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ABSTRACT
Levesque introduced the notion of only-knowing to precisely cap-

ture the beliefs of a knowledge base. While numerous studies of

only-knowing have emerged, such as the representation of proba-

bilistic beliefs or reasoning about beliefs in an uncertain dynamical

system, most remain confined to single-agent contexts. This limita-

tion predominantly stems from an absence of a logical framework,

which faithfully extends Levesque’s intuition of only-knowing to

multi-agent, probabilistic scenarios.

In this paper, we introduce a first-order logical account with proba-

bilistic beliefs and only-believing of many agents. We demonstrate

that the categorical fragment of our account forms a 𝐾𝐷45𝑛 modal

system, and the notion of belief has behavior following the laws of

probability. We also show how an agent’s beliefs and non-beliefs

about the environment or other agents’ beliefs are precisely cap-

tured through the modalities of only-believing, which paves the

way to generalize tools for interfacing with symbolic, probabilistic

knowledge bases. By way of example, we demonstrate how non-

monotonic conclusions including default reasoning can be handled

by our account.
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1 INTRODUCTION
In multi-agent systems, where agents constantly interact or coordi-

nate, reasoning about knowledge and belief is of interest for many

applications. By gathering detailed information, not only from the

environment but also from other agents’ mental states, an agent

can determine when communication with other agents is necessary,

enhance collaboration on tasks, and optimize its strategy against

other agents in scenarios where agents operate concurrently.

Among many symbolic approaches that represent an agent’s

knowledge and belief, the notion of only-knowing[23, 24] is par-

ticularly valuable: An agent’s beliefs of a knowledge base (KB) are
modelled in terms of only-knowing a collection of sentences, and
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sentences that are not logically entailed by the KB are taken to be

precisely those not believed. In Levesque’s logic of only-knowing

OL [23, 24], the classical epistemic operator 𝐾 is used for knowl-

edge, and in addition, a modality𝑂 is used for only-knowing. To

illustrate, 𝑂𝑝 means that 𝑝 is all the agent knows. 𝑂𝑝 entails 𝐾𝑝 ,

but it also entails ¬𝐾𝑞 and ¬𝐾¬𝑞 for proposition 𝑞 different from
𝑝 . This is different from classical epistemic logic where 𝐾𝑝 en-

tails neither ¬𝐾𝑞 nor ¬𝐾¬𝑞. Furthermore, only-knowing also

shows a close connection to autoepistemic logic[27] and can be

applied to autoepistemic reasoning or default reasoning[8]. With

some simple augmentations, non-monotonic conclusions can be

reached without using meta-logical notions such as fixpoints or

partial orders[20, 31]. For instance, let KB be a single sentence

{𝐵𝑖𝑟𝑑 (𝑡𝑤𝑒𝑒𝑡𝑦)}, namely “tweety is a bird”, 𝛿 a sentence to ex-

press the default ∀𝑥 .[𝐵𝑖𝑟𝑑 (𝑥) ∧ ¬𝐾¬𝐹𝑙𝑦 (𝑥) ⊃ 𝐹𝑙𝑦 (𝑥)], i.e. any
bird is assumed to be able to fly unless we know the opposite.

Then we have the following non-monotonic properties in OL:

𝑂(KB∧𝛿) entails𝐾𝐹𝑙𝑦 (𝑡𝑤𝑒𝑒𝑡𝑦), but𝑂(KB∧𝛿 ∧¬𝐹𝑙𝑦 (𝑡𝑤𝑒𝑒𝑡𝑦))
entails𝐾¬𝐹𝑙𝑦 (𝑡𝑤𝑒𝑒𝑡𝑦). In other words, the initial belief “tweety

can fly” is retracted when a new fact is added.

Numerous researches on single-agent only-knowing emerged:

Lakemeyer and Levesque extended the notion of only-knowing to

capture different forms of default reasoning [20], Belle et al. pro-

posed the logic OBL to describe only-believing and admit knowl-

edge bases with incomplete, probabilistic specifications [6]. There

is also work on reasoning in dynamical domains [5, 19, 21]. It has

also been shown how to capture an agent’s belief after actions via

only-believing and how to perform projection reasoning [25, 26].

Naturally, extending these works into the multi-agent scenario

would result in an expressive account to represent and reason about

the mental states of agents, and about how their minds change as a

result of actions. As for non-monotonic reasoning, via multi-agent

only-believing one could expect to express default assumption not

only on the facts (e.g. the aforementioned “Birds can fly” example)

but also on other agents’ beliefs, like “It is assumed that agent 2

believes that the coin is fair”. The expressiveness of such an ac-

count should be of interest for planning and decision-making in

cooperative or concurrent games. However, research into multi-

agent only-knowing has faced more obstacles than expected, and

extensions in terms of probabilistic belief or belief after actions are

rarely considered yet. Most studies are confined to characterizing

only-knowing of categorical knowledge. Halpern and Lakemeyer

attempted to handle the extension independently [13, 18]. However,

these accounts make use of arbitrary Kripke structures and lose

the simplicity of Levesque’s semantics. Furthermore, each account

has some undesirable properties respectively. These properties are

avoided in a joint work from Halpern and Lakemeyer [14], but it

forces us to have the semantic notion of validity directly in the

language. For this reason, that proposal is not natural, and it is
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matched with a proof theory that has a set of new axioms to deal

with these new notions. Belle and Lakemeyer revisited the construc-

tion and proposed an account ONL𝑛 with a natural possible-world

semantics[3]. However, their notion of only-knowing didn’t pre-

cisely capture the belief and non-belief for sentences of higher depth

of nesting. For example, let 𝑂1 denotes the only-knowing of agent

1, 𝐾1 and 𝐾2 stand for the belief of agent 1 and 2 respectively,

then𝑂1𝑝 ⊃ 𝐾1 (𝐾2𝑞) and𝑂1𝑝 ⊃ ¬𝐾1 (𝐾2𝑞) are both satisfiable

in their semantics.

Themajor difficulty is as follows: If we faithfully follow Levesque’s

principle of only-knowing, that the beliefs of an agent are precisely

those following from its knowledge base, then in the multi-agent

cases, only-knowing a sentence involves the belief and non-belief

of sentences with an arbitrary depth of nesting beliefs. In a single-

agent scenario, e.g. OL, every formula specifies the agent’s belief

about the fact, or about its own belief, which we say to be of depth 1.

In a multi-agent scenario, however, there are sentences describing

an agent’s belief about another agent’s belief, which are of depth 2

at least. A sentence describing agent 1’s belief about agent 2’s belief

about agent 3’s belief is at least of depth 3. Such a belief nesting

can be arbitrarily deep. If the depth is not restricted, constructing

a structure which describes only-knowing up to all depths will be

semantically difficult and will easily lead to a circular definition.

The study of belief with arbitrary depths of nesting is indeed

meaningful, in particular for reasoning about common knowledge.

However, we argue that it suffices to consider finite depths in many

applications, where common knowledge or beliefs on an infinite

set of sentences are not considered. We adapt the idea from Aucher

and Belle [1] and use modalities of the form𝑂
(𝑘)
𝑖

to describe agent

𝑖’s only-believing up to depth 𝑘 . We focus on extending the notion

of only-knowing to multi-agent, probabilistic cases and spare us

from the troubles handling infinite nesting of beliefs.

The rest of the paper is organized as follows. We begin with

introducing a new logic of multi-agent only-believingOBL𝑚 . Then

we analyze the properties of the logic, in particular those exclusive

for only-believing. Relation to other logical accounts will also be

discussed. Finally, we briefly conclude our work.

2 THE LOGIC OBL𝑚

We introduce the logicOBL𝑚 . It can be considered as a multi-agent

extension of OBL [6] and a probabilistic extension of ONL𝑛 [3].

2.1 The Language
The logic OBL𝑚 is a first-order modal logic with equality. Let𝐴𝑔 =

{1, . . . ,𝑚} denote a set of𝑚 agents. The vocabulary consists of (FO)

variables and predicate symbols. For simplicity, function symbols

are excluded. The language includes a countable set of standard

names N , which are syntactically treated like constants. This can

be viewed as having fixed infinite domain closure axioms with the

unique name assumption, which further allows FO quantification

to be understood substitutionally. The set of rational numbers Q
is included as a sub-sort of standard names. We call a predicate

other than =, applied to first-order variables or standard names, an

atomic formula. An atomic formula without variables is called a

ground atom.

Standard FO connectives ∧,¬,∀ and modalities 𝐵1, . . . ,𝐵𝑚 are

used to construct formulae. For each agent index 𝑖 , 𝐵𝑖 (𝛼 : 𝑟 ) is
read as “agent 𝑖 believes 𝛼 with degree 𝑟”. To illustrate, a sentence

𝐵1 (𝑅𝑎𝑖𝑛 : 0.8) means agent 1 believes that there is an 80% chance of

raining. In particular, we write𝐾𝑖𝛼 as an abbreviation of𝐵𝑖 (𝛼 : 1)
and read it as “agent 𝑖 knows 𝛼”.

