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ABSTRACT
The Multi-Agent Pickup and Delivery (MAPD) problem, in which a
team of agents has to plan paths to accomplish incoming pickup and
delivery tasks without collisions, has recently attracted significant
attention both from academia and industry. In this paper, we con-
sider a MAPD setting in which the environment is dynamic, namely
it is populated by other moving agents, beyond those belonging
to the team. For instance, in a warehouse, moving agents could
be humans or cleaning robots. We assume that the team agents
cannot communicate with the moving agents and cannot interfere
with their tasks and paths, which are a priori unknown and cannot
be modified. As a consequence, team agents have to reactively try
to solve potential collisions when they appear. However, it can
happen that some conflicts are not solvable without affecting the
moving agents, resulting in deadlocks. Since deadlocks can become
rather frequent, especially in crowded environments, in this paper
we propose an approach that, by imposing minor constraints on
the environment and the movements of the agents, solves poten-
tial collisions and prevents the formation of deadlocks by design.
Experimental results show that our approach prevents deadlocks,
even in very crowded environments, with negligible impact on the
performance of task completion.
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1 INTRODUCTION
The Multi-Agent Pickup and Delivery (MAPD) problem, in which
multiple agents plan collision-free paths to accomplish incoming
tasks, has gained significant attention within both academia and
industry due to its several real-world applications. One of the most
relevant applications is in automatedwarehouses [30]. Beyond logis-
tics, other MAPD applications are in aircraft-towing vehicles [23],

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

office robots [29], and automated control of non-player characters
in video games [27]. Usually, the agents addressing the MAPD prob-
lem are considered the only moving entities in the environment,
and several algorithms have been proposed to plan coordinated
paths that avoid collisions [19]. However, in some application set-
tings, other moving agents could be present in the environment,
either humans or robots [9]. For example, in a warehouse, cleaning
robots can operate in the same environment as logistics robots, but
the two groups of agents can belong to different companies and
operate independently.

In this paper, we consider the MAPD problem in a dynamic en-
vironment, in which other autonomous moving agents are present,
beyond those belonging to the team and performing MAPD. We
assume that team agents cannot communicate with the other exter-
nal agents and cannot interfere with their tasks and paths, which
are unknown and cannot be modified. As a result, collisions be-
tween team agents and external agents may happen. When there is
a potential collision, the team agents have to reactively avoid the
collision and replan their paths. However, it can happen that some
of these potential collisions are not solvable by team agents alone,
resulting in deadlocks. Since deadlocks can become quite frequent,
especially in crowded environments, in this paper we propose a
new approach to solve potential collisions with the guarantee that
deadlocks will not form. We do so by partitioning the environment
in tiles, and imposing constraints on the number of agents that can
be inside each tile at each time step. Through an extensive experi-
mental campaign, we show that our approach prevents deadlocks,
even in very crowded environments, with negligible impact on the
time required for the completion of tasks.

The main contributions of our paper are: (𝛼) the definition of
MAPD in dynamic environments and (𝛽) a new approach that,
by tiling grid environments and imposing some constraints on
the occupancy of tiles, allows solving the potential conflicts and
prevents the formation of deadlocks by design.

2 BACKGROUND
In this section, we review MAPD and the Token Passing algorithm,
which is the MAPD solver employed in our proposed solution.

2.1 MAPD
The Multi-Agent Pickup and Delivery (MAPD) problem [20] in-
volves 𝑛 agents in an environment represented by an undirected
connected graph 𝐺 = (𝑉 , 𝐸), where the vertices in 𝑉 represent the
locations of the environment, and the edges in 𝐸 the connections
between them. Time is discrete, and at each time step each agent
performs an action. Two types of actions are allowed: if at time
step 𝑡 an agent is in 𝑣 ∈ 𝑉 , at time step 𝑡 + 1 it can either remain in
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𝑣 or move to an adjacent vertex 𝑣 ′ ∈ 𝑉 (such that (𝑣, 𝑣 ′) ∈ 𝐸). All
actions are assumed to cost one time step.

A task setT contains all the tasks that have not been yet assigned
and, due to the dynamic nature of the problem, new tasks can be
added at any time. Each task 𝜏 𝑗 ∈ T is composed of a pickup
location 𝑠 𝑗 ∈ 𝑉 and a delivery location 𝑑 𝑗 ∈ 𝑉 . When an agent
has an assigned task, it is occupied, otherwise it is free, and it can
be assigned any task in T , with the constraint that a task can be
assigned to only one agent. An occupied agent becomes free when
it completes the assigned task. To complete a task 𝜏 𝑗 = (𝑠 𝑗 , 𝑑 𝑗 ), an
agent has to go from its current location to the delivery location
𝑑 𝑗 , passing through the pickup location 𝑠 𝑗 . So, to solve an assigned
task 𝜏 𝑗 = (𝑠 𝑗 , 𝑑 𝑗 ), an agent 𝑎𝑖 has to plan and perform a sequence
of actions (path) 𝜋𝑖 = (𝛼1, . . . , 𝛼𝑛) that brings it from its current
location to the pickup location 𝑠 𝑗 and then to the delivery location
𝑑 𝑗 . Paths of the agents must not collide, that is: two different agents
cannot be in the same location at the same time (vertex conflict),
and they cannot traverse the same edge in opposite directions at
the same time (swapping conflict).

