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ABSTRACT
Training a team to complete a complex task via multi-agent rein-
forcement learning (MARL) can be difficult due to challenges such
as policy search in a large joint policy space, and non-stationarity
caused by mutually adapting agents. To facilitate efficient learn-
ing of complex multi-agent tasks, we propose an approach which
uses an expert-provided decomposition of a task into simpler multi-
agent sub-tasks. In each sub-task, a subset of the entire team is
trained to acquire sub-task-specific policies. The sub-teams are
then merged and transferred to the target task, where their poli-
cies are collectively fine-tuned to solve the more complex target
task. We show empirically that such approaches can greatly reduce
the number of timesteps required to solve a complex target task
relative to training from-scratch. However, we also identify and in-
vestigate two problems with naive implementations of approaches
based on sub-task decomposition, and propose a simple and scal-
able method to address these problems which augments existing
actor-critic algorithms. We demonstrate the empirical benefits of
our proposed method, enabling sub-task decomposition approaches
to be deployed in diverse multi-agent tasks.
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1 INTRODUCTION
In cooperative multi-agent reinforcement learning (MARL) [1], the
goal is to have a team of autonomous agents learn to complete
a task, by having the team gather and learn from experiences in
that task. Although MARL techniques have been used successfully
to solve a range of cooperative team-based tasks, there are still
challenges in complex scenarios. These challenges include multi-
agent credit assignment [5], non-stationarity due to simultaneously
adapting agents [19], difficulty searching over a large joint action
space, and equilibrium selection problems [6, 36]. These problems
typically worsen when the number of agents increases, or when
complex coordination is required.

We propose addressing these problems and solving complex multi-
agent tasks by using a curriculum of sub-tasks.We focus on complex
cooperative tasks that may be decomposed into sub-tasks, where
each sub-task could be solved by a subset of the agents. We start by
training sub-teams of agents on their respective sub-tasks before
fine-tuning the full set of agents on the target task. In doing so,
we induce a curriculum for the agents, allowing them to bypass
the initial stages of random search by leveraging skills acquired
during the first phase of training. Furthermore, by training initially
in simpler tasks with fewer agents, we reduce the problems caused
by non-stationary and multi-agent credit assignment. While we
assume this sub-task decomposition is given, many tasks have a
natural decomposition into sub-tasks that could use our proposed
methodology.

For example, consider training five agents to play a 5-a-side football
target task by breaking the problem up into two sub-tasks: attack
drills with two attackers, and defence drills with two defenders
and one goalkeeper (Figure 1). The attackers learn skills including
“shooting on target” and “avoiding being tackled” which are useful
in the full 5-a-side football game. Likewise, defenders learn skills
useful in 5-a-side football such as “blocking” and “tackling”. When
the attackers and defenders are recombined, extra fine-tuning is
required in the full 5-a-side football game, for example, to teach
defenders that they ought to pass to their attacker teammates.

Code and experimental data available at https://github.com/uoe-agents/MEDoE
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Figure 1: Sub-task curriculum for 5-a-side football. We con-
trol the red team, and play against the grey team. We train
defender agents in defensive drills (top-left) and attacker
agents in attack drills (bottom-left). As represented by the
arrows, we transfer these agents to the 5-a-side target task.
We then fine-tune our combined team in the target task.

We conjecture that MARL approaches can learn complex target
tasks more efficiently by first training policies in each sub-task,
followed by combining the sub-task policies and fine-tuning them
in the target task. We explore the feasibility of this approach in ex-
periments with human-designed sub-task curricula using standard
MARL techniques building on top of the proximal policy optimisa-
tion (PPO) algorithm [25]. We find that using such an approach, we
can learn to solve multi-agent tasks which are difficult for current
state-of-the-art MARL algorithms, suggesting an interesting avenue
for future MARL research and practitioners.