To extend the notion of “only-knowing” to multi-agent systems,

we start from the single-agent cases and inductively extend the

language to represent only-believing of any depth. We use modality

𝑂
(1)
𝑖

to specify agent 𝑖’s only-believing up to depth 1, which cap-

tures the beliefs and non-beliefs about facts and the agent’s own be-

liefs. An example of𝑂
(1)
𝑖

-formula is𝑂
(1)
𝑖

(∃𝑥 .[𝑃 (𝑥) ∧ ¬𝐾𝑖𝑃 (𝑥)]),
which means “All agent 𝑖 believes up to depth 1 is the existence of

an unknown object 𝑥 s.t. 𝑃 (𝑥) holds.” Now we go one step deeper:

We use modality 𝑂
(2)
𝑖

to specify agent 𝑖’s only-believing up to

depth 2, which stands for the beliefs and non-beliefs about fact,

about the agent’s own beliefs and other agents’ beliefs up to depth

1. An example is

𝑂
(2)
𝑖

(𝑞 ∧ ∃𝑥 .[𝐾𝑗 (𝑃 (𝑥)) ∧ ¬𝐾𝑖𝐾𝑗 (𝑃 (𝑥))])

with 𝑖 ≠ 𝑗 . The difference between 𝑂
(2)
𝑖

and 𝑂
(1)
𝑖

is: While the

former specifies agent 𝑖’s beliefs about other agents’ beliefs, the

latter does not. For instance,𝑂
(2)
𝑖

(𝑝 : 1) implies that agent 𝑖 knows

nothing about what other agents know or believe, e.g. 𝑂
(2)
𝑖

(𝑝 : 1)
entails ¬𝐾𝑖𝐾𝑗𝑞 for any proposition 𝑞, but 𝑂

(1)
𝑖

(𝑝 : 1) entails nei-
ther 𝐾𝑖𝐾𝑗𝑞 nor ¬𝐾𝑖𝐾𝑗𝑞.

We include modalities𝑂
(𝑘)
1
, . . .𝑂

(𝑘)
𝑚 with natural number 𝑘 > 0.

For each 𝑘 , 𝑂
(𝑘+1)
𝑖

specifies agent 𝑖’s only-believing about other

agents’ beliefs up to depth 𝑘 , and formula 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 )
is read as “All agent 𝑖 believes up to depth 𝑘 is: 𝛼1 with degree 𝑟1,

..., and 𝛼𝑙 with degree 𝑟𝑙 ”. We write 𝑂
(𝑘)
𝑖
𝛼 to mean 𝑂

(𝑘)
𝑖

(𝛼 : 1).

Definition 1 (𝑖-depth). For 𝑖 ∈ 𝐴𝑔, the 𝑖-depth of a formula 𝛼 ,

written as 𝑑𝑒𝑝 [𝛼, 𝑖], is inductively defined as

• 𝑑𝑒𝑝 [𝛼, 𝑖] = 0 for atomic formula 𝛼 , 𝑑𝑒𝑝 [𝑡1 = 𝑡2, 𝑖] = 0

• 𝑑𝑒𝑝 [¬𝛼, 𝑖] = 𝑑𝑒𝑝 [𝛼, 𝑖]
• 𝑑𝑒𝑝 [𝛼 ∧ 𝛽, 𝑖] =𝑚𝑎𝑥 (𝑑𝑒𝑝 [𝛼, 𝑖], 𝑑𝑒𝑝 [𝛽, 𝑖])
• 𝑑𝑒𝑝 [∀𝑥 .𝛼, 𝑖] = 𝑑𝑒𝑝 [𝛼, 𝑖]
• 𝑑𝑒𝑝 [𝐵𝑖 (𝛼 : 𝑟 ), 𝑖] = max{max{𝑑𝑒𝑝 [𝛼, 𝑗] | 𝑗 ≠ 𝑖}+1, 𝑑𝑒𝑝 [𝛼, 𝑖]}
• 𝑑𝑒𝑝 [𝐵𝑗 (𝛼 : 𝑟 ), 𝑖] = 0 for 𝑗 ≠ 𝑖

• 𝑑𝑒𝑝 [𝑂 (𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ), 𝑖] = 𝑘
• 𝑑𝑒𝑝 [𝑂 (𝑘)

𝑗
(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ), 𝑖] = 0 for 𝑗 ≠ 𝑖

For a 𝐵-formula, the depth increases only when a nesting of

different agents’ beliefs occurs. For an 𝑂-formula, the depth is

given by the superscript 𝑘 .

Example 1. Let 𝛼 denote the formula (∃𝑟 .𝑟 > 0.5 ∧𝐵2 (𝑝 : 𝑟 )).
Consider the formula 𝐾1𝛼 , namely, agent 1 knows that 𝑝 is believed

by agent 2 with a degree greater than 0.5. Then

𝑑𝑒𝑝 [𝐾1𝛼, 1] =max{𝑑𝑒𝑝 [𝛼, 1], 1 + 𝑑𝑒𝑝 [𝛼, 2]}
=max{0, 2} = 2

𝑑𝑒𝑝 [𝐾1𝛼, 2] =0
i.e. 𝐾1𝛼 has 1-depth 2 and 2-depth 0.
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The set of well-formed formulae (wffs) is the smallest set including:

• any atomic formulae,

• 𝑡 = 𝑡 ′ where 𝑡 and 𝑡 ′ are variables or standard names,

• if 𝛼, 𝛽 are formulae, then 𝛼 ∧ 𝛽 , ¬𝛼 , ∀𝑥 .𝛼 are formulae

• if 𝛼 is a formula, then for any 𝑖 ∈ {1, . . . ,𝑚} and number 𝑟 ,

𝐵𝑖 (𝛼 : 𝑟 ) is a formula.

• for 𝑗 ∈ {1, . . . , 𝑙}, 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) is a formula with 𝑖-depth 𝑘 𝑗 ,

𝑘 ≥ max{𝑘1, . . . , 𝑘𝑙 }, then 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) is a for-
mula.

An example of illegal formulae is 𝑂
(1)
1

(𝑝 ∧ 𝐾2𝑞 : 0.8), where
the sentence being believed is of 1-depth 2. Only-believing this

sentence requires at least 𝑘 = 2. For the rest of the paper, we only

consider wffs and proper superscript 𝑘 .

A formula with no free variables is called a sentence. A formula

not mentioning modalities is said to be objective. A formula, where

all predicate symbols appear within the scope of a modal operator

is called subjective. Given 𝑖 ∈ 𝐴𝑔, a formula is called 𝑖-objective if

modal operators 𝐵𝑖 and 𝑂
(𝑘)
𝑖

only appear within the scope of 𝐵𝑗

or𝑂
(𝑘′)
𝑗

where 𝑗 ≠ 𝑖 . For instance, 𝑝∧𝑂 (3)
2

(𝑞∧𝐾1𝑞) is 1-objective
since 𝐾1 only appears in the scope of 𝑂

(3)
2

, namely, knowing 𝑝 is

agent 2’s conjecture of agent 1’s mental state and not necessarily

to be the actual belief of agent 1. Inversely, a formula is called 𝑖-

subjective if any predicates or modal operators 𝐵𝑗 and 𝑂
(𝑘)
𝑗

s.t.

𝑗 ≠ 𝑖 only appear within the scope of operators 𝐵𝑖 or 𝑂
(𝑘′)
𝑖

, e.g.

¬𝐾1𝑝 ∧ 𝐵1 (𝑝 ∧ 𝐾2𝑞 : 0.5). We use True to denote an objective

tautology ∀𝑥 .(𝑥 = 𝑥) and use False to denote its negation.

2.2 The Semantics
The semantics of OBL𝑚 is given in terms of possible worlds, where

a world is a set of ground atoms considered as true. The set of all

worlds is denoted as W.

In the logic OBL, a distribution 𝑑 is a function from W to the

set of non-negative real numbers R≥0 and an epistemic state is

defined as a set of distributions.
1
We extend the notions into multi-

agent cases: A distribution 𝑑 defined above describes an agent’s

weighting to each possible world. For an agent 𝑖 , to describe agent

𝑖’s belief about other agents’ beliefs on the actual world, the weight

assigned to world𝑤 , namely 𝑑 (𝑤), is partitioned and reassigned to

tuples of form (𝑤, 𝑒1, . . . , 𝑒𝑚−1) where each 𝑒 𝑗 is an OBL epistemic

state describing the belief of an agent other than 𝑖 . Formally, we

have the following definition:

Definition 2 (𝑘-distribution). For 𝑘 ≥ 1, a 𝑘-distribution,

written as 𝑑𝑘 , is inductively defined as:

• 𝑑1 : (W × {∅} × · · · × {∅}︸              ︷︷              ︸
𝑚−1

) → R≥0,

• 𝑑𝑘+1 : (W × E𝑘 × · · · × E𝑘︸           ︷︷           ︸
𝑚−1

) → R≥0,

where E𝑘 = 2
D𝑘

, and D𝑘
is the set of all 𝑘-distributions.

1
The idea to incorporate a set of distributions instead of a single distribution in the

epistemic state derives from the philosophical stance that de re knowledge about

degrees of belief should not be valid. Namely, if epistemic states only contain single

distributions, formulae such as ∃𝑟 .𝐾 (𝐵 (𝜙 : 𝑟 )) will be valid for any 𝜙 , which is

counter-intuitive.

When the context is clear, we omit the superscript and write

𝑑 instead of 𝑑𝑘 . We say 𝑒 is an epistemic state, specifically a 𝑘-

epistemic state, if 𝑒 is a set of 𝑘-distributions, i.e. 𝑒 ∈ E𝑘
. The

number 𝑘 is said to be the depth of 𝑒 , written as 𝑑𝑒𝑝 [𝑒] = 𝑘 .
Similar to OBL, we appeal to three conditions Bnd, Eq,Norm

to obtain probability distributions.