The aim of a MAPD problem is to plan paths that complete all
the tasks in the shortest time: the quality of a solution is evaluated
using either the service time, that is the average number of time
steps required to complete a task since its appearance in T , or the
makespan, that is the number of time steps necessary to complete
all the tasks (which are assumed to be finite).

Not all MAPD problems are solvable. A sufficient condition to
assure that a MAPD instance is solvable is that of being well-formed
[20]. To illustrate this condition, it is necessary to introduce the
concept of non-task endpoints, which are a sort of parking loca-
tions in the environment in which agents can ideally stay forever
without blocking other agents. The task endpoints, instead, are all
the possible pickup and delivery locations. A MAPD instance is
well-formed iff (1) there is a finite number of tasks, (2) the number
of non-task endpoints is at least equal to the number of the agents,
and (3) for every pair of endpoints there exists at least a path that
connects them without traversing any other endpoint.

2.2 Token Passing
Ma et al. [20] present different MAPD algorithms that solve well-
formed MAPD instances, both centralized and decentralized. Cen-
tralized algorithms have better performance in terms of service
time and makespan, but require higher computational costs, while
decentralized algorithms generally perform worse but are more
suitable for real-time tasks. Token Passing (TP, Algorithm 1) [16] is
a decentralized MAPD algorithm in which each agent assigns itself
to tasks and plans its collision-free paths exploiting some global
information on the environment and other agents. This global in-
formation is contained in the token, that is a synchronized block
of memory shared among the agents that includes the task set T ,
tasks’ assignments, and current agents’ paths {𝜋𝑖 }.

In the TP algorithm, an agent 𝑎𝑖 with an assigned task 𝜏 𝑗 uses a
path planner (like A* or Dijkstra) to find minimum-cost collision-
free paths in a space whose states are pairs composed of a location
and a timestamp. There exists an edge between state (𝑣, 𝑡) and state
(𝑣 ′, 𝑡 + 1) with 𝑣, 𝑣 ′ ∈ 𝑉 , if (𝑣, 𝑣 ′) ∈ 𝐸 or 𝑣 = 𝑣 ′. A state (𝑣 ′, 𝑡 + 1) is
removed from the state space when an agent 𝑎𝑖 in state 𝑣 ′ at time

Algorithm 1 TP
1: /* system executes now */;
2: initialize token with the (trivial) path ⟨loc(𝑎𝑖 ) ⟩ for each agent 𝑎𝑖

(loc(𝑎𝑖 ) is the current location of 𝑎𝑖 );
3: while true do
4: add new tasks, if any, to the task set T;
5: while agent 𝑎𝑖 exists that requests token do
6: /* system sends token to 𝑎𝑖 and 𝑎𝑖 executes now */;
7: T′ ← {𝜏 𝑗 ∈ T | no path in token ends in 𝑠 𝑗 or in 𝑑 𝑗 };
8: if T′ ≠ {} then
9: 𝜏 ← 𝑎𝑟𝑔𝑚𝑖𝑛

𝜏 𝑗 ∈T
′ℎ (loc(𝑎𝑖 ), 𝑠 𝑗 ) ;

10: assign 𝑎𝑖 to 𝜏 ;
11: remove 𝜏 from T;
12: update 𝑎𝑖 ’s path in token with the path returned by

PathPlanner(𝑎𝑖 , 𝜏, token) ;
13: else if no task 𝜏 𝑗 ∈ T exists with 𝑠 𝑗 = loc(𝑎𝑖 ) then
14: update 𝑎𝑖 ’s path in token with the path ⟨loc(𝑎𝑖 ) ⟩〉;
15: else
16: update 𝑎𝑖 ’s path in token with Idle(𝑎𝑖 , token) ;
17: end if
18: /* 𝑎𝑖 returns token to system, which executes now */;
19: end while
20: agents move along their paths in token for one time step;
21: /* system advances to the next time step */;
22: end while

𝑡 + 1 results in a vertex collision with other agents according to
their paths in the token. Similarly, the edge between state (𝑣, 𝑡) and
state (𝑣 ′, 𝑡 + 1) is removed if the traversal of the edge by agent 𝑎𝑖
results in a swapping conflict.

At the beginning, the token is initialized considering that each
agent trivially remains at its starting location (line 2). At each time
step, the system can add new tasks to the task set (line 4). Each free
agent requires the token once per time step: the system sends the
token to each agent that has requested it, one after the other (line
5). The agent with the token assigns itself to the task closest to its
current position (line 10) according to a heuristic function ℎ (line
9, in our experiments ℎ is the Manhattan distance), if there is not
any agent currently assigned to a task that ends at same pickup
or delivery locations (line 7). After the assignment of the task, a
minimum-cost path is planned from the current location of the
agent to the delivery location passing through the pickup location,
with the condition of being free of collisions with respect to other
agents’ paths in the token (line 12). Finally, the agent gives back the
token to the system and moves according to the path in the token
(lines 18 and 20). If no task satisfies the above condition or there is
not any feasible path, the agent updates its path in the token with
the position in which it is staying (line 14) or calls the Idle function
to compute a path to a non-task endpoint (line 16).

3 RELATEDWORK
We review the literature on the problem of avoiding collisions and
deadlocks in multi-robot systems, that could happen due to poorly
coordinated plans or to delays or errors at execution time.

