,2 + 𝑛𝐹2

1

4
𝑛𝐹1 + 1

4
𝑛𝐹1,2

=

1

2
(𝑛 + 𝑛𝐹2 )

1

4
(𝑛 − 𝑛𝐹2 )

≤ 6,

where the first inequality holds because the distance from each

agent to the optimal facility is greater than or equal to 0 and the

distance to
1

2
is less than or equal to

1

2
, the second inequality holds

due to the definition of 𝐹1 agent, which satisfies 𝑝𝑖,1 > 1

2
> 𝑝𝑖,2,

and the definition of the preference of agent 𝑖 , which satisfies 0 ≤
𝑝𝑖,1, 𝑝𝑖,2 ≤ 1, and the third inequality holds because 𝑛𝐹1 ≥ 𝑛𝐹2 ,

implying 𝑛𝐹2 ≤ 𝑛
2
. □

Now, we present an example to demonstrate the tightness of

the approximation ratio analysis of Theorem 5.1 discussed above.

Consider an instance 𝐼 , where there are 𝑛
2
agents with the same

preference ( 1
2
+ 𝜀, 1

2
− 𝜀) positioned at 0, and

𝑛
2
agents with the

same preference (0, 1) positioned at 0. Here, 𝜀 is a sufficiently small

positive value. For 𝐼 , the optimal solution is to locate 𝐹2 at 0 and

the optimal social utility is

𝑂𝑃𝑇 (𝐼 ) = 𝑛

2

+ 𝑛

2

· ( 1
2

− 𝜀) = (3 − 2𝜀)𝑛
4

.

Because 𝑛𝐹1 ≥ 𝑛𝐹2 , the mechanism locates 𝐹1 at
1

2
. Therefore, the

social utility of the mechanism is

𝑆𝑈 ((𝐹1,
1

2

), 𝐼 ) = 𝑛

2

· 1
2

· ( 1
2

+ 𝜀) = (1 + 2𝜀)𝑛
8

.

Therefore, the approximation ratio is at least

𝑂𝑃𝑇 (𝐼 )
𝑆𝑈 ((𝐹1, 1

2
), 𝐼 )

=
(3 − 2𝜀)𝑛/4
(1 + 2𝜀)𝑛/8 =

6 − 4𝜀

1 + 2𝜀
→ 6,

when 𝜀 tends to 0.

5.2 Randomized mechanism
In this subsection, we consider randomized mechanisms in the

general setting. We first provide an example to demonstrate that

Mechanism 4.2 is not SP when allowing agents to misreport both

their position and preference simultaneously.

Consider an instance 𝐼 with two agents: agent 1 with the prefer-

ence ( 1
2
, 1
2
) is positioned at 1

2
, while agent 2with ( 1

2
, 1
2
) is positioned

at 1. For this instance, Mechanism 4.2 locates 𝐹 𝑗 , 𝑗 ∈ {1, 2} at 3

4
with

probability of
1

2
. Consequently, the expected utility of agent 1 is

3

8
.

Now, consider another instance 𝐼 ′ with two agents,where agent 1

with ( 1
2
, 1
2
) is positioned at 0 and agent 2 with ( 1

2
, 1
2
) is positioned
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at 1. For 𝐼 ′, Mechanism 4.2 locates 𝐹 𝑗 , 𝑗 ∈ {1, 2} at 1

2
with probabil-

ity of
1

2
. Therefore, agent 1 in 𝐼 has an incentive to misreport her

position as 0 to switch to 𝐼 ′, causing the mechanism to locate the

facility at her true position, thus increasing her expected utility to

1. Therefore, Mechanism 4.2 is not SP.

Combining the median mechanism with Mechanism 4.2, we can

obtain an SP but not GSP mechanism.