Definition 3. Let 𝑑 be a (𝑘 + 1)-distribution for some 𝑘 ≥ 0,

U,V ⊆ (W × E𝑘 × · · · × E𝑘 ) and U ⊆ V , 𝑟 any real number. We

define conditions Bnd, Eq and Norm as follows:

• Bnd(𝑑,U, 𝑟 ) iff there is no 𝑙 , {(𝑤1, ®𝑒1), . . . , (𝑤𝑙 , ®𝑒𝑙 )} ⊆ U s.t.
2

𝑙∑︁
𝑗=1

𝑑 (𝑤 𝑗 , ®𝑒 𝑗 ) > 𝑟

• Eq(𝑑,U, 𝑟 ) iff Bnd(𝑑,U, 𝑟 ) and no 𝑟 ′ < 𝑟 s.t. Bnd(𝑑,U, 𝑟 ′);
• Norm(𝑑,U,V, 𝑟 ) iff there is a number 𝑏 ≠ 0 such that

Eq(𝑑,U, 𝑏 × 𝑟 ) and Eq(𝑑,V, 𝑏).

Intuitively, Bnd(𝑑,U, 𝑟 ) ensures the weight of tuples (𝑤, ®𝑒) in
U wrt 𝑑 is bounded by 𝑟 . Eq(𝑑,U, 𝑟 ) ensures that the weight is
bounded and 𝑟 is the supremum. Given Norm(𝑑,U,V, 𝑟 ), 𝑟 can
be viewed as the normalized sum of the weight of worlds inU in

relation toV . Essentially, although the distribution𝑑 is defined over

an uncountable domain, these conditions on 𝑑 admit a well-defined

summation, and the weights on worlds can indeed be interpreted

as probabilities:

Theorem 1. For 𝑘 ≥ 0, suppose that 𝑑 is a (𝑘 + 1)-distribution.
LetV = (W × E𝑘 × · · · × E𝑘 ) andU = {(𝑤, ®𝑒) | 𝑑 (𝑤, ®𝑒) ≠ 0}. For
any 𝑏 ≥ 0, if Bnd(𝑑,V, 𝑏), then U is countable.

Proof. Let U𝑗 = {(𝑤, ®𝑒) ∈ U | 𝑑 (𝑤, ®𝑒) ≥ 1/ 𝑗} for 𝑗 ∈ N+. It is
easy to see that U =

⋃U𝑖 . Suppose that U is uncountable, then

there is some 𝜖 > 0 such that U𝜖 = {𝑤 ∈ U | 𝑑 (𝑤, ®𝑒) ≥ 𝜖} is

infinite (Otherwise we could enumerate U by enumerating U𝑗

starting at 𝑗 = 1). Consider any countably infinite sequence (𝑤𝑙 , ®𝑒𝑙 )
taken from U𝜖 . Since 𝑑 (𝑤𝑙 , ®𝑒𝑙 ) ≥ 𝜖 for all 𝑙 , the sum

∑∞
𝑙=1

𝑑 (𝑤𝑙 , ®𝑒𝑙 )
is unbounded, contradicting the assumption thatV is bounded. □

By satisfying the Bnd conditions, a distribution assigns non-zero

values to a countable support set 𝑆𝑢𝑝𝑝 (𝑑) = {(𝑤, ®𝑒) | 𝑑 (𝑤, ®𝑒) ≠ 0}.
For the rest of the paper, by summation of weights of a bounded

distribution 𝑑 , we always mean summation in its support set, i.e.∑︁
(𝑤,®𝑒) ∈𝐸

𝑑 (𝑤, ®𝑒) �
∑︁

(𝑤,®𝑒) ∈𝐸∩𝑆𝑢𝑝𝑝 (𝑑)
𝑑 (𝑤, ®𝑒)

In OBL, the necessitation rule does not hold for modality 𝐵
(also 𝐾). For instance, True is valid in OBL yet 𝐾True is not.

Besides, an empty epistemic state is legal in OBL, which breaks

the laws of probability (e.g.𝐵(𝑝 : 0.1) ∧𝐵(𝑝 : 0.2) will be satisfied
by the empty state). Fortunately, these undesirable properties can be

easily avoided by ruling out improper distributions and epistemic

states.

Definition 4 (regularity). We inductively define the sets of

regular 𝑘-distributions D𝑘
and regular 𝑘-epistemic states E𝑘

: Let

E0 = {∅}. For any 𝑘 > 0, let V = (W × E𝑘−1 × · · · × E𝑘−1),
2
We write the arguments of a 𝑘-distribution as (𝑤, ®𝑒) instead of (𝑤, 𝑒1, . . . , 𝑒𝑚−1) .
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• D𝑘 = {𝑑 | Eq(𝑑,V, 1)};
• E𝑘 = 2

D𝑘 \{∅}.

For the rest of the paper, we consider only regular distributions

and epistemic states. Now we define the truth of sentences. By a

model, we mean a tuple (𝑤, ®𝑒), where ®𝑒 = (𝑒1, . . . , 𝑒𝑚) and each

𝑒𝑖 is an epistemic state (𝑒𝑖 denotes the 𝑖-th argument of ®𝑒). We

say a formula 𝛼 and ®𝑒 are compatible if 𝑑𝑒𝑝 [𝛼, 𝑖] ≤ 𝑑𝑒𝑝 [𝑒𝑖 ] f.a.
𝑖 ∈ {1, . . . ,𝑚}. The truth value of objective sentences is assigned

as follows:

• 𝑤, ®𝑒 |= 𝑃 (𝑛) iff 𝑃 (𝑛) ∈ 𝑤 ;

• 𝑤, ®𝑒 |= 𝑡1 = 𝑡2 iff 𝑡1 and 𝑡2 are identical standard name;

• 𝑤, ®𝑒 |= ¬𝛼 iff not𝑤, ®𝑒 |= 𝛼 ;
• 𝑤, ®𝑒 |= 𝛼 ∧ 𝛽 iff𝑤, ®𝑒 |= 𝛼 and𝑤, ®𝑒 |= 𝛽 ;
• 𝑤, ®𝑒 |= ∀𝑥 .𝛼 iff𝑤, ®𝑒 |= 𝛼𝑥𝑛 for any 𝑛 ∈ N .

Here 𝛼𝑥𝑛 means the formula obtained by substituting each appear-

ance of free variable 𝑥 in 𝛼 by a standard name 𝑛. The semantics for

the objective fragment is identical to language L [24]. Supposing

that ®𝑒 is compatible with 𝐵𝑖 (𝛼 : 𝑟 ), then
• 𝑤, ®𝑒 |= 𝐵𝑖 (𝛼 : 𝑟 ) iff f.a. 𝑑 ∈ 𝑒𝑖 , Norm(𝑑,W𝑖,𝑒𝑖

𝛼 ,W𝑖,𝑒𝑖
True

, 𝑟 ),
where for 𝑖 ∈ 𝐴𝑔, 𝑒 ∈ E𝑘

and formula 𝜑 ,W𝑖,𝑒
𝜑 is defined as

W𝑖,𝑒
𝜑 = {(𝑤, ®𝑒−𝑖 ) |𝑤, 𝑒1, . . . , 𝑒𝑖−1, 𝑒, 𝑒𝑖+1, . . . , 𝑒𝑚 |= 𝜑,

𝑒 𝑗 ∈ E𝑘−1
for 𝑗 ≠ 𝑖}

and ®𝑒−𝑖 = (𝑒1, . . . , 𝑒𝑖−1, 𝑒𝑖+1, . . . , 𝑒𝑚). Apparently, for any 𝑖 and 𝑒 ∈
E𝑘+1

,W𝑖,𝑒
True

= (W ×E𝑘 × · · · × E𝑘 ). We drop the superscript and

write WTrue for simplicity.

Given an epistemic state of depth 𝑘 , we can define the semantics

of only-believing up to depth 𝑘 :

• For 𝑒𝑖 ∈ E𝑘
,𝑤, ®𝑒 |= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) iff f.a. 𝑑 ∈ D𝑘
,

𝑑 ∈ 𝑒𝑖 iff Norm(𝑑,W𝑖,𝑒𝑖
𝛼 𝑗

,WTrue, 𝑟 𝑗 ) for 𝑗 ∈ {1, . . . , 𝑙}.

