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ABSTRACT
Recently there has been a proliferation of intrinsic motivation (IM)

reward-shaping methods to learn in complex and sparse-reward

environments. These methods can often inadvertently change the

set of optimal policies in an environment, leading to suboptimal

behavior. Previous work on mitigating the risks of reward shap-

ing, particularly through potential-based reward shaping (PBRS),

has not been applicable to many IM methods, as they are often

complex, trainable functions themselves, and therefore dependent

on a wider set of variables than the traditional reward functions

that PBRS was developed for. We present an extension to PBRS

that we prove preserves the set of optimal policies under a more

general set of functions than has been previously proven. We also

present Potential-Based Intrinsic Motivation (PBIM), a method for

converting IM rewards into a potential-based form that is useable

without altering the set of optimal policies. Testing in the Mini-

Grid DoorKey and Cliff Walking environments, we demonstrate

that PBIM successfully prevents the agent from converging to a

suboptimal policy and can speed up training.
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1 INTRODUCTION
An increasing amount of work in reinforcement learning (RL) uses

intrinsic reward functions, in addition to environmental rewards,

to speed convergence to reasonable policies. This approach is par-

ticularly widespread in sparse-reward problems, or those that are

exploration-heavy, and has had much success in these domains

[3, 5, 22].

This work is licensed under a Creative Commons Attribution

International 4.0 License.
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However, adding a secondary reward term may lead to changes

in the set of optimal policies, with unintended, and potentially

adverse, consequences. For example, Burda et al. [4] show that an

intrinsic reward that incentivizes visiting areas of the state space

where the agent is less able to predict what will happen can result in

the agent becoming “addicted” to watching a screen with flashing

random images. Amodei et al. [1] further discuss related issues.

These issues can be mitigated through hyperparameter tuning—

i.e., by multiplying the intrinsic rewards by some 𝛼 and decreasing

𝛼 until the problematic behavior disappears. Chen et al. [6] imple-

mented an automated generalization of this method. However, this

approach may decrease the utility of intrinsic motivation and is not

generally guaranteed to preserve the optimal policy set. As an al-

ternative, we extend the potential-based, policy-preserving reward

shaping term of Ng et al. [20] to arbitrary reward functions, and

show that this preserves the set of optimal policies. We contribute:

1. An extension of potential based reward shaping (PBRS)
to potential functions of arbitrary variables in episodic envi-
ronments, and a proof that this extension does not alter the
set of optimal policies. We derive an accompanying boundary

condition that serves as a sufficient condition for preserving opti-

mality, and this allows for extending PBRS to reward functions, like

intrinsic motivation (IM), which are dependent on a more general

set of variables than has been addressed previously.

2. A novel method for converting any arbitrary reward
function into this extended potential form, maintaining the

benefits of that function while mitigating its drawbacks, by guaran-

teeing that such a shaping reward will not alter the set of optimal

policies in the underlying environment, and thus cannot be “hacked”

by an agent that has converged to an optimal policy.

3.An empirical demonstration that ourmethod is effective
as both a safety measure to prevent hacking of intrinsic rewards

and, in certain cases, to speed up training.

This paper expands on work originally presented in [12].

2 RELATEDWORK
The two fields of study most directly relevant to our work are re-

ward shaping—particularly potential-based reward shaping—and

intrinsic motivation. We will review the former of these first, par-

ticularly the relevant theoretical extensions, and then the latter.
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2.1 Potential-Based Reward Shaping
Reward shaping is the practice of adding some additional reward

to an environment, usually with the goal of accelerating train-

ing. We define a Markov Decision Process (MDP) as a tuple 𝑀 =

(𝑆,𝐴,𝑇 ,𝛾, 𝑅). Here 𝑆 is the state space, and 𝐴 is the action space.

𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the state transition function so that

𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃 (𝑠𝑡+1 = 𝑠′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is the probability of tran-

sitioning to state 𝑠′ by taking action 𝑎 in state 𝑠 (throughout this

paper, “
′
” will be used to notate a subsequent time step). 𝛾 ∈ [0, 1]

is the discount factor, and 𝑅 : 𝑆 ×𝐴×𝑆 → ℜ is the reward function.

Reward shaping for𝑀 is training the agent in some second MDP

𝑀′ = (𝑆,𝐴,𝑇 ,𝛾, 𝑅′), where 𝑅′ = 𝑅 + 𝐹 , and 𝐹 is the shaping reward

(this problem and notation can be extended to partially observable

MDPs (POMDPs) as well). It is easy to accidentally choose 𝐹 in a

way that leads to unexpected behavior (see [24]), because the set of

optimal policies for𝑀′
is not guaranteed to be the same as for 𝑀 .

Ng et al. [20] showed that the set of optimal policies for an MDP is

unchanged by the addition of a shaping reward of the form

𝐹 (𝑠, 𝑠′) = 𝛾Φ(𝑠′) − Φ(𝑠) . (1)

If a shaping reward of this form was added, then the Q-function

of the new MDP,𝑀′
, would be equal to the old Q-function, plus a

potential with no action-dependence:

𝑄∗
𝑀 ′ (𝑠, 𝑎) = 𝑄∗

𝑀 (𝑠, 𝑎) − Φ(𝑠) . (2)

Because there is no action-dependence, choosing an action to max-

imize its sum will also maximize the original Q-function. This was

only proven for MDPs that are infinite-horizon or contain a single

“absorbing state.”

Wiewiora et al. [30] extended this treatment to reward shaping

terms of the form

𝐹 (𝑠, 𝑎, 𝑠′, 𝑎′) = 𝛾Φ(𝑠′, 𝑎′) − Φ(𝑠, 𝑎), (3)

allowing for action-depended “advice” potentials: they note, how-

ever, that in order for the theoretical guarantees of Ng et al. [20]

to hold, the potential Φ(𝑠, 𝑎) must be added back to the Q-value

during policy training. Also note the dependence of Equation 3 on

𝑎′, which is necessary for this formulation to work, but requires

a reward of the form 𝑅(𝑠, 𝑎, 𝑠′, 𝑎′), rather than the more standard

𝑅(𝑠, 𝑎, 𝑠′).1 Wiewiora [29] showed that this form of reward shaping

parameter is theoretically equivalent to a thoughtful initialization

of parameters for the policy parameterization.