In the context of MAPD and MAPF (Multi-Agent Path Find-
ing [19], a simpler “one shot” version of MAPD), Fujitani et al. [11]
extend the priority inheritance with backtracking approach [25] for
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iterative MAPF to environments containing dead-ends, in which
agents plan following a priority order and decide their next actions
according to their neighbors, by introducing temporary priorities
and limiting agents’ moves in dead-ends. Yamauchi et al. [32] tackle
the problem of deadlocks for MAPD in non-well-formed environ-
ments: they introduce the concept of standby nodes, that are loca-
tions in which agents can stay for a long period without affecting
the connectivity of the graph, and that change according to the
paths of the agents. Liu et al. [16] introduce a MAPD deadlock
avoidance method called reserving dummy paths, which consists
of reserving paths with minimum travel time to the parking lo-
cation of each agent. Also TP [20] can be considered as a MAPD
deadlock-free method under the assumption of well-formedness.
In [24], a conflict-free and deadlock-free more efficient version of
TP is studied. In [6], authors present the Push and Rotate algorithm,
that overcomes some shortcomings of Push and Swap [18] and is
able to guarantee completeness for MAPF instances with at least
two unoccupied locations in a connected graph. In [22], it is pre-
sented a MAPD deadlock-free distributed planning method where
it is assumed that agents can travel asynchronously at different
speeds. However, all the above solutions are not directly applicable
to our case, since in our setting the team of agents is not alone
but has to deal with the presence of independent external agents
that cannot be directly controlled (and they cannot be involved in
a common planning process with team agents).

In [28] an approach to the n-reciprocal collision avoidance prob-
lem is proposed that, by considering the velocities of the agents,
reduces the problem to the resolution of a linear program. Other
techniques to tackle this problem range from velocity modeling
[26, 28] and Model Predictive Control [21] to Reinforcement Learn-
ing [2, 4, 8, 15]. In these cases, agents act independently without
communication, but our problem is different since team agents are
coordinated and have to prioritize the paths of external agents.

Our problem shares some similarities with dynamic obstacle
avoidance, usually addressed by methods based on the velocity
of the agents [14, 33]. For example, [12] proposes a Probabilistic
Velocity Obstacle approach in a dynamic occupancy grid to estimate
the velocity and position of moving objects and to avoid collisions.
Other methods solve collisions in a reactive way [5, 10, 31], while in
[3, 7] a stochastic robotic planning approach is employed. However,
our problem differs from the dynamic obstacle avoidance problem
in some aspects: in our dynamic environments we can reasonably
know what the next actions of external agents will be(see next
section) and we focus our attention on preventing the formation of
deadlocks, not just on avoiding collisions.

4 PROBLEM FORMULATION
We first introduce our MAPD variant. Then, we present a simple
variation of the TP algorithm that avoids collisions without guar-
anteeing that deadlocks will not form. This method will be used as
a baseline in our experiments.

4.1 MAPD in Dynamic Environments
We consider a team of 𝑛 agentsA = {𝑎1, ..., 𝑎𝑛}, called team agents,
that move in an environment represented as an undirected con-
nected graph𝐺 = (𝑉 , 𝐸), and perform aMAPD instance. We restrict

Figure 1: Example of deadlock.

𝐺 to be a 4-connected grid, which can represent most of the environ-
ments of practical interest (extending results of Section 5 to more
general graphs is not immediate and will be investigated in future
work). The team agents are able to communicate with each other
and know the environment 𝐺 . The team agents aim to complete
all the pickup and delivery tasks in T minimizing a cost measure,
such as the service time or the makespan.

In the same environment, there is a set of 𝑘 external agentsM =

{𝑚1, ...,𝑚𝑘 }, that are not necessarily a team of coordinated agents,
moving to perform some tasks. We assume that the team agents
and the external agents are neither collaborative nor adversarial
and that they do not know each other’s tasks and paths. We also
make a no-interference assumption, namely, we assume external
agents’ tasks and plans to be immutable, and hence only team
agents are in charge of implementing behaviors to avoid collisions.
Hence, if a team agent 𝑎𝑖 , while following its path 𝜋𝑖 detects a
potential collision (i.e., a conflict) with an external agent𝑚 𝑗 , 𝑎𝑖 will
have to make a move and modify its planned path in order not to
collide with𝑚 𝑗 that, from its side, does not do anything to avoid
the collision.

We assume that each team agent 𝑎𝑖 ∈ A can detect exter-
nal agents within a field of view 𝐹𝑂𝑉 (𝑎𝑖 ) =

{
𝑙 ∈ 𝑉 | ∃𝜋 =

(loc(𝑎𝑖 ), . . . , 𝑙) with |𝜋 | ≤ 2
}
, which covers all locations 𝑙 of the

environment that are reachable from the current location of 𝑎𝑖 with
paths 𝜋 of length 2 or less (excluding wait actions). We assume
that team agents know the locations and the next actions of exter-
nal agents within their field of view. For example, in a warehouse,
this amounts to assuming that team robots can detect the current
heading of external robots in their field of view and that external
robots are equipped with turn signals, which is the case for several
warehouse robots. The team agent 𝑎𝑖 observes the next action of
the external agents in its field of view, and if there is no risk of
conflict it continues on its path 𝜋𝑖 , while if the agents will collide
given the current path 𝜋𝑖 and the next moves of external agents
in 𝐹𝑂𝑉 (𝑎𝑖 ), the team agent 𝑎𝑖 has to change its planned action to
avoid the conflict (see Section 4.2 for details).