We still need to assign truth values for only-believing up to depth

𝑘 , while the model is of a greater depth (otherwise sentences like

𝑂
(1)
1
𝑝 ∧ 𝑂

(2)
1

(𝑝 ∧ 𝐾2𝑝) are unsatisfiable). To do so, we need to

capture a model’s belief of lower depths and omit the depths greater

than needed. This is achieved via the notion which we call “regres-

sion”:

Definition 5 (Regression). We inductively define the regression

of any distributions and epistemic states:

• For 𝑑 ∈ D2
, 𝑑 ′ ∈ D1

, 𝑑 ′ is the regression of 𝑑 , written as

𝑑 ′ = 𝑅[𝑑] if for any𝑤 ,∑︁
𝑒∗
1
,...,𝑒∗

𝑚−1

𝑑 (𝑤, 𝑒∗
1
, . . . 𝑒∗𝑚−1) = 𝑑

′(𝑤,∅, . . . ,∅)

• For 𝑒 ∈ E2
, 𝑒 ′ ∈ E1

, we say 𝑒 ′ is the regression of 𝑒 , written

as 𝑒 ′ = 𝑅[𝑒], iff 𝑒 ′ = {𝑅[𝑑] | 𝑑 ∈ 𝑒}
• For 𝑑 ∈ D𝑘+1

, 𝑑 ′ ∈ D𝑘
, 𝑑 ′ is the regression of 𝑑 , written as

𝑑 ′ = 𝑅[𝑑], if for any𝑤, 𝑒 ′
1
, . . . , 𝑒 ′

𝑚−1∑︁
𝑒1,...,𝑒𝑚−1∈𝐸

𝑑 (𝑤, 𝑒1, . . . , 𝑒𝑚−1) = 𝑑 ′(𝑤, 𝑒 ′1, . . . , 𝑒
′
𝑚−1)

where 𝐸 = {𝑒1, . . . , 𝑒𝑚−1 | 𝑒 ′
1
= 𝑅[𝑒1], . . . , 𝑒 ′𝑚−1 = 𝑅[𝑒𝑚−1]}

• For 𝑒 ∈ E𝑘+1
, 𝑒 ′ ∈ E𝑘

, we say 𝑒 ′ is the regression of 𝑒 , written

as 𝑒 ′ = 𝑅[𝑒], iff 𝑒 ′ = {𝑅[𝑑] | 𝑑 ∈ 𝑒}

By definition, for each 𝑒 ∈ E𝑘+1
, there exists a unique 𝑒 ′ ∈ E𝑘

s.t. 𝑒 ′ = 𝑅[𝑒]. We write 𝑒 ′ = 𝑅(2) [𝑒] to mean 𝑒 ′ = 𝑅[𝑅[𝑒]]. Anal-
ogously, 𝑒 ′ = 𝑅(𝑘) [𝑒] means 𝑒 ′ = 𝑅[· · ·𝑅[𝑒] · · · ] with 𝑘 nested

𝑅. The following lemma indicates that 𝑅[𝑒] faithfully reflects the

properties of 𝑒 in lower depths. Therefore, for 𝑒 ∈ E𝑘+1
, it is reason-

able to assign truth values for only-believing up to depth 𝑘 based

on the truth assignment of 𝑅[𝑒].

Lemma 1. Given ®𝑒 and ®𝑒 ′ s.t. 𝑒 ′
𝑖
= 𝑅[𝑒𝑖 ] f.a. 𝑖 ∈ {1, . . . ,𝑚}. For

any formula 𝛼 compatible with ®𝑒 ′ and mentioning no𝑂-operators,

𝑤, ®𝑒 |= 𝛼 iff𝑤, ®𝑒 ′ |= 𝛼 .

Proof. We prove the lemma via induction.

Basis:
For objective 𝛼 , the proof is trivial since the truth value is irrele-

vant to ®𝑒 and ®𝑒 ′.
Induction hypothesis:

Suppose that the statement holds for any ®𝑒, ®𝑒 ′, 𝛼 ′ s.t. 𝑒 ′
𝑖
= 𝑅[𝑒𝑖 ],

𝑒 ′
𝑖
∈ E𝑙

for some 𝑙 < 𝑘𝑖 and 𝛼
′
compatible with ®𝑒 ′.

• Induction on ∧, ¬ or ∀ is trivial.

• For 𝑒𝑖 ∈ E𝑘𝑖+1
, 𝑒𝑖 |= 𝐵𝑖 (𝛼 : 𝑟 ) iff f.a. 𝑑 ∈ 𝑒𝑖 ,3∑︁

(𝑤, ®𝑒∗−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼

𝑑 (𝑤, ®𝑒∗−𝑖 ) = 𝑟 (#)

We introduce an auxiliary function for the proof:

For ®𝑒 ′−𝑖 = (𝑒 ′
1
, . . . , 𝑒 ′

𝑖−1, 𝑒
′
𝑖+1, . . . , 𝑒

′
𝑚), 𝑒 ′

𝑗
∈ E𝑘

, and

®𝑒 ′′−𝑖 = (𝑒 ′′
1
, . . . , 𝑒 ′′

𝑖−1, 𝑒
′′
𝑖+1, . . . , 𝑒

′′
𝑚), 𝑒 ′′

𝑗
∈ E𝑘−1

, we define

I( ®𝑒 ′−𝑖 , ®𝑒 ′′−𝑖 ) =
{
1 𝑒 ′′𝑗 = 𝑅[𝑒 ′𝑗 ] f.a. 𝑗 ≠ 𝑖;
0 otherwise.

Since the regression is unique, given ®𝑒 ′−𝑖 , there’s only one

tuple ®𝑒 ′′−𝑖 with I( ®𝑒 ′−𝑖 , ®𝑒 ′′−𝑖 ) = 1. Thus when ®𝑒 ′−𝑖 is fixed,∑︁
®𝑒′′−𝑖

I( ®𝑒 ′−𝑖 , ®𝑒 ′′−𝑖 ) = 1 (∗)

Back to (#), let 𝑑 ′ = 𝑅[𝑑], we have

𝑟 =
∑︁

(𝑤, ®𝑒∗−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼

𝑑 (𝑤, ®𝑒∗−𝑖 ) · 1

=
∑︁

(𝑤, ®𝑒∗−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼

(
𝑑 (𝑤, ®𝑒∗−𝑖 ) ·

∑︁
®𝑒′′−𝑖

I( ®𝑒∗−𝑖 , ®𝑒 ′′−𝑖 )
)

(Eq. ∗)

=
∑︁

{(𝑤, ®𝑒∗−𝑖 , ®𝑒′′−𝑖 ) | (𝑤, ®𝑒∗−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼 }

𝑑 (𝑤, ®𝑒∗−𝑖 ) · I( ®𝑒∗−𝑖 , ®𝑒 ′′−𝑖 )

=
∑︁

{(𝑤, ®𝑒∗−𝑖 , ®𝑒′′−𝑖 ) | (𝑤, ®𝑒∗−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼 ,𝑒′′

𝑗
=𝑅[𝑒∗

𝑗
] f.a. 𝑗≠𝑖 }

𝑑 (𝑤, ®𝑒∗−𝑖 )

(Def. I)

3
By definition, the truth of𝐵𝑖 (𝛼 : 𝑟 ) is irrelevant to 𝑤 and epistemic states of other

agents except 𝑖 . Thus we write 𝑒𝑖 |= 𝐵𝑖 (𝛼 : 𝑟 ) instead of 𝑤, ®𝑒 |= 𝐵𝑖 (𝛼 : 𝑟 ) .
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For (𝑤, ®𝑒∗−𝑖 ) ∈ W𝑖,𝑒𝑖
𝛼 , 𝑒 ′

𝑖
= 𝑅[𝑒𝑖 ] and 𝑒 ′′𝑗 = 𝑅[𝑒∗

𝑗
] f.a. 𝑗 ≠ 𝑖 ,

by induction hypothesis we have𝑤, 𝑒 ′′
1
, . . . , 𝑒 ′

𝑖
, . . . , 𝑒 ′′𝑚 |= 𝛼 ,

i.e. (𝑤, ®𝑒 ′′−𝑖 ) ∈ W𝑖,𝑒′𝑖
𝛼 . Therefore,

𝑟 =
∑︁

{(𝑤, ®𝑒∗−𝑖 , ®𝑒′′−𝑖 ) | (𝑤, ®𝑒′′−𝑖 ) ∈W
𝑖,𝑒′

𝑖
𝛼 ,𝑒′′

𝑗
=𝑅[𝑒∗

𝑗
] f.a. 𝑗≠𝑖 }

𝑑 (𝑤, ®𝑒∗−𝑖 ) (IH)

=
∑︁

(𝑤, ®𝑒′′−𝑖 ) ∈W
𝑖,𝑒′

𝑖
𝛼

( ∑︁
{ ®𝑒∗−𝑖 | 𝑒′′𝑗 =𝑅[𝑒∗

𝑗
] f.a. 𝑗≠𝑖 }

𝑑 (𝑤, ®𝑒∗−𝑖 )
)

=
∑︁

(𝑤, ®𝑒′′−𝑖 ) ∈W
𝑖,𝑒′

𝑖
𝛼

𝑑 ′(𝑤, ®𝑒 ′′−𝑖 ) (Def. 5)

ThusNorm(𝑑 ′,W𝑖,𝑒′𝑖
𝛼 ,W𝑖,𝑒′𝑖

True
, 𝑟 ) f.a.𝑑 ′ ∈ 𝑒 ′

𝑖
, i.e. 𝑒 ′

𝑖
|= 𝐵𝑖 (𝛼 : 𝑟 )

□

Now we can complete the semantics:

• For 𝑒𝑖 ∈ E𝑘′
s.t. 𝑘 ′ > 𝑘 ,𝑤, ®𝑒 |= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) iff
𝑤, 𝑒1, . . . , 𝑅 [𝑒𝑖 ], . . . , 𝑒𝑚 |= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ).
The result of Lem.1 can be extended to any wffs, including those

with only-believing:

Theorem 2. Given ®𝑒, ®𝑒 ′ s.t. 𝑒 ′
𝑖
= 𝑅[𝑒𝑖 ]. For any formula 𝛼 com-

patible with both ®𝑒, ®𝑒 ′, then𝑤, ®𝑒 |= 𝛼 iff𝑤, ®𝑒 ′ |= 𝛼

The proof is similar to Lem 1. The only difference is the induc-

tion for 𝑂-formulae, which directly follows the definition of the

semantics.