Devlin and Kudenko [8] extend this formulation further, showing

that any shaping reward of the form

𝐹 (𝑠, 𝑡, 𝑠′, 𝑡 ′) = 𝛾Φ(𝑠′, 𝑡 ′) − Φ(𝑠, 𝑡), (4)

where 𝑡 and 𝑡 ′ refer to the corresponding time steps of 𝑠 and 𝑠′,
would not alter the set of optimal policies in a single-agent problem,

or the Nash equilibrium in a multi-agent problem. They also prove

that, unlike Equation 3, shaping rewards of this form cannot be

reduced to parameter initialization in the same way shown by

Wiewiora [29].

1
Wiewiora et al. [30] also include a “lookback” formulation, wherein knowledge of

𝑎′ is not required, but rather 𝑎𝑡−1 . This formulation, while not dependent on 𝑎′ , still
takes two action values as arguments, and is thus still nonstandard.

Harutyunyan et al. [15] combine the expansions to Ng et al. [20]

of Wiewiora et al. [30] and Devlin and Kudenko [8] into the form

𝐹 (𝑠, 𝑎, 𝑡, 𝑠′, 𝑎′, 𝑡 ′) = 𝛾Φ(𝑠′, 𝑎′, 𝑡 ′) − Φ(𝑠, 𝑎, 𝑡) (5)

and demonstrate a method for converting shaping functions of

the form 𝑅(𝑠, 𝑎, 𝑠′) to this potential-based formulation
2
. However,

Behboudian et al. [2] prove that this formulation does not actually

maintain an optimal policy in a general sense. They present PIES, an

alternative method to preserve optimality, by iteratively decreasing

the coefficient of the shaping rewards until it reaches zero. While

this alternative method does indeed preserve optimality, it does

so effectively through removing 𝐹 entirely from a portion of the

training, and thus requires a balance between utilizing the benefits

of the shaping rewards and mitigating their drawbacks.
3
All works

cited thus far have focused on the initial domain of Ng et al. [20],

which is environments that are either infinite-horizon, or which

have a set absorbing state that terminates the episode. This dis-

tinction is formally emphasized by Eck et al. [9], who also make a

further extension of PBRS to Partially-Observable Markov Decision

Processes (POMDPs). Noting this shortcoming, Grzes [14] extended

PBRS to episodic environments, which terminate after some final

time step 𝑁 . They note that, in such an environment, when adding

the shaping reward in Equation 1, there is an additional term of

difference between the episodic returns of𝑀′
and𝑀 :

𝑈𝑀 ′ (𝜏𝑁 ) = 𝑈𝑀 (𝜏𝑁 ) + 𝛾𝑁Φ(𝑠𝑁 ) − Φ(𝑠0), (6)

where𝑈𝑀 (𝜏𝑁 ) is the cumulative return of an agent on MDP𝑀 un-

der the state-action trajectory 𝜏𝑁 . The latter of these terms, present

even in the infinite-horizon case [20], has no action dependence,

and thus cannot affect the set of optimal policies. The former, how-

ever, is implicitly action-dependent through the agent’s ability to

affect its final state, and thus poses a problem for maintaining the

optimality of the learned policy. Grzes [14] addresses this problem

by adjusting the potential added at the end of the episode. The

potential function essentially then becomes time-dependent, as

defined in Equation 1 at all time steps except the last of an episode,

where it is zero. Formally:

Φ𝑛 =

{
0 if 𝑛 = 𝑁

Φ(𝑠) otherwise.
(7)

This treatment applies not only to fixed values of 𝑁 , but to environ-

ments where a number of different states could be terminal states,

and termination could happen at differing times: here 𝑁 is treated

as “the time at which the episode ends,” and can freely vary from

episode to episode. This truncating of the potential in the last time

step ensures that the problematic term from Equation 6 will always

equal zero, and thus restores the desired optimality guarantees.

Goyal et al. [13] extended PBRS to a potential based on an “action

frequency vector,” which contains information about the agent’s

trajectory over some slice of time, while preserving optimality.

2
Harutyunyan et al. [15] describe these as “arbitrary reward functions” that are the

most general form of reward function that exists in a traditionally-defined MDP. This

is required by the way the proof assumes convergence to a TD fixed point. This

assumption is not guaranteed for rewards that are arbitrary in the wider sense we

use, including most forms of IM—these are often not stable across time and thus a

time-independent value function cannot be expected to converge.

3
Compare to Chen et al. [6], who tune shaping reward coefficients for IM specifically,

but not to zero.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

590



We are extending the potential-based formulation further to

accommodate potentials that are a function of an arbitrary set of

variables. Most commonly, this will simply beΦ(𝜏0, 𝜏1, ...𝜏𝑀 ), where
Φ is the shaping potential,𝑀 is the total number of episodes during

training, and 𝜏𝑚 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, ...𝑎𝑁𝑚−1, 𝑠𝑁𝑚
) is the full trajectory

of states and actions during episode𝑚 of training. This is sufficiently

general to accommodate most IM terms, such as ICM [22] or RND

[5]. However, to emphasize a generality that could in principle

extend beyond this, rather than writing the dependence explicitly

(as in, i.e., the Φ(𝑠, 𝑎, 𝑠′, 𝑎′) of Wiewiora et al. [30]), we will write

either 𝐹𝑛 or Φ𝑛 for simplicity of notation and to emphasize that we

are dealing with arbitrary variable-dependence.