Mechanism 5.1. Given an instance 𝐼 (x, p), let 𝑆 𝑗 = {𝑖 ∈ 𝑁 :

𝑝𝑖, 𝑗 > 0} and𝑚𝑆 𝑗
be the median agent in 𝑆 𝑗 for 𝑗 ∈ {1, 2}. Locate 𝐹 𝑗

at 𝑥𝑚𝑆𝑗
with probability 1

2
for 𝑗 ∈ {1, 2}. If the number of agents in

𝑆 𝑗 is even, we choose the median agent on the left.

We first give a simple instance to prove that Mechanism 5.1 is

not GSP.

Theorem 5.2. Mechanism 5.1 is not GSP.

Proof. Consider an instance 𝐼 with five agents: agent 1 with the

preference (0, 1) is positioned at 0, agent 2 with (0, 1) is positioned
at

1

4
, agent 3 with (1 − 𝜀, 𝜀) is positioned at

1

2
, and agent 4 and

agent 5 with the same preferences (1, 0) are positioned at
3

4
and

1 respectively. Here, 0 < 𝜀 < 1

2
. For this instance, Mechanism

5.1 locates 𝐹1 at
3

4
and 𝐹2 at

1

4
with probability

1

2
, respectively.

Consequently, the expected utility of agent 1 is
3

8
and the expected

utility of agent 3 is also
3

8
. However, if agent 1 and agent 3 misreport

their preferences as ( 1
2
, 1
2
) and (1, 0) respectively, Mechanism 5.1

will locates 𝐹1 at
1

2
and 𝐹2 at 0 with probability

1

2
, and the expected

utility of agent 1 and agent 3 will become
1

2
> 3

8
and

1

2
− 𝜀

4
> 3

8

respectively. Therefore, Mechanism 5.1 is not GSP. □

Theorem 5.3. Mechanism 5.1 is an SP mechanism with approxi-
mation ratio of 2𝑛.

In fact, the approximation ratio of Mechanism 5.1 cannot be

better than 𝑛 − 1. Consider an instance 𝐼 , where there are
𝑛−1
2

agents with the same preference (𝜀, 1 − 𝜀) positioned at 0,
𝑛−1
2

agents with the same preference (1 − 𝜀, 𝜀) positioned at 1, and one

agent with (0, 1) positioned at 1. Here, 𝜀 > 0 can be sufficiently

small. For 𝐼 , the optimal solution is to locate 𝐹1 at 1 or locate 𝐹2 at

0 and the resulting optimal social utility is 𝑂𝑃𝑇 (𝐼 ) = 𝑛−1
2

· (1 − 𝜀).
The mechanism locates 𝐹1 at 0 with probability

1

2
and locates 𝐹2 at

1 with probability
1

2
. The expected social utility is

𝑆𝑈 (𝑓 (𝐼 ), 𝐼 ) = 𝑛 − 1

2

· 𝜀
2

+ 1

2

+ 𝑛 − 1

2

· 𝜀
2

=
1 + (𝑛 − 1)𝜀

2

.

Therefore, the approximation ratio is at least

𝑂𝑃𝑇 (𝐼 )
𝑆𝑈 (𝑓 (𝐼 ), 𝐼 ) =

(1 − 𝜀) · (𝑛 − 1)/2
(1 + (𝑛 − 1)𝜀)/2 =

(𝑛 − 1) (1 − 𝜀)
1 + (𝑛 − 1)𝜀 → 𝑛 − 1,

when 𝜀 tends to 0.

Through the above examples, we observe that placing the facility

at the position of the median agent approving it, affected by the

fractional preferences, i.e., when the agents farther from the median

agent exhibit significant preferences for the facility, the mechanism

will result in a poor approximation ratio. Consequently, in the

following we randomly choose a facility and locate it in the middle

position.

Mechanism 5.2. Given an instance 𝐼 (x, p), locate 𝐹 𝑗 , 𝑗 ∈ {1, 2}
at 1

2
with probability 1

2
.

Theorem 5.4. Mechanism 5.2 is a GSP mechanism with approxi-
mation ratio of 4.