For a sentence 𝛼 and a set of sentences Σ, we write Σ |= 𝛼 (read as

Σ logically entails 𝛼) to mean that for every model (𝑤, 𝑒1, . . . , 𝑒𝑚)
compatible with 𝛼 and all sentences in Σ, if 𝑤, 𝑒1, . . . , 𝑒𝑚 |= 𝛼 ′

f.a. 𝛼 ′ ∈ Σ, then 𝑤, 𝑒1, . . . , 𝑒𝑚 |= 𝛼 . We say 𝛼 is valid (written as

|= 𝛼) if {} |= 𝛼 . When 𝛼 is objective, we write 𝑤 |= 𝛼 instead of

𝑤, 𝑒1, . . . , 𝑒𝑚 |= 𝛼 . When 𝛼 is subjective, we write 𝑒1, . . . , 𝑒𝑚 |= 𝛼
(or ®𝑒 |= 𝛼). For 𝑖-subjective 𝛼 , we write 𝑒𝑖 |= 𝛼 .

3 PROPERTIES OF THE LOGIC
In this section, we study the properties of modalities𝐵𝑖 and𝐾𝑖 , For

𝐾𝑖 , where the probabilistic belief is reduced to a categorical one,

OBL𝑚 satisfies the 𝐾𝐷45𝑛 properties. The Barcan formulae[16]

are also valid. For𝐵𝑖 , we show that the degree of belief follows the

laws of probability, the properties of introspection are also extended

to more general cases. We provide proofs for some of the properties.

The rest can be proved similarly.

3.1 Knowledge
OBL𝑚 satisfies the 𝐾𝐷45𝑛 properties:

• (Necessitation) If |= 𝛼 , then |= 𝐾𝑖𝛼 .

• (Consistency) |= 𝐾𝑖𝛼 ⊃ ¬𝐾𝑖¬𝛼

Proof. Suppose that 𝑒𝑖 |= 𝐾𝑖𝛼 , then for any 𝑑 ∈ 𝑒𝑖 ,∑︁
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

¬𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 ) =
∑︁

(𝑤, ®𝑒′−𝑖 ) ∈WTrue
\W𝑖,𝑒𝑖

𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 )

= 1 −
∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 0

Thus 𝑒𝑖 |= ¬𝐾𝑖¬𝛼 .
□

• (Distribution) |= 𝐾𝑖𝛼 ∧𝐾𝑖 (𝛼 ⊃ 𝛽) ⊃ 𝐾𝑖𝛽

Proof. For any 𝑒𝑖 compatible with 𝐾𝑖𝛼 and 𝐾𝑖 (𝛼 ⊃ 𝛽),
if 𝑒𝑖 |= 𝐾𝑖𝛼 ∧𝐾𝑖 (𝛼 ⊃ 𝛽), then for 𝑑 ∈ 𝑒𝑖 ,∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛽

𝑑 (𝑤, ®𝑒 ′−𝑖 ) =
∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 )

+
∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼⊃𝛽

𝑑 (𝑤, ®𝑒 ′−𝑖 )

−
∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼∨𝛼⊃𝛽

𝑑 (𝑤, ®𝑒 ′−𝑖 )

=1 + 1 − 1 = 1

i.e. 𝑒𝑖 |= 𝐾𝑖𝛽 . □

• (Pos. Introspection) |= 𝐾𝑖𝛼 ⊃ 𝐾𝑖𝐾𝑖𝛼

• (Neg. Introspection) |= ¬𝐾𝑖𝛼 ⊃ 𝐾𝑖¬𝐾𝑖𝛼

Proof. Suppose that 𝑒𝑖 |= ¬𝐾𝑖𝛼 , then f.a.𝑤 and ®𝑒 ′−𝑖 ,
𝑤, 𝑒 ′

1
, . . . , 𝑒 ′

𝑖−1, 𝑒𝑖 , 𝑒
′
𝑖+1, . . . , 𝑒

′
𝑚 |= ¬𝐾𝑖𝛼 . Thus f.a. 𝑑 ∈ 𝑒𝑖 ,∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
¬𝐾𝑖𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 ) =
∑︁

(𝑤, ®𝑒′−𝑖 )

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 1

i.e. 𝑒𝑖 |= 𝐾𝑖¬𝐾𝑖𝛼 . □

Barcan formulae (both universal and existential versions):

• |= ∀𝑥 .𝐾𝑖𝛼 ⊃ 𝐾𝑖∀𝑥 .𝛼

Proof. Suppose that 𝑒𝑖 |= ∀𝑥 .𝐾𝑖𝛼 . By definition we have

𝑒𝑖 |= 𝐾𝑖𝛼
𝑥
𝑛 for any 𝑛 ∈ N . Then f.a. 𝑑 ∈ 𝑒𝑖 ,∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

𝛼𝑥𝑛

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 1 f.a. 𝑛 ∈ N

Namely, ∑︁
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

¬𝛼𝑥𝑛

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 0 f.a. 𝑛 ∈ N

Therefore∑︁
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

∀𝑥.𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 1 −
∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
∃𝑥.¬𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 )

≥ 1 −
∑︁
𝑛∈N

∑︁
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

¬𝛼𝑥𝑛

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 1

Thus 𝑒𝑖 |= 𝐾𝑖∀𝑥 .𝛼 □

It is worth mentioning that the converse result also holds,

i.e. |= 𝐾𝑖∀𝑥 .𝛼 ⊃ ∀𝑥 .𝐾𝑖𝛼 .

• |= ∃𝑥 .𝐾𝑖𝛼 ⊃ 𝐾𝑖∃𝑥 .𝛼
The proof is of the same spirit as the universal one.

• ⊭𝐾𝑖∃𝑥 .𝛼 ⊃ ∃𝑥 .𝐾𝑖𝛼 .

Let 𝑤,𝑤 ′ ∈ W satisfy 𝑃 (𝑛1) ∈ 𝑤 , 𝑃 (𝑛′) ∉ 𝑤 f.a. 𝑛′ ≠ 𝑛1,

𝑃 (𝑛2) ∈ 𝑤 ′
, 𝑃 (𝑛′) ∉ 𝑤 ′

f.a. 𝑛′ ≠ 𝑛2. Let 𝑑𝑖 ∈ D1
assign

weight 0.5 to both 𝑤 and 𝑤 ′
. Other worlds are assigned 0.

Then {𝑑𝑖 } satisfies 𝐾𝑖∃𝑥 .𝛼 but not ∃𝑥 .𝐾𝑖𝛼 .
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3.2 Degree of Belief
For any 𝑖 ∈ 𝐴𝑔 and formula 𝛼, 𝛽 ,

• if 𝛼 is valid, then |= 𝐵𝑖 (𝛼 : 1)
• |= 𝐵𝑖 (𝛼 : 𝑟 ) ⊃ ¬𝐵𝑖 (𝛼 : 𝑟 ′) for 𝑟 ′ ≠ 𝑟
• if |= 𝛼 ≡ 𝛽 , then |= 𝐵𝑖 (𝛼 : 𝑟 ) ≡ 𝐵𝑖 (𝛽 : 𝑟 ) for any 𝑟 .
• |= 𝐵𝑖 (𝛼 : 𝑟 ) ⊃ 𝐵𝑖 (¬𝛼 : 1 − 𝑟 )
• |= 𝐵𝑖 (𝛼 ∧ 𝛽 : 𝑟 ) ∧𝐵𝑖 (𝛼 ∧ ¬𝛽 : 𝑟 ′) ⊃ 𝐵𝑖 (𝛼 : 𝑟 + 𝑟 ′)
• |= 𝐵𝑖 (𝛼 : 𝑟 ) ∧𝐵𝑖 (𝛽 : 𝑟 ′) ∧𝐵𝑖 (𝛼 ∧ 𝛽 : 𝑟 ′′) ⊃ 𝐵𝑖 (𝛼 ∨ 𝛽 : 𝑛)
where𝑛 is a standard name of sort number and𝑛 = 𝑟 +𝑟 ′−𝑟 ′′.

Most of the properties can be proved in a way similar to those of

the previous subsection. Here we only provide the proof of the last

one:

Proof. Suppose that 𝑒𝑖 |= 𝐵𝑖 (𝛼 : 𝑟 ) ∧ 𝐵𝑖 (𝛽 : 𝑟 ′) ∧ 𝐵𝑖 (𝛼 ∧
𝛽 : 𝑟 ′′), then f.a. 𝑑 ∈ 𝑒𝑖 , it holds

∑
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

𝛼
(𝑤, ®𝑒 ′−𝑖 ) = 𝑟 ,∑

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛽

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 𝑟 ′,
∑

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼∧𝛽

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 𝑟 ′′.