2.2 Intrinsic Motivation
Intrinsic motivation has proven increasingly useful for complex or

sparse-rewards environments in recent years. However, the actual

reward shaping terms used in the IM literature lie almost universally

outside of the traditional MDP and POMDP frameworks, as they

cannot be written as a function of a single state transition, 𝑅(𝑠, 𝑎, 𝑠′).
A large portion of IM literature is focused on incentivizing explo-

ration, particularly in sparse-reward environments. Simple versions

exist, such as incentivizing taking actions that have not been taken

recently [27] or keeping a tabular list of how often each state has

been explored, and rewarding less-visited ones [26]. Recently, more

complex exploration rewards have been developed. Tabular meth-

ods have been extended to larger, more complex environments

through “pseudo-counts” [3, 21], which use a learned representa-

tion of the (potentially continuous) state space. Curiosity-based

methods like Intrinsic Curiosity Module (ICM) [22] reward agents

for “surprising” (maximizing the error rate of) an auxiliary network

trained to predict the environment state dynamics. Random Net-

work Distillation (RND) [5], similarly, rewards agents for fooling a

predictor in a random feature space. Another common IM method

relies on “empowerment” [18], which is a mutual information met-

ric between the agent’s actions and future states. Raileanu and

Rocktäschel [23] aims to maximize the impact of an agent’s actions

on a learned state representation.

All examples thus far have used IM as a method for supplement-

ing (usually sparse) base extrinsic rewards. Recently, IM without

the base reward, either to learn skills to be applied later [10] or to

replace external rewards entirely [4], has gained attention.

There has been some prior work on the risks of IM. Examples

include the “noisy TV” problem, where an agent with an exploration

term advising it to seek novelty can get distracted from a base task

by some particularly stochastic object in its environment [4]. There

is also a tendency of other exploration terms less susceptible to

the noisy TV problem, such as RND, still causing agents to become

noticeably “risk seeking” once they’ve exhausted all easy-to-obtain

intrinsic rewards [5]. There is a large body of theoretical work in

this area [1], but empirical study remains sparse. We hope that our

method can assist empirical research in this area.

There has been some other work in the area of mitigating adverse

effects of IM terms, coming mostly in the form of hyperparameter

tuning. Chen et al. [6] utilize a clever method of automatically tun-

ing up exploration coefficients in exploration-heavy environments

and tuning them down where IM is less beneficial. Our solution

differs from this in two key ways. Firstly, and most importantly, it

delivers vital theoretical guarantees that the set of optimal policies

will remain unchanged, and thus that any convergence guarantees

apply within the new MDP. Secondly, while [6] requires additional

hyperparameters, network architecture, and optimization steps be-

yond that for the combined loss function, our method requires

virtually no additional computational overhead, and addresses the

problem solely by adjusting the reward shaping term to one that

guarantees an unchanged set of optimal policies.

3 MAIN RESULTS
Here we demonstrate an extension of PBRS to arbitrary poten-

tial functions that satisfy a boundary condition. Motivated by this

condition, we then develop a method for converting almost (see

Assumption 1) any arbitrary reward function to a potential that

preserves optimality. We developed two versions of this conversion

method, one normalized and one non-normalized. We derive the

initial boundary condition in Section 3.1, and discuss it in relation to

prior optimality-preserving PBRS results. We develop the resulting

reward-converting methods in Section 3.2.

3.1 Extending Potential-Based Reward Shaping
to Functions of Arbitrary Variables

In an episodic environment, we normally want to choose a policy

𝜋 so as to optimize the value function

𝑉 𝜋
𝑀

= E
𝑎∼𝜋,𝑠∼𝑇,𝑅𝑛∼𝑅

𝑈 𝜋
𝑀
. (8)

Here𝑈 𝜋
𝑀

is the cumulative discounted return:

𝑈 𝜋
𝑀

=

𝑁−1∑︁
𝑛=0

𝛾𝑛𝑅𝑛, (9)

where the rewards 𝑅𝑛 are sampled from acting under policy 𝜋

according to the transition dynamics and reward function of envi-

ronment𝑀 . Note that we are considering the general case where

the reward function itself need not be deterministic. We also want

to define the discounted future return at some arbitrary time step 𝑡 :

𝑈 𝜋
𝑀,𝑡

=

𝑁−1∑︁
𝑛=𝑡

𝛾𝑛−𝑡𝑅𝑛, (10)

the expectation of which is 𝑉 𝜋
𝑀,𝑡

. Given this, an optimal policy

under 𝑅 for environment𝑀 at time 𝑡 will satisfy

𝜋∗𝑀 = argmax

𝜋
(𝑉 𝜋

𝑀,𝑡
). (11)

This optimal policy 𝜋∗
𝑀

will also satisfy

𝜋∗𝑀 (𝑠) = argmax

𝑎𝑡

(𝑄∗
𝑀,𝑡 ) (12)

where

𝑄𝜋
𝑀,𝑡

= 𝑅𝑡 +𝑉 𝜋
𝑀,𝑡+1

, (13)

and 𝑄∗
𝑀

is taken to be 𝑄𝜋
𝑀

of the optimal policy 𝜋 = 𝜋∗
𝑀
. If we

now define a new environment 𝑀′
equivalent to 𝑀 but with the

addition of a shaping reward

𝐹𝑡 = 𝛾Φ𝑡+1 − Φ𝑡 , (14)
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then we can calculate the return for a trajectory in𝑀′

𝑈 𝜋
𝑀 ′,𝑡=

𝑁−1∑︁
𝑛=𝑡

𝛾𝑛−𝑡 (𝑅𝑛 + 𝐹𝑛) (15)

=

𝑁−1∑︁
𝑛=𝑡

𝛾𝑛−𝑡 (𝑅𝑛 + 𝛾Φ𝑛+1 − Φ𝑛) . (16)