Since each team agent is only aware of the actions of the external
agents in its local field of view, and external agents do not change
their paths, there could be potential collisions that cannot be solved,
which we call deadlocks. For example, let us suppose to be in a
narrow corridor, as the one shown in Figure 1. The team agent
cannot move in any direction without incurring in a collision: it
cannot go left or stand still, otherwise, there would be a vertex
conflict, and it cannot go right, since it would cause an edge conflict.

To formally define a deadlock, assume that, performing their
intended actions, there will be a collision at the next time step
between a moving agent 𝑚 𝑗 ∈ M and a team agent 𝑎𝑖 ∈ A. It
can be a vertex conflict, meaning that the location that agent𝑚 𝑗
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Algorithm 2 TP with collision avoidance and replanning
1: /* system executes now */;
2: initialize token with the (trivial) path ⟨loc(𝑎𝑖 ) ⟩ for each team agent 𝑎𝑖

(loc(𝑎𝑖 ) is the current location of 𝑎𝑖 );
3: while true do
4: proceed like in Algorithm 1 (lines 4 - 19);
5: for all team agents 𝑎𝑖 ∈ A do
6: C ← CheckCollisions(loc(𝑎𝑖 ) ) ;
7: if C = ∅ then
8: 𝑎𝑖 moves along its path in token for one time step;
9: else
10: 𝑎𝑖 moves to BestLegalMove(𝑎𝑖 , loc(𝑎𝑖 ), C, token) ;
11: 𝜋𝑖 ← PathPlanner(𝑎𝑖 , 𝜏𝑖 , token) ⊲ replanning for task 𝜏𝑖

assigned to 𝑎𝑖
12: end if
13: end for
14: /* system advances to the next time step */;
15: end while

intends to occupy at time 𝑡 +1 is equal to the location that 𝑎𝑖 intends
to occupy at time 𝑡 + 1, that is 𝑙𝑜𝑐𝑡+1 (𝑚 𝑗 ) = 𝑙𝑜𝑐𝑡+1 (𝑎𝑖 ), or a swap
conflict, in which 𝑙𝑜𝑐𝑡+1 (𝑎𝑖 ) = 𝑙𝑜𝑐𝑡 (𝑚 𝑗 ) and 𝑙𝑜𝑐𝑡+1 (𝑚 𝑗 ) = 𝑙𝑜𝑐𝑡 (𝑎𝑖 ).
To avoid the collision, the team agent 𝑎𝑖 has to change its action
and choose another one from the set𝐴𝑡+1

𝑎𝑖
of actions that would not

result in a conflict with any moving or team agent at time 𝑡 + 1 (see
Section 4.2 for details). We have a deadlock when the set 𝐴𝑡+1

𝑎𝑖
is

empty since there is no legal action for the team agent 𝑎𝑖 . The idea
can be extended to multiple team and external agents. In general,
when the set 𝐴𝑡+1

A = ⟨𝑙𝑜𝑐𝑡+1 (𝑎1), . . . , 𝑙𝑜𝑐𝑡+1 (𝑎𝑛)⟩, which includes
all the possible legal combinations of actions of the team agents at
time 𝑡 + 1, is empty, it does not exist a configuration at time 𝑡 + 1 for
the team agents such that they all can perform a legal action. This
means that, even if all team agents cooperate to solve the potential
conflict, it is still not possible to avoid collisionswith external agents.
This situation is considered a deadlock since it cannot be solved only
by the team agents (violating the no-interference assumption). In
practice, deadlocks could require human intervention to manually
move the agents (see Section 6.3).

The problem we address in this paper is that of solving potential
collisions and guaranteeing that deadlocks cannot form. Before
introducing it, we detail a deadlock-prone method that team agents
can use to try to solve potential collisions.

4.2 TP with Collision Avoidance and
Replanning

As we have seen, being external agents’ tasks and paths unknown
to the team agents, collisions may happen when team agents follow
their paths. We show a simple variant of the TP algorithm to be
run by team agents in which, before performing an action, a team
agent checks if such an action would result in a collision and, if so,
it modifies its plan.

Algorithm 2 reports the TP with collision avoidance and replan-
ning algorithm (TP-CA), which is equal to the TP algorithm in-
troduced in Section 2.2 (see Algorithm 1) except for how actions
are executed. In TP-CA, before executing an action, a team agent
checks if that action would result in a collision with surrounding
external agents (line 6). A collision happens when the next move

of an external agent inside 𝐹𝑂𝑉 (𝑎𝑖 ) results in the two agents occu-
pying the same location or in swapping their locations. Note that,
since team agents use TP(-CA), their planned paths are guaranteed
to be collision-free. In this work, we do not consider conflicts that
could arise from errors in execution [13, 17].