By applying the laws of set,

W𝑖,𝑒𝑖
𝛼∨𝛽 = W𝑖,𝑒𝑖

𝛼 +W𝑖,𝑒𝑖
¬𝛼∧𝛽 = W𝑖,𝑒𝑖

𝛼 +W𝑖,𝑒𝑖
𝛽

−W𝑖,𝑒𝑖
𝛼∧𝛽

Thus

∑
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

𝛼∨𝛽
𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 𝑟 + 𝑟 ′ − 𝑟 ′′ □

Results of introspection also hold for degrees of belief. Further-

more, it can be extended to arbitrary 𝑖-subjective sentences.

• |= 𝐵𝑖 (𝛼 : 𝑟 ) ⊃ 𝐾𝑖𝐵𝑖 (𝛼 : 𝑟 )
• |= ¬𝐵𝑖 (𝛼 : 𝑟 ) ⊃ 𝐾𝑖¬𝐵𝑖 (𝛼 : 𝑟 )
• For any 𝑖-subjective formula 𝛼 , |= 𝛼 ⊃ 𝐾𝑖𝛼

Proof. Suppose that 𝛼 is 𝑖-subjective and 𝑒𝑖 |= 𝛼 . Since 𝛼 is

𝑖-subjective, given a model (𝑤, 𝑒1, . . . , 𝑒𝑚), the truth value

is irrelevant to𝑤 or epistemic states other than 𝑒𝑖 . For any

𝑑 ∈ 𝑒𝑖 , ∑︁
{𝑤, ®𝑒′−𝑖 |𝑤, ®𝑒′ |=𝛼 }

𝑑 (𝑤, ®𝑒 ′−𝑖 ) =
∑︁

{𝑤, ®𝑒′−𝑖 }

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 1

Thus 𝑒𝑖 |= 𝐾𝑖𝛼 □

4 ONLY-BELIEVING
We discuss the properties of only-believing in this section. First, we

examine the relation between only-believing up to different depths

and demonstrate how a hierarchy of only-believing is built. For

cases of only-believing when the argument is a group of 𝑖-objective

formulae, we show the uniqueness of the model and the nice prop-

erties it brings. For sentences beyond 𝑖-objective, we demonstrate

how certain types of autoepistemic reasoning can be modelled, and

how the specification of only-believing contributes to the expres-

siveness.

Intuitively, what being only-believed should be believed at first:

Proposition 1. |= 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . 𝛼𝑙 : 𝑟𝑙 ) ⊃
∧𝑙

𝑗=1𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 )

If an agent only believes 𝛼 with degree 𝑟 up to a certain depth,

then she should also only believe it up to a lower (but compatible)

depth. The converse result does not necessarily hold. Formally,

Proposition 2. |= 𝑂
(𝑘+1)
𝑖

(𝛼 : 𝑟 ) ⊃ 𝑂
(𝑘)
𝑖

(𝛼 : 𝑟 ).

Proof. The proof is similar to Lem. 1 with function I as used in

the lemma. Suppose that 𝑒𝑖 |= 𝑂
(𝑘+1)
𝑖

(𝛼 : 𝑟 ), w.l.o.g. we assume that

𝑒𝑖 ∈ E (𝑘+1)
. By Thm 2 it suffices to prove that 𝑒 ′

𝑖
|= 𝑂

(𝑘)
𝑖

(𝛼 : 𝑟 )
for 𝑒 ′

𝑖
= 𝑅[𝑒𝑖 ]. For 𝑑 ∈ D (𝑘+1)

, let 𝑑 ′ be the 𝑘-distribution s.t.

𝑑 ′ = 𝑅[𝑑]. By the semantics, 𝑑 ∈ 𝑒𝑖 iff∑︁
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 ) = 𝑟

∑︁
(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

𝛼

𝑑 (𝑤, ®𝑒 ′−𝑖 ) · 1

=
∑︁

(𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼

(
𝑑 (𝑤, ®𝑒 ′−𝑖 ) ·

∑︁
®𝑒′′−𝑖

I( ®𝑒 ′−𝑖 , ®𝑒 ′′−𝑖 )
)

(Eq. ∗)

=
∑︁

{(𝑤, ®𝑒′−𝑖 , ®𝑒′′−𝑖 ) | (𝑤, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖
𝛼 ,𝑒′′

𝑗
=𝑅[𝑒′

𝑗
] f.a. 𝑗≠𝑖 }

𝑑 (𝑤, ®𝑒 ′−𝑖 )

=
∑︁

{(𝑤, ®𝑒′−𝑖 , ®𝑒′′−𝑖 ) | (𝑤, ®𝑒′′−𝑖 ) ∈W
𝑖,𝑒′

𝑖
𝛼 ,𝑒′′

𝑗
=𝑅[𝑒′

𝑗
] f.a. 𝑗≠𝑖 }

𝑑 (𝑤, ®𝑒 ′−𝑖 )

(Thm. 2)

=
∑︁

(𝑤, ®𝑒′′−𝑖 ) ∈W
𝑖,𝑒′

𝑖
𝛼

( ∑︁
{ ®𝑒′−𝑖 | 𝑒′′𝑗 =𝑅[𝑒′

𝑗
] f.a. 𝑗≠𝑖 }

𝑑 (𝑤, ®𝑒 ′−𝑖 )
)

=
∑︁

(𝑤, ®𝑒′′−𝑖 ) ∈W
𝑖,𝑒′

𝑖
𝛼

𝑑 ′(𝑤, ®𝑒 ′′−𝑖 ) = 𝑟 (Def. 5)

By Def. 5, 𝑑 ′ ∈ 𝑒 ′
𝑖
iff 𝑑 ∈ 𝑒𝑖 . Thus 𝑒 ′𝑖 |= 𝑂

(𝑘)
𝑖

(𝛼 : 𝑟 ). □

There exists 𝛼 s.t. ⊭ 𝑂
(𝑘)
𝑖

(𝛼 : 𝑟 ) ⊃ 𝑂
(𝑘+1)
𝑖

(𝛼 : 𝑟 ). An example

can be easily constructed: Let 𝑒𝑖 ∈ E2
and 𝑒𝑖 |= 𝑂

(2)
1

(𝑝 ∧ 𝐾2𝑝),
then 𝑒𝑖 |= 𝑂

(1)
1
𝑝 but 𝑒𝑖 ⊭ 𝑂

(2)
1
𝑝 .

The proposition demonstrates that from 𝑂
(𝑘)
𝑖

to 𝑂
(𝑘+1)
𝑖

it is

indeed a more precise specification of an agent’s only-believing.

There are unsatisfiable𝑂-formulae, for example𝑂
(𝑘)
𝑖

(𝑝∧𝐾𝑖¬𝑝).
Fortunately, for a large fragment of the language, an 𝑂-formula is

satisfiable when the corresponding belief formulae are satisfiable:

Proposition 3. Let 𝛼1, . . . , 𝛼𝑙 , be 𝑖-objective. If
∧𝑙

𝑗=1𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 )
is satisfiable, then 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . 𝛼𝑙 : 𝑟𝑙 ) is satisfiable.

4.1 Unique Model and Properties
In general, an 𝑂

(𝑘)
𝑖

-formula could be satisfied by more than one

epistemic state. For example𝑂
(1)
1

(
(𝑝 ∧𝐾1𝑝) ∨ (¬𝑝 ∧𝐾1¬𝑝)

)
. For

𝑖-objective sentence 𝛼 , however, there is a unique 𝑘-epistemic state

𝑒𝑖 ∈ E𝑘
which satisfies 𝑂

(𝑘)
𝑖
𝛼 :

Lemma 2. Given 𝑖-objective 𝛼 and 𝑘 s.t. 𝐾𝑖𝛼 is satisfiable and

𝑂
(𝑘)
𝑖
𝛼 is a wff, there is precisely one 𝑒𝑖 ∈ E𝑘

s.t. 𝑒𝑖 |= 𝑂
(𝑘)
𝑖
𝛼 .

Proof. Prop. 3 proves the existence of 𝑒𝑖 . Given 𝑒𝑖 ∈ E𝑘
, by the

definition 𝑒𝑖 |= 𝑂
(𝑘)
𝑖
𝛼 iff f.a. 𝑑 ∈ D𝑘

, 𝑑 ∈ 𝑒𝑖 iff∑︁
(𝑤′, ®𝑒′−𝑖 ) ∈W𝑖,𝑒𝑖

𝛼

𝑑 (𝑤 ′, ®𝑒 ′) = 1
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Since 𝛼 is 𝑖-objective, if𝑤 ′, 𝑒 ′
1
, . . . , 𝑒𝑖 , . . . , 𝑒

′
𝑚 |= 𝛼 , then f.a. 𝑒𝑖 ,

𝑤 ′, 𝑒 ′
1
, . . . , 𝑒𝑖 , . . . , 𝑒

′
𝑚 |= 𝛼 . For any 𝑒𝑖 ∈ E𝑘

s.t. 𝑒𝑖 |= 𝑂
(𝑘)
𝑖
𝛼 , it is

trivial that f.a. 𝑑 ∈ D𝑘
, 𝑑 ∈ 𝑒𝑖 iff 𝑑 ∈ 𝑒𝑖 , i.e. 𝑒𝑖 = 𝑒𝑖 . □

For a model of a depth greater than needed, the uniqueness of

the model can be interpreted as follows: Suppose that 𝑒𝑖 ∈ E𝑘
is the

unique model satisfying 𝑂
(𝑘)
𝑖
𝛼 . Then for all 𝑒∗

𝑖
∈ E𝑘′

s.t. 𝑘 ′ > 𝑘

and 𝑒∗
𝑖
|= 𝑂

(𝑘)
𝑖
𝛼 , 𝑒∗

𝑖
will reduce to 𝑒𝑖 after finite steps of regression:

Lemma 3. Given 𝑖-objective 𝛼 and 𝑘 s.t. 𝐾𝑖𝛼 is satisfiable and

𝑂
(𝑘)
𝑖
𝛼 is a wff. Let 𝑒𝑖 ∈ E𝑘

be the model s.t. 𝑒𝑖 |= 𝑂
(𝑘)
𝑖
𝛼 . For any 𝑒∗

𝑖

such that 𝑒∗
𝑖
|= 𝑂

(𝑘)
𝑖
𝛼 , 𝑒𝑖 = 𝑅(𝑙) [𝑒∗

𝑖
] for some 𝑙 .