In order to prove that adding a shaping reward of the form in

Equation 14 does not alter the set of optimal policies of the under-

lying environment, it is sufficient to prove that, at every state and

timestep, choosing 𝑎 to optimize 𝑄∗
𝑀 ′,𝑡 will necessarily optimize

𝑄∗
𝑀,𝑡

as well, and vice versa. To investigate the conditions under

which this relation will hold, we can reduce Equation 16 to

𝑈 𝜋
𝑀 ′,𝑡 =

𝑁−1∑︁
𝑛=𝑡

𝛾𝑛−𝑡𝑅𝑛 +
𝑁−1∑︁
𝑛=𝑡

𝛾𝑛−𝑡 (𝛾Φ𝑛+1 − Φ𝑛) (17)

=𝑈 𝜋
𝑀,𝑡

+ 𝛾Φ𝑡+1 − Φ𝑡 + 𝛾2Φ𝑡+2 − 𝛾Φ𝑡+1+ (18)

𝛾3Φ𝑡+3 − 𝛾2Φ𝑡+2 + · · · + 𝛾𝑁−𝑡Φ𝑁 − 𝛾𝑁−(𝑡+1)Φ𝑁−1 (19)

=𝑈 𝜋
𝑀,𝑡

+ 𝛾𝑁−𝑡Φ𝑁 − Φ𝑡 . (20)

This is essentially the derivation for Equation 6 by Grzes (2017)

with a potentially non-Markovian Φ𝑡 , and generalized to apply to

all time steps, rather than just 𝑡 = 0. Through an application of

Equation 8 and Equation 13, this becomes

𝑄𝜋
𝑀 ′,𝑡 = 𝑄𝜋

𝑀,𝑡
+ E
𝑎∼𝜋,𝑠∼𝑇,𝑅𝑛∼𝑅

(
𝛾𝑁−𝑡Φ𝑁 − Φ𝑡

)
. (21)

Here we see that 𝑄𝜋
𝑀 ′,𝑡 differs in expectation from 𝑄𝜋

𝑀,𝑡
by two

terms. If these terms’ sum is constant with respect to 𝑎𝑡 , then Equa-

tion 12 can be applied to show the equivalence of optimal policies

between these two environments. This gives us the condition

E
𝑎∼𝜋,𝑠∼𝑇,𝑅𝑛∼𝑅

(
𝛾𝑁−𝑡Φ𝑁 − Φ𝑡

)
= Φ′

𝑡 ∀𝑡 ∈ (0, 1, ...𝑁 − 1), (22)

where Φ′
𝑡 is some arbitrary function that is constant with respect

to action 𝑎𝑡 . From here, we can state Theorem 1:

Theorem 1 (Sufficient Condition For Optimality). The ad-
dition of a shaping reward 𝐹𝑡 = 𝛾Φ𝑡+1 − Φ𝑡 leaves the set of optimal
policies unchanged if Equation 22 holds.

Proof. Given Equation 22, then ∀𝑡 ∈ (0, 1, ..., 𝑁 − 1),

𝜋∗𝑀 ′ (𝑠)= argmax

𝑎𝑡

(𝑄∗
𝑀 ′,𝑡 ) (23)

= argmax

𝑎𝑡

(𝑄∗
𝑀,𝑡 + E

(
𝛾𝑁−𝑡Φ𝑁 − Φ𝑡

)
) (24)

= argmax

𝑎𝑡

(𝑄∗
𝑀,𝑡 + Φ′

𝑡 ) (25)

= argmax

𝑎𝑡

(𝑄∗
𝑀,𝑡 ) = 𝜋∗𝑀 (𝑠). (26)

Note the step between Equations 25 and 26: here we are relying on

the 𝑎𝑡 -independence of Φ
′
𝑡 to ensure it doesn’t affect the argmax𝑎𝑡

term.
4
This is equivalent to stating the set of optimal policies is

unchanged by the shaping reward. □

4
This step is similar to a step in the central proof of [20].

It is worthwhile to briefly examine what prior work has done

to preserve the condition in Equation 22, in order to emphasize

that this is the most general treatment of this problem to date, and

to situate it within prior literature. In a non-episodic setting, the

𝛾𝑁−𝑡Φ𝑁 term either drops out (in the infinite-horizon setting) or is

definitionally independent of 𝑎𝑡 (in the setting with a set absorbing

state). Thus, much prior work in this area has focused on solely the

−Φ𝑡 term. This has been dealt with by either restricting the potential

to be independent of 𝑎𝑡 [8, 20], restricting it to be independent of 𝑎𝑡
in the limit as training continues [2], or subtracting this potential

where appropriate to accommodate its 𝑎𝑡 -dependence [30]. All of

these methods’ restrictions to Φ can be viewed as subsets of the

general class of shaping functions that satisfy Equation 22. Similarly,

prior work in episodic PBRS has restricted itself to −Φ𝑡 terms that

are independent of 𝑎𝑡 , and thus has dealt with the 𝛾𝑁−𝑡Φ𝑁 term

by setting Φ𝑁 = 0 [14]. Again, while this is a valid subset of the

larger solution space for Equation 22, it excludes an important set

of solutions in which each of these terms, while individually 𝑎𝑡 -

dependent, have this dependence cancel out when they are summed

together. As we will see, these solutions have incredible potential

applications for novel shaping functions, particularly as a method

to incorporate IM methods without changing the optimal policy of

the underlying environment.

3.2 Converting Functions of Arbitrary Variables
to Potential-Based Reward Functions

All of the IM examples we cited above can change the set of optimal

policies, with possibly adverse effects. Thus mitigating these effects,

and using IM while guaranteeing the set of optimal policies isn’t

altered, is highly desirable. We present a practical and straightfor-

ward way to convert most IM rewards to a form that is guaranteed

not to alter the set of optimal policies. More formally, we present a

method that guarantees not to alter the optimal policy for an IM

whose terms do not depend on the future actions of the agent. We

call this approach Potential Based Intrinsic Motivation (PBIM).