Proof. Clearly, the mechanism is GSP, since any misreport

about positions and preferences by any group 𝐺 would not affect

the output of the mechanism. We use 𝑓 to represent Mechanism

5.2. Given any instance 𝐼 , let 𝐹𝑜 be the optimal facility. For each

facility 𝐹 𝑗 , 𝑗 ∈ {1, 2}, let 𝑆𝑈 ((𝐹 𝑗 , 1
2
), 𝐼 ) be the social utility when

𝐹 𝑗 is located at
1

2
. Note that when a facility is located at

1

2
, the

maximum distance from any agent 𝑖 to the facility is at most
1

2
, i.e.,

𝑑 (𝑥𝑖 , 1
2
) ≤ 1

2
. Therefore, the expected social utility of the mecha-

nism is

𝑆𝑈 (𝑓 (𝐼 ), 𝐼 ) = 1

2

· 𝑆𝑈 ((𝐹1,
1

2

), 𝐼 ) + 1

2

· 𝑆𝑈 ((𝐹2,
1

2

), 𝐼 )

=
1

2

·
∑︁
𝑖∈𝑁

𝑝𝑖,1 (1 − 𝑑 (𝑥𝑖 ,
1

2

)) + 1

2

·
∑︁
𝑖∈𝑁

𝑝𝑖,2 (1 − 𝑑 (𝑥𝑖 ,
1

2

))

≥ 1

2

·
∑︁
𝑖∈𝑁

𝑝𝑖,1 (1 −
1

2

) + 1

2

·
∑︁
𝑖∈𝑁

𝑝𝑖,2 (1 −
1

2

)

=
1

4

(
∑︁
𝑖∈𝑁

𝑝𝑖,1 +
∑︁
𝑖∈𝑁

𝑝𝑖,2)

=
1

4

𝑛.

Since for 𝐹𝑜 , the maximum possible utility for each agent 𝑖 is 1, we

have

𝑂𝑃𝑇 (𝐼 ) ≤ 𝑛.

Therefore, the approximation ratio of the mechanism is at most

4. □

Now, we present an example to demonstrate the tightness of

the approximation ratio analysis of Theorem 5.4 discussed above.

Consider an instance 𝐼 , where all 𝑛 agents with the same preference

(1, 0) are positioned at 0 with. For 𝐼 , the optimal solution is to locate

𝐹1 at 0 and the optimal social utility is 𝑛. Since the expected social

utility of Mechanism 5.2 is
𝑛
4
, its approximation ratio is at least 4.

Furthermore, based on Theorem 4.5, we derive a lower bound of

1.2 on the approximation ratio for any randomized SP mechanism

in the general setting.

Theorem 5.5. In the general setting, there is no randomized SP
mechanism with approximation ratio better than 1.2.

6 CHOOSING K OUT OF M FACILITIES
The model discussed above involves the choice and location of one

facility from two facilities. We now extend this model to a more

general scenario. Consider the case where there are𝑚 ≥ 2 distinct

facilities, and we need to choose 𝑘 (< 𝑚) facilities and locate them.

We continue to use x = (𝑥1, . . . , 𝑥𝑛) and p = (𝑝1, . . . , 𝑝𝑛) to denote

the position profile and preference profile of the𝑛 agents, respectively.

Here, 𝑝𝑖 = (𝑝𝑖,1, . . . , 𝑝𝑖,𝑚) signifies the preference vector of agent
𝑖 for the 𝑚 facilities {𝐹1, . . . , 𝐹𝑚}, subject to the constraint that

0 ≤ 𝑝𝑖, 𝑗 ≤ 1 for any 1 ≤ 𝑗 ≤ 𝑚 and

∑
1≤ 𝑗≤𝑚 𝑝𝑖, 𝑗 = 1. Let an

instance be denoted as 𝐼 (x, p,𝑚, 𝑘) or simply 𝐼 . A mechanism is

a function that maps an instance 𝐼 (x, p,𝑚, 𝑘) to an output (𝑆, y),
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where 𝑆 represents a subset of facilities chosen by the mechanism