However, we also identify two issues with the naive application
of standard MARL techniques to fine-tuning: (1) miscoordinated
exploration leading to convergence to sub-optimal equilibria; and
(2) agents forgetting useful skills they obtained during sub-task
training. To address these issues, we further propose an approach
called Modulating Exploration and Training via Domain of Expertise
(MEDoE) which automatically infers based on sub-task experience
replay buffers the circumstances in which an agent has expertise
in the complex target task; and then uses the expertise predictions
to modulate hyperparameters in the fine-tuning process. MEDoE
is a flexible approach that can extend any decentralised execution
actor-critic method, and can be used with any number of agents.
Furthermore, MEDoE can also be used in situations where the size
of the team in the complex target task may not be known during
training in the simple sub-tasks, allowing for flexibility with respect
to the target team composition, and re-use of pre-trained agents in
fine-tuning for different downstream target tasks.

Continuing our football example, MEDoE might predict that in a
defensive scenario in 5-a-side football (Figure 1, right) the defender
agents have expertise — i.e., their policies are already near-optimal.
Assuming these defenders do indeed have expertise, MEDoE re-
duces the likelihood the defenders take exploratory actions, reduc-
ing variance caused by exploration, thereby stabilising training of

other agent policies. Additionally, MEDoE reduces the rate at which
the defenders forget their existing skills by increasing the coefficient
of penalty terms in the policy loss for deviating from their final
sub-task policies, and decreasing the entropy bonus coefficient.

Our experiments show that sub-task decomposition methods can
solve complex teamwork tasks in many fewer training timesteps
than baseline methods which train from scratch in the target task.
In some environments, naive fine-tuning approaches are sufficient
to outperform from-scratch baselines, but in others our proposed
method MEDoE is responsible for the improved performance of
using sub-task decompositions.

2 PROBLEM FORMULATION
In this section, we define the framework for our sub-task decompo-
sition approach to accelerating MARL.

2.1 Sub-task Decomposition
We describe our sub-task decomposition approach in terms of sub-
task curricula (STCs), which model how a sub-task decomposition
can be used in training. In this work, we consider cases where we are
provided with a sub-task curriculum, and distinguish our work from
those which seek to learn the curriculum. A sub-task curriculum C
is a tuple, ⟨T , {Csub.}, 𝐴,L⟩. The task T is a Dec-POMDP[17],

M = ⟨𝐼 ,S, {A𝑖 }𝑖∈𝐼 ,𝑇 , 𝜇, {Ω𝑖 }𝑖∈𝐼 ,𝑂, 𝑅,𝛾⟩, (1)

where 𝐼 is the set of agents (the team); S is the state space; A𝑖

is the action space for agent 𝑖; 𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is the state transition
probability density function; 𝜇 (𝑠0) is the initial state distribution; Ω𝑖
is the observation space for agent 𝑖;𝑂 (𝑜𝑡 |𝑠𝑡 , 𝑎𝑡−1) is the observation
probability density function; 𝑅 : S × A ↦→ R is the team reward
function; and 𝛾 is the discount factor. The objective within a Dec-
POMDP is to find a joint policy 𝜋 which maximises the expected
discounted return 𝐺 = E

[∑
𝑡 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )

]
.

{Csub.} is a set of sub-task curricula, where each sub-task curricu-
lum is defined recursively. The base-case for recursion, {Csub.} = ∅,
corresponds to training from scratch on task T . We also refer to
sub-tasks as source tasks, using transfer learning terminology [7].

𝐴 is a function which maps from sub-tasks {Csub.} to a set of agents
𝐼 for task T . Each agent has associated data — in this paper we
use actor-critic methods, so each agent has an associated policy 𝜋 ,
value function 𝑉 , and we also include an experience replay buffer
for each agent. For conciseness we also use 𝐴 to represent the set
of agents which initialise the current task in the curriculum.

L is a learning algorithm applied in each task of the sub-task curricu-
lum, which given the agents 𝐴 and Dec-POMDP T learns policies
for task T . For example, in this paper L is the IPPO algorithm with
particular hyperparameters and stopping conditions.