The trick is to realize that, in all time steps but the last, any

arbitrary reward function (including IM) is already a difference of a
potential function in the proper form due to the recursive relation

between rewards and their respective cumulative returns. If we

define 𝐹𝑡 to be an arbitrary intrinsic reward at time step 𝑡 , and

𝑈 𝜋
𝑡 to be the cumulative discounted intrinsic reward sampled from

following policy 𝜋 at time step 𝑡5, then we can rewrite the standard

recursive relation between them as

𝐹𝑡 = 𝑈 𝜋
𝑡 − 𝛾𝑈 𝜋

𝑡+1
. (27)

This is conveniently similar to the necessary potential formula-

tion in Equation 14. In fact, if we choose Φ𝑡 = −𝑈 𝜋
𝑡 , these equations

become identical.

Choosing this form for Φ𝑡 may initially appear untenable in a

wide variety of environments, as it seems to imply that we will

need to know𝑈𝑡 before beginning training. This would presuppose

a level of knowledge about the environment and future trajectory

of the agent that is unrealistic. However, this is not the case: we

5
Here, we drop the𝑀 subscript for simplicity. Note however that in this section,𝑈 𝜋

𝑡
exclusively denotes the intrinsic discounted return, rather than the sum of intrinsic

and extrinsic returns.
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don’t have to actually know 𝑈𝑡 in order to set it equal to Φ𝑡 . We

only have to know 𝐹𝑡 , as it is already a difference of the requisite

potential in Equation 27, even if we don’t know that potential itself.

If we thus chooseΦ𝑡 = −𝑈 𝜋
𝑡 and implement an IM term normally,

we can investigate under what conditions the optimal policy set is

preserved by examining Equation 22. It becomes

E
𝑎∼𝜋,𝑠∼𝑇,𝑅𝑛∼𝑅

(
𝑈 𝜋
𝑡 − 𝛾𝑁−𝑡𝑈 𝜋

𝑁

)
= Φ′

𝑡 ∀𝑡 ∈ (0, 1, ...𝑁 − 1) . (28)

This condition is not satisfied by default for most IM terms, as 𝑈 𝜋
𝑡

will be action-dependent in most interesting environments. It is also

unnecessarily complicated in this formulation, as𝑈𝑁 = 0 for any

environment in an episodic setting. These observations motivate

the choice of potential

Φ𝑡 =

{
−𝑈 𝜋

0
/𝛾𝑁 , if 𝑡 = 𝑁

−𝑈 𝜋
𝑡 , if 𝑡 ≠ 𝑁,

(29)

which is similar to choosing Φ𝑡 = −𝑈 𝜋
𝑡 , but with the crucial ex-

ception that Φ𝑁 = −𝑈 𝜋
0

𝛾𝑁 , by virtue of 𝑁 being the last time step

in the episode. Our choice of potential here for the 𝑡 = 𝑁 case is

motivated by setting Φ′
𝑡 in Equation 28 to 0 for the 𝑡 = 0 case, and

solving for Φ𝑁 .

Thus, if we have a shaping reward 𝐹𝑡 , andwewant to utilize some

optimality-preserving permutation of it 𝐹 ′𝑡 utilizing the potential
of Equation 29, we can use

𝐹 ′𝑡 =

{∑𝑁−2

𝑛=0
−𝛾𝑛+1−𝑁 𝐹𝑛, if 𝑡 = 𝑁 − 1

𝐹𝑡 , if 𝑡 ≠ 𝑁 − 1,
(30)

which is simply Equation 14 with Φ𝑡 defined as in Equation 29.

Equation 30 has an appealing interpretation. It is equivalent to

implementing the shaping reward “normally” until the very last

time step, at which point the total discounted rewards are subtracted

in order to ensure Equation 22 still holds. Described this way, it is

both simple to understand and straightforward to implement.

Equation 30 also has the advantage that it makes it particularly

difficult for most agents to “figure out” that optimizing intrinsic

motivation does nothing to increase their value function in the

long run, because the adjustment term is at the very end of a given

episode. This extends the reward horizon, to use the terminology

of Laud [17], or the time delay between an action and the (intrinsic)

returns dependent on that action. This makes it intentionally diffi-

cult for the agent to discover that IM doesn’t ever actually affect

the final return of an episode (because an appropriately discounted

quantity will always be deducted later). Much work has gone into

the goal of shortening the reward horizon on various problems,

oftentimes through reward shaping terms (see, for example, The-

orem 3 of Ng [19]), but this work shows that actually increasing
the reward horizon for the futility of pursuing IM can be useful—it

allows these rewards to still give hints to the agent, without being

immediately discovered as “worthless” in the long run. The agent

will then seek these rewards in the short term, but discard them in

the long term insofar as optimizing for them would deviate from

an optimal policy.

For the formal proof that Equation 30 leaves an optimal policy

unaltered, we must make a single assumption about 𝐹𝑡 that limits

the scope of rewards our method applies to:

Assumption 1. 𝐹𝑡 is constant w.r.t. 𝑎𝑡 ′>𝑡∀𝑡, 𝑡 ′ ∈ (0, 1, ...𝑁 − 1) .
This assumption is quite general, and holds for the majority of

IM in the literature, including state-of-the-art exploration methods

such as ICM and RND. Note that this assumption generally holds

for action-dependent IM, so long as that action-dependence does

not extend to future actions, but is restricted to actions taken by the

agent at the current time step and/or prior ones. The key example

in the literature for which this assumption does not hold is empow-

erment [18], in which states are given intrinsic weight that is based

in part on future actions. Addressing these sorts of IM terms is left

to future work; in this paper, we focus on the bulk of IM, for which

our method is appropriate. We can now prove Theorem 2:

Theorem 2 (PBIM Preserves Optimality). The addition of a
shaping reward 𝐹 ′𝑡 of the form in Equation 30 leaves the set of optimal
policies unchanged if Assumption 1 holds.