In case collisions are detected, team agent 𝑎𝑖 performs the best
(i.e., the one that gets it closer to its goal) legal action from loc(𝑎𝑖 ).
Legal actions are those that would not result in a collision with any
external agent, another team agent, nor an obstacle (line 10). Once
moved and prevented the collision, 𝑎𝑖 updates the token with a new
path starting from its new location (line 11). Note that undoing
the last move performed to avoid the collision and resuming the
original path (to save the cost of replanning) is not generally feasible
as there would be no guarantee that the (now delayed) path would
not conflict with those of other team agents.

Using TP-CA, there may be cases in which there is no legal move
to be performed by a team agent to prevent a collision with an
external agent, which is a deadlock. The frequency of deadlocks
depends both on the configuration of the environment and on the
number of agents, as we will see in Section 6.

5 PROPOSED APPROACH
In this section, we propose a solution that solves potential collisions
and prevents the formation of deadlocks by design. The idea is
to impose some (minor) constraints on the configuration of the
environment and the possible movements of the team and external
agents (Section 5.1). If these conditions hold, it is always possible
to solve conflicts, thus avoiding deadlocks (Section 5.2), using a
modification of the TP-CA algorithm (Section 5.3).

5.1 Assumptions
We impose that the free area of the grid environment in which
agents move is tileable by 2 × 2 non-overlapping tiles. Considering
grids that can be tiled in this way is not too strict, since regular
environments like warehouses can easily satisfy the constraint.
An algorithm that checks whether a given environment is tileable
by 2 × 2 squares and, if it is, returns the corresponding tiling, is
proposed in [1].

It is not necessary that the tiling covers the whole environment,
but we impose that the team agents can only move on the portions
of the environment that are tiled. Thus, our approach works also
with environments for which we can find a 2× 2 tiling such that all
the pickup and delivery locations of the team agents are covered by
the tiles, and it is always possible to find a path between any pair of
these locations that traverses only cells in the tiles. The environment
tiling is unique and is known to both team and external agents.

Besides tiling of environment, we constrain the movements of
team and external agents. In particular, we impose that:

(1) team agents can only move on locations that are covered by
the tiling, while external agents can move anywhere in the
environment;

(2) there can be at most three team agents in each tile at the
same time;

(3) there can be at most one external agent in each tile at the
same time.
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5.2 Deadlock Prevention
In this section, we show that, given the above constraints, it is al-
ways possible to solve potential conflicts between team and external
agents, and thus deadlocks are avoided.

Proposition 1. Given a MAPD in dynamic environment (with the
no-interference assumption, Section 4.1) and assuming (1), (2), and
(3) of Section 5.1, deadlocks can be avoided.

Proof sketch. We need to prove that potential collisions between
external and team agents can always be avoided by actions of team
agents (Section 4.1). We distinguish two cases: conflicts that happen
inside a tile and conflicts that happen when external agents move
from one tile to an adjacent one.

Conflicts inside a tile. Assume that the potential conflict happens
between a team agent and an external agent in the same tile: we
show that is always possible to solve the conflict by moving team
agents only inside the tile. Looking at Figure 2, even in the worst
case, i.e., when there are 3 team agents in the tile (which is the
maximum number of allowed team agents in one tile), they can
rotate (counterclockwise, in the example) such that the conflict is
solved and all the team agents remain inside the tile. Note that the
moves that allow the team agents to rotate and avoid the conflict
are not those prescribed by their planned paths, otherwise there
would have been no potential collision. The situation in Figure 2
with three team agents inside one tile can be generalized. If there
are fewer than three team agents inside the tile, they can still rotate
or move to free the destination cell of the external agent and also
avoid edge conflicts. The situation in which the external agent
wants to perform the other allowed move is symmetric with respect
to the one depicted (team agents would have to rotate clockwise).
Since, as shown, it is always possible to solve conflicts that happen
inside a tile by moving team agents inside the same tile, we can
treat potential conflicts in different tiles as independent.

Conflicts involving adjacent tiles. If a potential conflict happens
between an external agent and a team agent that are in two different
tiles, as in Figure 3, our assumptions imply that the external agent is
moving towards a tile where there are no external agents, or where
there is an external agent that is leaving that tile at the same time
step, since there can be at most one external agent in each tile. This
means that there is at least one empty location in the tile towards
which the external agent is moving. The presence of this empty
location always allows team agents to rotate or move to avoid the
conflict (similar to the previous case), thus preventing the deadlock.
Also in this case, the resolution of the conflict happens entirely in
the destination tile of the external agent, implying that each tile
can be considered independently.

We can conclude that, since it is always possible to solve all
conflicts locally, i.e., by not moving team agents outside the tile
in which the conflict happens, conflicts can be considered inde-
pendent from one another. This allows us to say that there will be
no deadlocks over the whole environment since team agents can
always move inside tiles. □

Overall, we have thus proved that under the assumptions of Sec-
tion 5.1, it is possible for the team agents to always avoid deadlocks
by making appropriate moves to solve potential collisions. In the
next section, we introduce an algorithm that allows the team agents
to perform these appropriate moves.

Figure 2: Conflict between agents inside a tile.

Figure 3: Conflict between agents in two different tiles.

5.3 TP with Collision Avoidance and
Replanning + Tiling

In Algorithm 3, called TP with collision avoidance and replanning +
tiling (TP-CA-T), we add to TP-CA the tiling of the environment,
the constraints on movements for the team agents, and the local
decisions of Section 5.2 to avoid potential collisions and guarantee
the absence of deadlocks. We remark that external agents can use
any planning algorithm, as long as there is only one external agent
in each tile at any given time step, as specified in Section 5.1.