Proof. For any 𝑘 ′ > 𝑘 and 𝑒∗
𝑖
∈ E𝑘′

, 𝑒∗
𝑖
reduces to 𝑒𝑖 ∈ E𝑘

after

𝑘 ′ − 𝑘 steps of regression. Given 𝑒∗
𝑖
|= 𝑂

(𝑘)
𝑖
𝛼 , by applying Thm. 2

we have 𝑒𝑖 |= 𝑂
(𝑘)
𝑖
𝛼 . By Lem. 2, 𝑒𝑖 is unique, i.e. 𝑒𝑖 = 𝑒𝑖 . □

In general, the results can be extended to the case with multiple

beliefs:

Theorem 3. Given 𝑖-objective 𝛼1 . . . 𝛼𝑙 s.t.
∧

𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) is sat-
isfiable and 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . 𝛼𝑙 : 𝑟𝑙 ) is a wff, there is precisely one

𝑒𝑖 ∈ E𝑘
such that 𝑒𝑖 |= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . 𝛼𝑙 : 𝑟𝑙 ). For any 𝑒∗𝑖 such that

𝑒∗
𝑖
|= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . 𝛼𝑙 : 𝑟𝑙 ), 𝑒𝑖 = 𝑅(𝑙) [𝑒∗
𝑖
] for some 𝑙 .

The proof is similar to Lem.2 and Lem.3.

A nice property of the uniqueness is that, given what is only-

believed by an agent, everything else being believed or not believed

by the agent is logically implied. Formally, we have the following

results:

Theorem 4. Given 𝑖-objective formulae 𝛼1, . . . , 𝛼𝑙 and arbitrary

𝛽 s.t. 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) is satisfiable, 𝑑𝑒𝑝 [𝐵𝑖 (𝛽 : 𝑟 ′), 𝑖] ≤ 𝑘 .

Then for any 0 < 𝑟 ′ < 1, either𝐵𝑖 (𝛽 : 𝑟 ′) or ¬𝐵𝑖 (𝛽 : 𝑟 ′) is entailed
by 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ), and

• |= 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ 𝐵𝑖 (𝛽 : 𝑟 ′) iff
|= ∧

𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) ⊃ 𝐵𝑖 (𝛽 : 𝑟 ′)
• |= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ ¬𝐵𝑖 (𝛽 : 𝑟 ′) iff
⊭
∧

𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) ⊃ 𝐵𝑖 (𝛽 : 𝑟 ′)

Proof. By Thm.3, it exists a unique 𝑒𝑖 ∈ E𝑘
such that

𝑒𝑖 |= 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ). If
∧

𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) ⊃ 𝐵𝑖 (𝛽 : 𝑟 ′) is
valid, by Prop.1, |= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ 𝐵𝑖 (𝛽 : 𝑟 ′). When∧
𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) ⊃ 𝐵𝑖 (𝛽 : 𝑟 ′) is invalid, there exists 𝑑𝑖 ∈ D𝑘

s.t.

{𝑑𝑖 } |= ∧
𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) ∧ ¬𝐵𝑖 (𝛽 : 𝑟 ′). By the semantics 𝑑𝑖 ∈ 𝑒𝑖 .

Hence 𝑒𝑖 |= ¬𝐵𝑖 (𝛽 : 𝑟 ′) and |= 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ ¬𝐵𝑖 (𝛽 : 𝑟 ′).
For any 𝑒 ′

𝑖
∈ E𝑘′

s.t. 𝑘 ′ > 𝑘 , 𝑒 ′
𝑖
|= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ), By Thm.

2 and 3, 𝑒 ′
𝑖
|= 𝐵𝑖 (𝛽 : 𝑟 ′) iff 𝑒𝑖 |= 𝐵𝑖 (𝛽 : 𝑟 ′). □

Theorem 5. Given 𝑖-objective formulae 𝛼1, . . . , 𝛼𝑙 and arbitrary

𝛽 , s.t. 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) is satisfiable, 𝑑𝑒𝑝 [𝐾𝑖𝛽, 𝑖] ≤ 𝑘 , then

either 𝑂
(𝑘)
𝑖

(𝛼 : 𝑟 ) ⊃ 𝐾𝑖𝛽 or 𝑂
(𝑘)
𝑖

(𝛼 : 𝑟 ) ⊃ ¬𝐾𝑖𝛽 is valid, and

• |= 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ 𝐾𝑖𝛽 iff

|= ∧
𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) ⊃ 𝐾𝑖𝛽 or |= 𝑂

(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ 𝛽

• |= 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ ¬𝐾𝑖𝛽 iff

⊭
∧

𝑗 𝐵𝑖 (𝛼 𝑗 : 𝑟 𝑗 ) ⊃ 𝐾𝑖𝛽 and ⊭ 𝑂
(𝑘)
𝑖

(𝛼1 : 𝑟1, . . . , 𝛼𝑙 : 𝑟𝑙 ) ⊃ 𝛽

Given distinct propositions 𝑝, 𝑞, to determine whether 𝑂
(𝑘)
𝑖
𝑝

entails𝐾𝑖¬𝐾𝑖𝑞, it suffices to check the validity of𝐾𝑖𝑝 ⊃ 𝐾𝑖¬𝐾𝑖𝑞

and 𝑂
(𝑘)
𝑖
𝑝 ⊃ ¬𝐾𝑖𝑞. The latter is valid since ⊭ 𝐾𝑖𝑝 ⊃ 𝐾𝑖𝑞 and

⊭ 𝑂
(𝑘)
𝑖
𝑝 ⊃ 𝑞. Thus |= 𝑂

(𝑘)
𝑖
𝑝 ⊃ 𝐾𝑖¬𝐾𝑖𝑞.

Note that this is not true for 𝐾𝑖 , e.g. neither 𝐾𝑖𝑝 ⊃ 𝐾𝑖¬𝐾𝑖𝑞

nor𝐾𝑖𝑝 ⊃ ¬𝐾𝑖¬𝐾𝑖𝑞 is valid. Also, we would like to reiterate that

the results of Thm.4 and Thm.5 hold only under the restriction of

depth and do not hold when 𝑑𝑒𝑝 [𝐾𝑖𝛽, 𝑖] > 𝑘 . For example, both

𝑂
(1)
1
𝑝 ∧𝐾1 (𝑝 ∧𝐾2𝑝) and𝑂 (1)

1
𝑝 ∧𝐾1 (𝑝 ∧¬𝐾2𝑝) are satisfiable.

If 𝛽 is also 𝑖-objective, we can reduce the use of the outermost

modalities:

Corollary 1. Given 𝑖-objective 𝛼, 𝛽 , s.t.𝑂
(𝑘)
𝑖
𝛼 is satisfiable, then

• |= 𝑂
(𝑘)
𝑖
𝛼 ⊃ 𝐾𝑖𝛽 iff |= 𝛼 ⊃ 𝛽

• |= 𝑂
(𝑘)
𝑖
𝛼 ⊃ ¬𝐾𝑖𝛽 iff ⊭ 𝛼 ⊃ 𝛽

4.2 Default Reasoning
Levesque and Lakemeyer have already shown how defaults can be

encoded in terms of only-knowing [24]. We can go beyond that:

Besides the well-known “birds can fly” default, our account can

also express defaults about what another agent believes.

Example 2. Let predicate 𝐹𝑎𝑖𝑟 (𝑥) mean “(The coin) 𝑥 is fair”. Let

𝛿 denote the sentence

∀𝑥 .[𝐶𝑜𝑖𝑛(𝑥) ∧ ¬∃𝑟 .
(
𝑟 > 0 ∧𝐵1 (¬𝐾2𝐹𝑎𝑖𝑟 (𝑥) : 𝑟 )

)
⊃ 𝐾2𝐹𝑎𝑖𝑟 (𝑥)]

i.e. for any coin, agent 2 believes that the coin is fair unless it is

believed to a positive degree that she doesn’t believe it. Let KB be the

sentence {𝐶𝑜𝑖𝑛(𝑠𝑖𝑙𝑣𝑒𝑟 )}, then the following sentences are valid:

• 𝑂
(2)
1

(KB ∧ 𝛿) ⊃ 𝐾1𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 )
• 𝑂

(2)
1

(KB ∧ 𝛿 ∧𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 )) ⊃ 𝐾1𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 )
• 𝑂

(2)
1

(KB ∧ 𝛿 ∧ ¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 )) ⊃ 𝐾1¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 )
We show the validity of the first sentence. For simplicity, only two

agents are considered.