Proof. The potential of Equation 30 takes the form of Equa-

tion 29. With this choice of potential, the left side of Equation 22

becomes, in expectation,

𝑈 𝜋
𝑡 −

𝑈 𝜋
0

𝛾𝑡
=

𝑁−1∑︁
𝑛=𝑡

𝛾𝑛𝐹𝑛 −
𝑁−1∑︁
𝑛=0

𝛾𝑛−𝑡 𝐹𝑛 (31)

=

(
𝑁−1∑︁
𝑛=𝑡

𝛾𝑛𝐹𝑛 −
𝑁−1∑︁
𝑛=𝑡

𝛾𝑛𝐹𝑛

)
−

𝑡−1∑︁
𝑛=0

𝛾𝑛−𝑡 𝐹𝑛 (32)

= −
𝑡−1∑︁
𝑛=0

𝛾𝑛−𝑡 𝐹𝑛 . (33)

This term depends simply on the discounted sum of all the IM

rewards up to, but not including, 𝐹𝑡 . From Assumption 1, this has

no 𝑎𝑡 -dependence, and thus Equation 22 holds. From this, Theorem

1 can be applied to show the optimal policy set is unchanged. □

While we have just shown it does conserve the optimal policy,

this form of PBIM has some potentially undesirable effects in prac-

tice. In particular, it may still bias the agent in the short term not

only to prefer intrinsic rewards, but also to (temporarily) learn

some false relationships between the reward distribution of the

state space that then need to be unlearned. Particularly, if 𝐹𝑡 is

consistently positive (as is the case with most exploration-based

IM), then 𝐹 ′𝑡 will also tend to be consistently positive, except for in
the last time step of an episode, where it will be extremely negative,

in order to offset the cumulative positive reward. This may cause

an agent to initially learn that areas of the state space towards the

end of an episode are “bad”, and areas towards the beginning of an

episode are “good.” While Theorem 2 ensures these associations

will eventually be unlearned, we would prefer to not learn them

to begin with, as they may needlessly slow down training: particu-

larly in exploration-focused environments, where they are often

precisely the opposite of true. To mitigate this potential issue, we

introduce a normalized variation of PBIM by replacing 𝐹𝑡 with

𝐹 ′𝑡 =

{∑𝑁−2

𝑛=0
−𝛾𝑛+1−𝑁 𝐹 ′𝑛, if 𝑡 = 𝑁 − 1

𝐹𝑡 − 𝐹, if 𝑡 ≠ 𝑁 − 1,
(34)

where 𝐹 is the expectation value of 𝐹 across prior training. This

modified form ensures that the expected IM for both final and non-

final time steps is 0, and thus these undesirable associations will
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not occur. In practice, 𝐹 is calculated by taking a running mean of

the previous intrinsic rewards collected across all workers during a

single training epoch.

The corresponding potential for Equation 34 is

Φ𝑛 =


−𝑈 ′

0

𝛾𝑁 , if 𝑛 = 𝑁

−𝑈𝑛 − 𝐹
𝛾−1

, if 𝑛 ≠ 𝑁,
(35)

where 𝑈 ′
0
is the cumulative discounted mean-adjusted intrinsic

return. The first case of this correspondence follows straightfor-

wardly from the definition of the intrinsic return. The second case

gives us back:

𝐹 ′𝑛≠𝑁 = 𝛾Φ𝑛+1 − Φ𝑛 (36)

= 𝛾 (−𝑈𝑛+1 −
𝐹

𝛾 − 1

) +𝑈𝑛 + 𝐹

𝛾 − 1

(37)

= 𝐹𝑛 − 𝛾𝐹

𝛾 − 1

+ 𝐹

𝛾 − 1

(38)

= 𝐹𝑛 − 𝛾 − 1

𝛾 − 1

𝐹 (39)

= 𝐹𝑛 − 𝐹 . (40)

Because this 𝐹𝑛≠𝑁 term has an expected value of zero, 𝐹𝑁 will then

similarly have an expected value of zero, as it will simply be the

discounted sum of quantities with expectation zero. Additionally,

because in either case, Equation 34 differs from Equation 30 only

by the addition of a constant factor of 𝐹 , and 𝐹 is never dependent

on the action 𝑎𝑡 , this formulation satisfies Equation 22 as well. So

we now have two formulations – Equation 30 and Equation 34 –

that can be used to implement IM without changing the optimal

policy set of the underlying environment.

4 EMPIRICAL DEMONSTRATION
We empirically demonstrate the efficacy of our method for both

an exploration-based tabular IM reward and for Random Network

Distillation (RND) [5]. We focused on environments with a know-

able set of optimal policies where the base IM demonstrably alters

performance and other IM approaches not guaranteeing optimality

fail to converge towards an optimal solution. The former of these

demonstrations shows our method’s potential to speed up conver-

gence when compared to either a baseline IM or no IM, while the

latter demonstrates our method’s ability to preserve an agent’s

convergence to an optimal policy, even with an IM that would

otherwise explicitly alter the optimality of that policy.

4.1 MiniGrid DoorKey
We demonstrate an improvement in both speed of convergence and

performance of the converged-to policy when using our method

to confer optimality guarantees to a tabular exploration reward

term in the MiniGrid DoorKey 8x8 environment [7]. This environ-

mentchallenges the agent to reach a goal state in the bottom-right

corner by picking up a key, carrying it to a door, then unlocking

that door. The environment itself has sparse rewards, returning a

reward of 1 for successfully reaching the goal and 0 for every other

transition. It is also partially observable, as the agent can only see

at most in a 7x7 grid in front of it. The maximum episode length in

this environment is 640 steps.

We used a tabular exploration reward of the form 𝐹𝑡 = 𝛼
𝑛 (𝑠 ) ,

where𝑛(𝑠) is the number of times a state has been previously visited

within an episode, and 𝛼 is a coefficient controlling the magnitude

of exploration reward relative to the environment reward. This

particular tabular reward form appears in previous literature [5, 26].