In the base TP algorithm (Section 2.2), an agent 𝑎𝑖 uses a path
planner to find minimum-cost collision-free paths in a space whose
states are pairs composed of a location and a timestamp. Those
states that result in a vertex or edge conflict with the paths already
stored in the token are removed. In TP-CA-T, also those states that
do not respect the condition relative to the maximum number of
team agents in each tile are removed. This is implemented in a
modified PathPlanner algorithm that considers also the tiling of the
environment (lines 12 and 32). In this way, the constructed paths
are both collision-free and compliant with our assumptions.

When a team agent has to reactively avoid collisions with exter-
nal agents, it calls the BestMove function (lines 23 and 31), which at
first tries to select that action that does not result in a conflict with
an external agent, another team agent, nor an obstacle, and is in the
same tile as the agent’s location. If this action cannot be found, as it
happens when deadlocks could form, it chooses an action that does
not result in a conflict with an external agent or an obstacle and is
in the same tile as the agent’s location. This implies that the chosen
action could result in a collision with another team agent. After the
agent has chosen an action, its choice is considered fixed, meaning
that it cannot be changed, and the agent is added to the 𝐹𝑎𝑔 set (line
24), which contains team agents that have already changed their
paths to avoid collisions: this prevents loops of team agents that
continuously change their actions. After this, it is checked if the
new action of the team agent results in a conflict with those of the
others: if so, the other team agents change their actions in the same
way and are added to 𝐹𝑎𝑔 . This process (lines 20-28) is iterated until
all team agents perform an action that does not result in a conflict
with others: it is always possible to reach this equilibrium point
since, as shown in Section 5.2, all conflicts can be solved remaining
inside the tile in which they happen. Then, team agents that have
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Algorithm 3 TP with collision avoidance and replanning + tiling
1: /* system executes now */;
2: initialize token with the (trivial) path ⟨loc(𝑎𝑖 ) ⟩ for each team agent 𝑎𝑖

(loc(𝑎𝑖 ) is the current location of 𝑎𝑖 );
3: while true do
4: add new tasks, if any, to the task set T;
5: while team agent 𝑎𝑖 exists that requests token do
6: /* system sends token to 𝑎𝑖 and 𝑎𝑖 executes now */;
7: T′ ← {𝜏 𝑗 ∈ T | no path in token ends in 𝑠 𝑗 or in 𝑑 𝑗 };
8: if T′ ≠ {} then
9: 𝜏 ← 𝑎𝑟𝑔𝑚𝑖𝑛

𝜏 𝑗 ∈T
′ℎ (loc(𝑎𝑖 ), 𝑠 𝑗 ) ;

10: assign 𝑎𝑖 to 𝜏 ;
11: remove 𝜏 from T;
12: update 𝑎𝑖 ’s path in token with the path returned by

PathPlanner(𝑎𝑖 , 𝜏, token, 𝑡𝑖𝑙𝑖𝑛𝑔) ;
13: else if no task 𝜏 𝑗 ∈ T exists with 𝑠 𝑗 = loc(𝑎𝑖 ) then
14: update 𝑎𝑖 ’s path in token with the path ⟨loc(𝑎𝑖 ) ⟩〉;
15: else
16: update 𝑎𝑖 ’s path in token with Idle(𝑎𝑖 , token) ;
17: end if
18: /* 𝑎𝑖 returns token to system, which executes now */;
19: end while
20: while all team agents 𝑎𝑖 ∈ A are free from collisions do
21: C𝑖 ← CheckCollisions(loc(𝑎𝑖 ), 𝐹𝑎𝑔 ) ;
22: if C𝑖 ≠ ∅ then
23: 𝑎𝑖 chooses BestMove(𝑎𝑖 , loc(𝑎𝑖 ), C, token, tiling, 𝐹𝑎𝑔 ) ;
24: add 𝑎𝑖 to 𝐹𝑎𝑔 ;
25: else
26: continue
27: end if
28: end while
29: for all team agents 𝑎𝑖 ∈ A do
30: if 𝑎𝑖 ∈ 𝐹𝑎𝑔 then
31: 𝑎𝑖 moves to BestMove(𝑎𝑖 , loc(𝑎𝑖 ), C, token, tiling, 𝐹𝑎𝑔 )
32: 𝜋𝑖 ← PathPlanner(𝑎𝑖 , 𝜏, token, tiling) ⊲ replanning
33: else
34: 𝑎𝑖 moves along its path in token for one time step;
35: end if
36: end for
37: /* system advances to the next time step */;
38: end while

to perform an action to avoid collisions replan their paths, and all
agents move one step forward (lines 29-35).

6 EXPERIMENTS
6.1 Experimental Setting
To evaluate the performance of our approach, we test it in four
different fully-tileable environments. We compare against TP-CA,
namely a method that solves potential conflicts without guarantee-
ing that deadlocks will not form, since we are not aware of any other
method that guarantees the absence of deadlocks in our MAPD
setting (see Section 3). We also consider an ideal fully controlled
(FC) approach in which team and external agents use TP sharing a
unique token. While practically unrealistic, FC provides the best
way in which external and team agents can coordinate.