Proof. Let 𝑒1 |= 𝑂
(2)
1

(KB ∧ 𝛿), w.l.o.g. 𝑒1 ∈ E2
. We first prove

𝑒1 |= ¬∃𝑟 .𝑟 > 0 ∧𝐵1 (¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ) : 𝑟 ) by contradiction.

Assuming that the opposite holds, i.e. there is a number 𝑛 > 0

s.t. 𝑒1 |= 𝐵1 (¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ) : 𝑛). By the definition of 𝑂
(2)
1

, f.a.

𝑑 ∈ D2
, 𝑑 ∈ 𝑒1 iff Norm(𝑑,W1,𝑒1

KB∧𝛿 ,WTrue, 1). Namely, 𝑑 ∈ 𝑒1 iff
f.a.𝑤 ∈ W and 𝑒2 ∈ E1

, if𝑤, 𝑒1, 𝑒2 ⊭ KB ∧ 𝛿 then 𝑑 (𝑤, 𝑒2) = 0. We

select two states 𝑒 ′
2
, 𝑒 ′′
2
∈ E1

s.t.

𝑒 ′
2
|= ¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ) ∧ ∀𝑥 .[𝑥 ≠ 𝑠𝑖𝑙𝑣𝑒𝑟 ⊃ 𝐾2𝐹𝑎𝑖𝑟 (𝑥)]

𝑒 ′′
2
|= ∀𝑥 .𝐾2𝐹𝑎𝑖𝑟 (𝑥)

The choice of 𝑒 ′
2
, 𝑒 ′′
2
is arbitrary as long as the conditions are

satisfied. Let𝑤 ′
be a world s.t.𝑤 ′ |= KB, 𝑛′ a number in [0, 1] and

𝑛′ ≠ 𝑛. We define a 2-distribution 𝑑1 as follows:

𝑑1 (𝑤, 𝑒2) =


𝑛′ 𝑤 = 𝑤 ′, 𝑒2 = 𝑒 ′2;

1 − 𝑛′ 𝑤 = 𝑤 ′, 𝑒2 = 𝑒 ′′2 ;

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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With the assumption that 𝑒1 |= 𝐵1 (¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ) : 𝑛), we con-
clude that 𝑤 ′𝑒1, 𝑒 ′

2
|= KB ∧ 𝛿 and 𝑤 ′𝑒1, 𝑒 ′′

2
|= KB ∧ 𝛿 . Thus f.a.

𝑤, 𝑒2, 𝑑1 (𝑤, 𝑒2) = 0 if 𝑤, 𝑒1, 𝑒2 ⊭ KB ∧ 𝛿 , i.e. 𝑑1 ∈ 𝑒1. Base on the

semantics 𝑒1 |= ¬𝐵1 (¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ) : 𝑛), which contradicts the

assumption.

Since sentence¬∃𝑟 .𝑟 > 0∧𝐵1 (¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ) : 𝑟 ) is 1-subjective,
𝑒1 |= 𝐾1

(
¬∃𝑟 .𝑟 > 0 ∧𝐵1 (¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ) : 𝑟 )

)
. With the distri-

bution rule, we prove that 𝑒1 |= 𝐾1𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 ).
We also check the existence of such a model. Let 𝑒1 be precisely

the set of all distributions 𝑑1 such that 𝑑1 (𝑤, 𝑒2) = 0 f.a. (𝑤, 𝑒2)
which satisfies at least one of the conditions:

• 𝑤 |= ¬𝐶𝑜𝑖𝑛(𝑠𝑖𝑙𝑣𝑒𝑟 ) or 𝑒2 |= ¬𝐾2𝐹𝑎𝑖𝑟 (𝑠𝑖𝑙𝑣𝑒𝑟 );
• 𝑤 |= 𝐶𝑜𝑖𝑛(𝑛) and 𝑒2 |= ¬𝐾2𝐹𝑎𝑖𝑟 (𝑛) for 𝑛 ≠ 𝑠𝑖𝑙𝑣𝑒𝑟 .

By the semantics, it can be proved that 𝑒1 |= 𝑂
(2)
1

(KB ∧ 𝛿). □

5 RELATION TO OTHER LOGICS
5.1 OBL is part of OBL𝑚

OBL is a first-order, single-agent account of subjective probabil-

ity and only-believing[6], which is an extension of the logic OL
proposed by Levesque [23, 24]. For cases where at most one agent

is involved, OBL𝑚 reduces to OBL—with exceptions: In OBL,

the empty epistemic state is legal, and distributions, where the

weightings of worlds do not form a proper probability distribution,

are not excluded. The former setting breaks the consistency, e.g.

𝐾True ∧ 𝐾False is satisfiable in OBL, and the latter breaks the

necessitation rules, e.g. True is valid in OBL but 𝐾True is not. We

argue that omitting these structures in the semantics has no loss of

expressiveness or generality. On the other hand, by the exclusion

of these structures, the logic will obtain the complete 𝐾𝐷45𝑛 prop-

erties, while only simple, straightforward restrictions are required.

Formally, we have the following result:

Theorem 6. Let |=OBL denote the satisfaction relation in OBL,

for any well-formed OBL𝑚 sentence 𝛼 where no modalities appear

except𝐵𝑖 and𝑂
(1)
𝑖

for an agent 𝑖 . Let 𝛼 ′ be the sentence to replace

every occurrence of 𝐵𝑖 in 𝛼 with 𝐵, and replace𝑂
(1)
𝑖

with 𝑂, then

|= 𝛼 iff 𝐾True ∧ ¬𝐾False |=OBL 𝛼 ′

Examples include the properties discussed in Sections 3 and 4.

5.2 Relation to ONL𝑛

ONL𝑛 proposed by Belle and Lakemeyer[3] is a first-order modal

language for multi-agent only-knowing, where operators 𝐿𝑖 ,𝑁𝑖

are used to describing what agent 𝑖 “at least knows” and “at most

knows”. Only-knowing is considered as an abbreviation, e.g.𝑂𝑖𝛼 ≡
𝐿𝑖𝛼 ∧𝑁𝑖¬𝛼 . The 𝑘-distributions or 𝑘-epistemic states in this paper

are inspired by their work. One might notice that in ONL𝑛 , the

superscript (𝑘) is not required for only-knowing. In their account,

only-knowing can not precisely capture beliefs and non-beliefs of

sentences with greater depth. For instance, neither𝑂1𝑝 ⊃ 𝐾1𝐾2𝑞

nor𝑂1𝑝 ⊃ ¬𝐾1𝐾2𝑞 is valid in ONL𝑛 . We resolve this problem

by specifying the depth of only-knowing with the superscript. For

𝑘 ≥ 2, 𝑂
(𝑘)
1
𝑝 means that 𝑝 is all agent 1 knows up to depth 𝑘 ,

where the depth for 𝐾1𝐾2𝑞 is also included. We have |= 𝑂
(𝑘)
1
𝑝 ⊃

¬𝐾1𝐾2𝑞.

6 OTHER RELATEDWORK
In the introduction, we have discussed related work about only-

knowing and default reasoning. We provide more about notions

related to only-knowing as well as unifying logic and probability.

The notion of only-knowing did not emerge in isolation. The idea

of involving accessible and inaccessible worlds is also adopted by

Humberstone [17], Ben-David and Gafni [7]. Characteristics of only-

knowing are shared by similar concepts such as total knowledge

from Pratt-Hartmann [30] and minimal knowledge from Halpern

and Moses [15].

Numerous pieces of literature can be found in reasoning about

knowledge and probabilities. For example the work from Nilsson

[28]. First-order accounts of probabilities are discussed by both

Bacchus [2] and Halpern [12]. For multi-agent scenarios, Fagin

and Halpern proposed a framework based on Kripke semantics

to reason about higher-order probabilities [11]. Their scheme was

later extended to express common beliefs [32]. For the interest of AI,

there are approaches combining first-order logic and probabilistic

graphical models, such as first-order Belief network [29], Markov

Logic Network [10], etc.

7 CONCLUSION
The main results of this work are as follows: We proposed a first-

order modal logic for multi-agent only-believing, which for the first

time generalizes Levesque’s semantics to amulti-agent, probabilistic

scenario. While OBL𝑚 is downward compatible with OBL and

OL, the ability to capture the beliefs and non-beliefs of a knowledge

base is lifted so that meta-beliefs involving many agents can also

be considered. We also explored the capability of default reasoning.

Compared with previous works, OBL𝑚 is strictly more expressive.

Several aspects of future work are considered: We plan to aug-

ment the account to express common belief. Many of the previous

works with similar designs on semantics support the possibility

of such an extension. In particular, recent work from Cramer et.

al.[9] shows that for a not fully-introspective account of categorical

knowledge, combining common knowledge and only-knowing up

to arbitrary depth can be achieved by at most 𝜔2 + 1 layers of nest-

ing in models.
4
Since the language includes first-order logic as a

fragment, reasoning in OBL𝑚 is in general undecidable. A feasible

solution is to restrict the types of knowledge to be represented, or

reconsider the form of reasoning [22]. We also intend to consider

multi-agent only-believing in a dynamic system. Belle and Lake-

meyer proposed an account for categorical knowledge [4], yet it

was restricted to actions with fully observable, deterministic effects.

For a multi-agent scenario with incomplete information, action

taken by an agent may not be observable for another. Uncertainty

in action should be modelled in a probabilistic form.
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