As the environment itself is partially observable, and we wish to

demonstrate the versatility of our method when applied to reward

functions with dependence on arbitrary variables, we defined the

“state” counter𝑛𝑡 not based on the agent’s observation space, but on

information internal to the environment itself regarding the agent’s

position and whether it was holding the key. So, for example, the

first time the agent visited state {3, 4, 0} ({“3rd vertical position,”

“4th horizontal position,” and “not carrying the key”}), it would

receive a reward of 1, followed by
1

2
,

1

3
, etc.

6

Our experiment was in the Minigrid Doorkey 8x8 environment

with a tabular exploration reward. We used the PPO algorithm as

introduced by Schulman et al. (2017). We included an LSTM layer

[16] in the network architecture to deal with the non-Markovian

nature of the environment. We tested four reward schemes: our

method as implemented in Equation 34, base intrinsic rewards

without PBRS, our method as implemented in Equation 30, and

control, which received no IM. We consider a policy to converge

when it does not truncate an episode without reaching the goal

state during the last 1,000 training steps.

We tested for three different sets of parameters 𝛼,𝛾 , meant to

represent settings where the IM reward changes the optimal policy

infrequently, sometimes, and often.
7
Episode lengths for each of

these are depicted in Figures 1d, 1c, & 1a, respectively. Shaded re-

gions represent standard deviation among the 16 processes, rather

than error: this is expected to be high, because MiniGrid environ-

ments are procedurally generated and variance in the optimal path

length from one episode to another is expected. Table 1 contains the

time to convergence𝑇 (if converged, N/A if they did not converge),

mean episode length 𝑁 , and standard deviation 𝜎 after convergence

for each reward scheme.𝑁 and 𝜎 were calculated from the last 1,000

data points. 𝑇 was determined by the first time step in which the

average episode length falls below 𝑁 for that run. For each pair of

results that converged we performed a 1-sided T-test, and with one

exception noted in Figure 1’s caption, all differences were highly

statistically significant.

4.1.1 Discussion. As can be seen in Figure 1 and Table 1, our

method consistently outperformed the baseline IM method. Ad-

ditionally, when the IM most often changes the optimal policy

(Figure 1a), our method converges faster than the baseline, and as

predicted, the degree to which it outperforms the baseline is corre-

lated with the frequency with which the optimal policy is altered.

Note also that our modification of Equation 30 into Equation 34 was

key in allowing for convergence in the more difficult environments

of Figures 1c & 1a, and in outperforming the IM baseline to a statis-

tically significant degree in Figure 1d. We also obtain consistently

lower variance than the IM baseline in all experiments: as the level

of variance in episode length due to differences in initial conditions

6
To avoid a combinatorial explosion, the agent’s direction and the door’s status

(locked/unlocked/open) were not incorporated into this reward.

7
We include details of the effects of these parameters on the optimal policy in the

Appendix of [11]
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(a) 𝛼 = .025, 𝛾 = .995 (b) 𝛼 = .025, 𝛾 = .995, zoomed (c) 𝛼 = .02, 𝛾 = .995 (d) 𝛼 = .005, 𝛾 = .99

Figure 1: (a), (c), & (d) Frames per episode for each method (lower is better). The shaded region represents standard deviation,
and plots are of a 100-point moving average. b) Same results as (a), but zoomed in. All differences in means are significant. For
IM + PBRS, IM no PBRS (a)𝑇 = 36.5, 𝑝 < 0.01. For IM + PBRS, IM no PBRS (c)𝑇 = 27.4, 𝑝 < 0.01. In (d), No IM converges lower than
IM + PBRS, which converges lower than IM + PBRS no norm, which converges lower than IM no PBRS. Respectively, for each
of these pairings, 𝑇 = 4.3, 𝑝 < 0.01, 𝑇 = 6.1, 𝑝 < 0.01, and 𝑇 = 1.8, 𝑝 = 0.32. While the last of these isn’t significant, the difference
between IM + PBRS and IM no PBRS is, with 𝑇 = 7.9, 𝑝 < 0.01.

𝛼 = 0.005, 𝛾 = 0.99 𝛼 = 0.02, 𝛾 = 0.995 𝛼 = 0.025, 𝛾 = 0.995

𝑇 �̄� �̄� 𝑇 �̄� �̄� 𝑇 �̄� �̄�

PBIM 1.67e6 36.4 12.5 1.67e6 51.8 22.4 1.26e6 51.2 22.7

IM, NO PBIM 1.46e6 37.3 13.1 2.88e6 60.5 27.5 6.07e6 62.0 27.9

PBIM NO NORM 2.29e6 37.1 13.4 N/A 635.9 14.9 N/A 634.7 18.8

NO IM 2.95e6 35.9 12.0 N/A 634.8 18.55 N/A 634.8 18.6

Table 1: Time to convergence (𝑇 ), mean steps per episode after convergence (𝑁 ), and average standard deviation of steps per
episode after convergence (𝜎) for three parameter settings. Lower 𝑁 is better.

is unchanged between runs, this suggests that there is quite a bit of

additional variance from inconsistent performance in the baseline

IM method that is not present in our method.

The only experiment in which our (normalized) method did

not perform best in both speed of convergence and final policy

was with 𝛼 = 0.005, 𝛾 = 0.99. Here, as can be seen in Table 1, the

best-performing policy after convergence was that trained with

no IM at all, and the fastest-converging was that trained with the

baseline IM. The latter of these observations can be explained by

noting, as discussed in Section 3.2, that there is a reward horizon

for the lack of intrinsic rewards’ utility in the PBRS agent, and in

simpler environments, there is a risk of this reward horizon being

successfully learned before the environment itself is fully solved. If

this happens, PBRS can slow the speed of convergence, rather than

increase it, by teaching the agent to ignore the IM term prematurely.