The environments are a 26 × 26 cells cross environment (Fig-
ure 4a), a 66× 62 cells maze environment (Figure 4b), a 73× 41 cells

(a) Cross (b) Maze

(c) Videogame (d) Warehouse

Figure 4: Experimental environments.

video game map (Figure 4c), and a 54 × 50 cells warehouse map
(Figure 4d). We assume that also the external agents are performing
pickup and delivery tasks and use the TP algorithm when the team
agents use TP-CA and, when the team agents use TP-CA-T, the
external agents use a modified version of TP (denoted TP-mod) to
comply with the tiling constraint. (External agents can do anything,
as long as they satisfy the constraints of Section 5.1. We assume
that they solve a MAPD problem and use TP and TP-mod just for
simplicity.) In all cases, the path-finding algorithm is A*. Tasks are
created by choosing pickup and delivery locations uniformly at
random among a set of predefined vertices, and tasks’ arrival times
are sampled uniformly at random from predefined time intervals.
Non-task endpoints and delivery locations are usually located at
the border of the environments, while pickup locations are sparsely
diffused in the environments. Table 1 summarizes the experimen-
tal parameters: for each environment, it is specified its size, the
number of team and external agents, the number of tasks that team
and external agents have to accomplish, the time interval in which
team and external agents’ tasks appear in the environment, the
number of possible pickup locations (that are the same for team
and external agents), and the number of possible delivery locations
for team and external agents (which are different for team and
external agents). These parameters have been set manually to make
the environments crowded and create a challenging test bed for
our approach. Slight variations in the values of parameters produce
qualitatively similar results.

We measure the number of deadlocks over the runs and, consid-
ering only those runs that do not end in a deadlock, we measure
the makespan of both the team agents and the external agents, that
is the time required to complete all the assigned tasks. The num-
ber of deadlocks provides the most important information about
the effectiveness of our method, indicating whether all tasks of a
run will be completed from both sides, whereas the makespan is
a measure of efficiency. In particular, the comparison of the team
and external agents’ makespan with and without our approach
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Cross Maze Videogame Warehouse

size 26 × 26 66 × 62 73 × 41 54 × 50
#team agents 22 45 48 22

#external agents 22 30 41 26
#team tasks 100 110 160 110

#external tasks 155 100 150 140
team task interval [50,100] [30,60] [30,100] [30,60]

external task interval [0,100] [0,50] [0,80] [0,50]
#pickups 52 1948 100 1056

#team deliveries 24 52 52 23
#external deliveries 24 39 50 29

Table 1: Experimental parameters.

Figure 5: Number of deadlocks over 50 runs.

allows us to understand the effect of the constraints on the time of
completion of the tasks. Results are averaged over 50 runs, where
each run is different from the others for the arrangement and time
of arrival of the tasks. Experiments have been conducted on a 2.10
GHz Intel(R) Xeon(R) Silver 4116 CPU with 32 GB of RAM.

6.2 Experimental Results
Figure 5 reports the number of deadlocks experienced in each en-
vironment averaged over 50 runs when team agents use TP-CA
and when they use TP-CA-T. With FC there are no deadlocks by
design since all agents behave as a single team. When team agents
use TP-CA and external agents use TP, the environments that are
affected the most by the presence of deadlocks are the cross, the
maze, and the videogame maps. In the case of the cross and the
maze maps, deadlocks happen frequently because of narrow por-
tions of the environments with dead-ends, in which it is easy for
team agents to get trapped by external agents. The videogame map
features several open spaces connected by narrow corridors: it is in
these corridors that most deadlocks happen. In the warehouse envi-
ronment, only 6 runs over 50 end in deadlock: the presence of three
detached shelves in each aisle allows team agents to easily change
their paths without remaining trapped in long aisles or dead-ends,
and the fact that aisles are 2 cells wide prevents the formation of
deadlocks by giving alternative possibilities for collision avoidance.
From Figure 5, the effectiveness of the proposed method appears
clearly: as expected from results of Section 5, no deadlocks happen
even in crowded or narrow environments, in which the possibility
of ending in a deadlock is high, allowing all agents to complete
their tasks by imposing few constraints.

To evaluate the impact of these constraints, Figure 6 and Figure 7
report the makespan of the team agents and the makespan of the
external agents, respectively, comparing TP-CA, TP-CA-T, and FC
for team agents, and TP, TP-mod, and FC for external agents. For

Figure 6: Makespan of the team agents.

Cross Maze Videogame Warehouse

TP-CA-T wrt TP-CA +5.52% +32.62% +4.32% +0.52%
TP-CA-T wrt FC +16.67% +0.52% +19.00% +1.72%

Table 2: Average increase of team agents’ makespan.

each environment, we only consider those runs that do not end in
a deadlock for all three methods, to have a fair comparison. For
the team agents, in the cross, videogame, and warehouse maps,
the makespan is similar when employing TP-CA and TP-CA-T, as
also shown in Table 2. This means that the constraints imposed
on team agents are not too limiting. Only in the maze environ-
ment, there is a big difference between the TP-CA and the TP-CA-T
case, with an average makespan 32.62% higher for the latter. This
difference comes from the structure of the environment and the
tiling constraint: since the maze has narrower corridors and many
dead-ends, team agents are forced to replan more often than in
other environments to avoid collisions with external agents. In fact,
looking at Figure 8, which reports the number of replans that team
agents have to perform in order to avoid collisions with external
agents, in the maze map replans are more for TP-CA-T than for
TP-CA, causing an increase in the makespan due to the frequent
changes of paths. Besides, the tiling constraints on both the team
and external agents force them to take alternative paths to satisfy
the maximum number of agents in each tile, making them more
sparse on the map. For the same reason, the number of team agents’
replans is slightly larger in the TP-CA-T case than in the TP-CA
case also for other environments.