with cardinality 𝑘 , and y = (𝑦 𝑗 ) 𝑗∈𝑆 corresponds to the location of

the 𝑘 chosen facilities. Given the output (𝑆, y) of a mechanism, the

utility of each agent 𝑖 ∈ 𝑁 is defined as the sum of their utilities

for the 𝑘 chosen facilities, i.e.,

𝑢𝑖 ((𝑆, y), (𝑥𝑖 .𝑝𝑖 )) =
∑︁
𝐹 𝑗 ∈𝑆

𝑢𝑖 ((𝐹 𝑗 , 𝑦 𝑗 ), (𝑥𝑖 , 𝑝𝑖 )) =
∑︁
𝐹 𝑗 ∈𝑆

𝑝𝑖, 𝑗 ·(1−𝑑 (𝑥𝑖 , 𝑦 𝑗 )) .

Our goal is to maximize the social utility by choosing 𝑘 facilities

from the𝑚 distinct facilities and locating them, where the social

utility is defined as the sum of 𝑛 agents’ utilities, i.e., 𝑆𝑈 ((𝑆, y), 𝐼 ) =∑
𝑖∈𝑁 𝑢𝑖 ((𝑆, y), (𝑥𝑖 , 𝑝𝑖 )).
For this model, our first result is a generalization of Mecha-

nism 3.1 to obtain a 2-approximate GSP mechanism in the known-

preferences setting. Furthermore, We show that this mechanism

has the best approximation ratio among all deterministic SP mech-

anisms. Finally, we provide a lower bound on the approximation

ratio for any deterministic SP mechanism in the known-positions

setting.

Mechanism 6.1. Given an instance 𝐼 (x, p,𝑚, 𝑘), let𝑛 𝑗 =
∑𝑛
𝑖=1 𝑝𝑖, 𝑗

and𝑚 𝑗 = argmin𝑘

{∑𝑘
𝑖=1 𝑝𝑖, 𝑗 ≥

1

2
𝑛 𝑗

}
for 𝑗 ∈ {1, . . . ,𝑚}. Choose the

facility set 𝑆 that includes the 𝑘 facilities corresponding to the top 𝑘
largest values of 𝑛 𝑗 , and locate 𝐹 𝑗 at position 𝑥𝑚 𝑗

of agent𝑚 𝑗 for any
𝐹 𝑗 ∈ 𝑆 , breaking ties in any deterministic way.

Theorem 6.1. In the known-preferences setting, Mechanism 6.1 is
a deterministic GSP mechanism with approximation ratio of 2.

Proof. The proof of group strategy-proofness of Mechanism 6.1

is similar to that of Theorem 3.2, which is omitted here.

We now turn to analyze the approximation ratio of the mecha-

nism. Given any instance 𝐼 , let (𝑆, y) be the output ofMechanism 6.1.

Denote 𝑆 = {𝐹𝑠1 , . . . , 𝐹𝑠𝑘 } and let 𝑂 = {𝐹𝑜1 , . . . , 𝐹𝑜𝑘 } be the set of
optimal facilities for 𝐼 . For any facility 𝐹𝑠 𝑗 ∈ 𝑆 , let 𝑆𝑈 ((𝐹𝑠 𝑗 , 𝑥𝑚𝑠𝑗

), 𝐼 )
be the social utility when only 𝐹𝑠 𝑗 is chosen and located at 𝑥𝑚𝑠𝑗

.

By Lemma 3.1, we have

1

2

𝑛𝑠 𝑗 ≤ 𝑆𝑈 ((𝐹𝑠 𝑗 , 𝑥𝑚𝑠𝑗
), 𝐼 ) ≤ 𝑛𝑠 𝑗 .

Since for any 𝐹𝑜 𝑗
∈ 𝑂 , the maximum possible utility of each

agent 𝑖 is 𝑝𝑖,𝑜 𝑗
, we have

𝑂𝑃𝑇 (𝐼 ) ≤
∑︁

𝐹𝑜𝑗 ∈𝑂

∑︁
𝑖∈𝑁

𝑝𝑖,𝑜 𝑗
=

∑︁
𝐹𝑜𝑗 ∈𝑂

𝑛𝑜 𝑗
.