Note, though, that our method converged to a policy more efficient

than that of IM to a significant degree,
8
and converged more quickly

than the run with no IM. In this worst-case scenario our method

still provides value by facilitating a trade-off between preventing

reward hacking and increasing training efficiency.

4.2 Cliff Walking
We also tested our method in a cliff walking [28], a classic rein-

forcement learning task in which an agent is directed to find a goal

state at the end of a long “cliff” that must be avoided. Details of

8
Another point of note is that the converged values in Figure 1d are lower than that

of Figures 1c and 1a. We attribute this to the higher 𝛾 value making the environment

more difficult to learn, meaning that the policies are likely less closely optimal.

this environment are described in the Appendix of [11]. For this

experiment, we trained a simple, tabular Q-learning agent with four

types of intrinsic motivation: none, RND[5], non-normalized PBIM,

following Equation 30, and normalized PBIM, following Equation

34. We used an RND predictor network in this environment, to test

our method’s ability to accommodate complex, non-tabular, state-

of-the-art IM terms with dependence on full training trajectories.

More details can be found in the Appendix of [11].

4.2.1 Discussion. Our results in this environment are plotted in

Figure 2. Episode length is a rough indicator of exploration in the

environment. We expect agents to start with very short episodes

as they discover falling off the cliff is not ideal, then increase the

episode length as they explore the environment, while finally going

down as they find the optimal route.

RND, in this environment, doesn’t reach the goal, as it becomes

“distracted” by the intrinsic rewards that can be obtained by explor-

ing the environment unnecessarily—similar to the optimal-policy-

changing effect of the tabular exploration term in Section 4.1.
9

Similarly, unnormalized PBIM doesn’t reach the goal, likely due to

biasing issues discussed in Section 3.2. Normalized PBIM, however,

successfully reaches the same average external return as the base-

line no-IM runs, suggesting it successfully staves off this change to

the optimal policy.

9
This is not an indictment of RND itself; we shouldn’t expect it to be helpful in this

small of an environment.We implemented it here partially to see if PBIM could mitigate

an intentionally “bad” (for this environment) IM term.
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(a) Average Return (b) Episode Length

Figure 2: Average cumulative extrinsic return and episode
length for the cliff walking environment. Error bars are stan-
dard deviations over 10 runs. Differences in means between
returns of No IM and RND (𝑝 < 0.05) and between returns of
No IM and PBIM No Norm (𝑝 < 0.05) are statistically signifi-
cant. Mean episode lengths of both PBIM norm and no IM
are statistically different from both PBIM no norm and RND
(𝑝 < .05 for all).

(a) No IM (b) PBIM, normalized

(c) PBIM, not normalized (d) RND

Figure 3: Final policies of trained agents and their estimated
Q-values. Arrows indicate the action with the highest esti-
mated Q-value in each position. A brighter hue indicates a
higher Q-value.

Furthermore, in Figure 3, it is apparent that normalized PBIM

shares a “critical path,” one that follows the shortest possible route

along the cliffside from the start state to the goal state. This trans-

lates, effectively, to equivalent policies, particularly in the deter-

ministic version of this environment that we are using.
10

In stark

contrast, the other policies fail to converge to any meaningful goal-

seeking and have policies that differ starkly from the no-IM version.

4.3 Longer Cliff Walking
The environment in Section 4.2 was simple enough that IM was not

necessary to find a solution. In order to test our method’s efficacy in

more dauntingly sparse-reward environments that require reward

shaping to solve effectively, we evaluate PBIM in a modified version

of Cliff Walking with a much longer grid. This version features a

4×50 grid, where the start and goal are on the leftmost and rightmost

tiles in the bottom row, and all other bottom tiles are cliffs.

Details of the changed parameters from those in Section 4.2 are

in the Appendix of [11]: most notably, we increased the number

10
Note that, with the exception of two outliers in infrequently-visited parts of the state

space, all differences between 3a and 3b involve the PBIM implementation taking an

“equally correct” path: in particular, traveling rightwards instead of downwards.

Figure 4: Average cumulative return for the large cliff walk-
ing environment.

of episodes to train for, as well as the maximum episode length.

Figure 4 shows the return for the three Q-learning agents trained

in this experiment: no IM, RND, and normalized PBIM
11
. Results

are aggregated over 10 runs. The agent policies, along with further

details, are included in the Appendix of [11].

The Q-learning agents with IM rewards (RND and PBIM) ob-

tained more average returns per episode after 3,000 iterations.

This difference above no-IM is statistically significant for PBIM

(𝑝 < 0.05), but not for RND, suggesting this is another environment

in which PBIM can speed training more efficiently than RND alone.

Note however that, while PBIM is statistically superior to the

no IM run, none of the agents, within the time allotted, are able

to converge to a consistently stable policy. This can be observed

in Figure 4, as the reward values constantly hover below -100,

indicating agents on average explore the environment and then

fall into the cliff. The PBIM agent, however, began to break out

of this cycle near the end of training, while the other two agents

remained stuck. This preliminary experiment shows promise for the

application of PBIM to more complex sparse-reward environments,

as a method of speeding up training over traditional IM. However, it

also suggests the need for futurework (both in this environment and

other sparse reward environments), to better refine and characterize

the bounds of and conditions for this claim.

5 CONCLUSION
We’ve extended PBRS to a more general class of reward functions

than has been covered previously in the literature, and proven

that important theoretical guarantees—namely, the preservation

of the set of optimal policies for the underlying environment—

still hold. We have also provided a computationally efficient and

effective method of converting many state-of-the-art IM methods

into this optimality-preserving form and demonstrated its efficacy

at both preventing IM reward hacking and, in some circumstances,

accelerating training.

In future work, we are interested in investigating how other

forms of IM can be combined with PBIM to positively influence an

agent, particularly in more complex environments.

11
We did not train unnormalized PBIM in this environment due to its poor performance

in the similar, simpler environment in Section 4.2.
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