Makespan of the external agents (Figure 7), is slightly larger with
TP-mod than with TP in all the environments (see also Table 3).
Although the constraints imposed on external agents are stricter
than those imposed on the team agents, they are able to complete
their tasks without big impacts on the quality of their activities.

The makespan of team and external agents when using TP-CA-T
and TP-mod (respectively) is larger than when using FC, due to
weaker coordination. For external agents the maximum increase
(over the environments) is +5.5%, showing that our approach does
not penalize much external agents. For team agents, the increase is
+1.7%, +0.5%, +16.7%, +19.0% (warehouse, maze, videogame, cross):
team agents are more penalized by our approach in open environ-
ments in which replans are frequent.

Experimental results show that our method is effective in pre-
venting deadlocks even in narrow and crowded environments, by
imposingminor constraints on the environment and themovements
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Figure 7: Makespan of the external agents.

Cross Maze Videogame Warehouse

TP-mod wrt TP +7.08% +2.51% +4.54% +1.20%
TP-mod wrt FC +5.46% +1.14% +3.57% +1.15%

Table 3: Average increase of external agents’ makespan.

Figure 8: Number of replans of the team agents.

of the agents. These constraints do not generally have a strong ef-
fect on the efficiency of the agents, whose makespan increases
only slightly. In narrower environments with many dead-ends, as
in mazes, the constraints increase in the makespan for the team
agents due to the structure of the environment, but our method is
able to guarantee that all agents complete all their tasks without
incurring in deadlocks.

6.3 Convenience Analysis
Solving deadlocks in real settings could require manual interven-
tions. For example, a human operator could move the robots in-
volved in the deadlock to their non-task endpoints, or rearrange
their locations to force the resolution of the deadlock. To quantita-
tively evaluate whether this approach is more convenient than ours
(i.e., whether it is better to use our approach that prevents dead-
locks or to let deadlocks happen and then solve them manually),
we define the cost 𝑐 (in time units) of a deadlock as:

𝑐 = 𝑝 ·𝑇, (1)

where 𝑝 is the probability of formation of a deadlock and 𝑇 is the
mean time needed for a human operator to solve a deadlock. Given
an environment, the probability 𝑝 that a deadlock will form can be
computed empirically from our data as the number of runs that end
in deadlock divided by the number of total runs: 𝑝 =

#𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘_𝑟𝑢𝑛𝑠
#𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑠 .

We can compute 𝑝 for each environment from Figure 5, as reported
in the first row of Table 4. In an environment, our approach is more

Cross Maze Videogame Warehouse

𝑝 0.72 0.58 0.80 0.12
𝑇 31.08 226.07 40.75 75.00

Table 4: Convenience analysis’ parameters and results.

convenient than solving deadlocks manually when:

𝑀TP-CA-T −𝑀TP-CA < 𝑐, (2)

where 𝑀TP-CA-T and 𝑀TP-CA is the mean number of time steps
such that all the team and external agents finish their tasks relative
to TP-CA-T and to TP-CA, respectively, which is as an upper bound
to the makespan of team agents. From (1) and (2), we derive that
our approach is more convenient when:

𝑇 >
𝑀TP-CA-T −𝑀TP-CA

𝑝
. (3)

Note that, in (3), we are implicitly assuming that in each run only a
single deadlock could happen, meaning that, after a deadlock has
been manually solved, the run will proceed to the end without the
formation of other deadlocks. Thus, (3) provides a lower bound
on the time required by the human to solve a deadlock, and is an
optimistic estimate for the manual resolution of deadlocks. Table 4
(second row) reports the values of the smallest 𝑇 that satisfies (3).
Note that 𝑇 is expressed in terms of time steps, and a time step is
the time required by an agent to move from a cell to an adjacent
cell. Just for illustration purposes, let us assume that one time step
lasts 4 seconds. This means that, in the case of the warehouse,
our approach is better than human intervention when manually
solving a deadlock requires more than 75.00 × 4 = 300 seconds,
namely 5minutes. Considering that a human operator has to control
remotely the robots or enter the environment, an intervention time
of more than 5 minutes could be likely in many settings, making
our approach appealing for employment in real applications.

7 CONCLUSION
We presented an approach that solves potential conflicts in a MAPD
setting in which team agents operate in a dynamic environment
with external agents that do not change their tasks and paths. By
imposing simple constraints on the environment and on the agents’
movements, our approach prevents deadlocks by design. Experi-
ments have been performed on four different maps, confirming the
effectiveness of our approach even in crowded and narrow environ-
ments. Moreover, the constraints that our approach imposes only
slightly increase the makespan.

Future research directions include the extension of our approach
to more general environments, beyond grids, the improvement
in efficiency of the proposed solution, and the investigation of a
game-theoretical formulation of the problem.
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