Therefore,

𝑆𝑈 ((𝑆, y), 𝐼 ) =
∑︁

𝐹𝑆𝑗 ∈𝑆
𝑆𝑈 ((𝐹𝑠 𝑗 , 𝑥𝑚𝑠𝑗

), 𝐼 ) ≥ 1

2

·
∑︁

𝐹𝑆𝑗 ∈𝑆
𝑛𝑠 𝑗

≥ 1

2

·
∑︁

𝐹𝑜𝑗 ∈𝑂
𝑛𝑜 𝑗

≥ 1

2

·𝑂𝑃𝑇 (𝐼 ),

where the second inequality holds due to the fact that the 𝑘 facilities

in set 𝑆 correspond to the top-𝑘 highest support weights. □

Theorem 6.2. In the known-preferences setting, when𝑚 ≥ 𝑘 (1 +
𝑘), there is no deterministic SP mechanism with approximation ratio
better than 2.

Theorem 6.3. In the known-positions setting, there is no deter-
ministic SP mechanism with approximation ratio better than 1.554

when 𝑘 = 1, and no deterministic SP mechanism with approximation
ratio better than 2 − 1

𝑘
when 𝑘 ≥ 2 and𝑚 ≥ 𝑘 (1 + 𝑘).

7 CONCLUSIONS AND OPEN PROBLEMS
In this paper, we investigated the facility location game with frac-

tional preferences under resource constraints. In this model, we

need to choose 𝑘 facilities from a set of𝑚 facilities and locate them.

The preferences of agents indicate their weights of support for the

facilities. We focus on the scenario of choosing one facility from two

facilities. Based on private information held by the agents, we con-

sidered three settings, each providing upper and lower bounds on

the approximation ratio for deterministic and randomized (group)

strategy-proof mechanisms. The results are summarized in Table 1.

For the known-preferences setting, we provided a 2-approximate

deterministic group strategy-proof mechanism, which is also the

best deterministic strategy-proof mechanism. Subsequently, by ran-

domizing it, we obtained a
4

3
-approximate group strategy-proof

mechanism and a lower bound of 1.043 for any randomized strategy-

proof mechanism. For the known-positions setting, we derived an

upper bound of 6 and a lower bound of 1.554 for any deterministic

group strategy-proof mechanism. Whether it is possible to fully

utilize the position information may be crucial for narrowing the

gap. We also provided a 4-approximate randomized SP mechanism

and a lower bound of 1.2 for any randomized SP mechanism. For the

general setting, we presented a 6-approximate deterministic group

strategy-proof mechanism, a lower bound of 2 for any deterministic

SP mechanism and a 4-approximate randomized GSP mechanism.

We also considered a more general scenario, choosing 𝑘 (< 𝑚)
facilities from 𝑚 ≥ 2 different facilities and locating them. For

the known-preferences setting, we obtained a deterministic group

strategy-proof mechanism with 2-approximation which is the best

deterministic strategy-proof mechanism. For the known-positions

setting, we provided a lower bound of 2 for any deterministic

strategy-proof mechanism. For the general setting, the lower bound

of 2 in the known-preferences setting also applies. However, for

the general setting, even for known-positions setting, the determin-

istic strategy-proof mechanism under the scenario of choosing one

facility out of two facilities is no longer strategy-proof (Appendix

B), and we cannot provide any strategy-proof mechanism with

bounded approximation ratio.

For future work, a natural direction is to narrow the gap between

the upper and lower bounds of deterministic and randomized mech-

anisms in different settings. We can also consider various variants

of preferences. For example, the agents may have dual preferences

or triple preferences instead of fractional preferences. In addition,

it is interesting to consider the obnoxious facility model, where we

need to choose and locate facilities that the agents want to stay

away from.We can also consider scenarios with candidate positions,

meaning that we need to locate facilities at predefined positions.
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