Though we present a general framework for modelling sub-task
curricula, in this work, we focus on curricula with tree-depth of
one. As a concrete example, the 5-a-side football task from Figure 1
the sub-task curriculum would be:

• C = ⟨T5v5, {Cdef., 𝐴, Catt.},L⟩

• Cdef = ⟨Tdef., ∅, 𝐴,L⟩ , Catt. = ⟨Tatt., ∅, 𝐴,L⟩
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2.2 Objective
Our objective is to accelerate the rate at which MARL learns to
solve a complex target task. Here we define our objective in terms of
minimising the total number of timesteps taken to reach a desired
level of performance in the target task.

Let 𝑁 (C) be the number of training timesteps in the current task
of the curriculum C, and 𝑁 tot. (C) be the total number of training
timesteps used in the entire sub-task curriculum C𝑖 , i.e.,

𝑁 tot. (C) = 𝑁 (C) +
∑︁

C𝑠 ∈{Csub. }
𝑁 tot. (C𝑠 )

Given a target task Ttarget and target performance 𝐺target our over-
all objective is to find a sub-task curriculum C∗

target = ⟨Ttarget, ·, ·, ·⟩
which minimises 𝑁 (C∗

target) subject to the constraint that the pro-
duced agents attain expected returns 𝐺 ≥ 𝐺target.

This optimisation problem has many free variables including the
learning algorithm used at each point in the curriculum; the stop-
ping conditions at each point in the curriculum; the sub-tasks used
at each point in the curriculum; and the agents transferred at each
point in the curriculum. In this work, we first investigate the feasibil-
ity of the approach based on standard MARL components without
attempting to optimise the sub-task curriculum. We then propose
an approach to improve performance by modifying the learning
algorithm Ltarget used in the target task.

3 SUB-TASK CURRICULAWITH STANDARD
MARL APPROACHES

In this section, we investigate applying standard MARL techniques
for fine-tuning in the target tasks of sub-task curricula. We find
that while this naive approach can sometimes work, we identify
and analyse two problems which can arise. In Section 4 we present
a method which addresses these problems and greatly improves
the performance of sub-task curriculum approaches in some tasks.

3.1 Environments
To test the sub-task curriculum approach, we consider three en-
vironments with clear task decompositions: Chainball, a simple
but difficult to solve environment we introduce to provide insight;
Overcooked [24, 33], a gridworld environment common in MARL re-
search; and VMAS Football [2], a complex 2D physics-based football
simulation. These tasks are fully-observable, and we ensure that
observation dimensions are consistent between tasks within the
curriculum by zero-padding observations where necessary. Further
details of each environment can be found in ??.

Chainball. We introduce the Chainball environment as test-bed for
the sub-task curriculum approach, mimicking the compositional
properties of our football motivating example, while being cheap
to evaluate. Chainball is a difficult task for MARL due to the sparse
reward and high degree of coordination required. Chainball (Fig-
ure 2a) is an episodic 4-player game with |S| = 11 discrete states.
The goal of Chainball is to reach the rightmost end of the chain
(“goal scored”), where the team will receive a reward of +1. How-
ever, if the leftmost end of the chain is reached (“goal conceded”),
the team receives a reward of -1. Upon scoring, the state is reset to

the middle state (𝑠6), and the episode terminates after 90 timesteps.
The transition probability is defined by a matrix for each state — at
timestep 𝑡 , each of four agents chooses an action 𝑎𝑡,𝑖 ∈ {1, 2, 3, 4},
and the probability of moving right is given by the corresponding
matrix entry for that state.

Chainball has two 2-player source tasks, Chainball-Att and Chainball-
Def, to emulate attack and defence drills respectively. Each source
task consists of 11 states, but we make 𝑠 < 7 in Chainball-Att and
𝑠 > 5 in Chainball-Def terminal states. Source task episodes also
terminate if a goal is scored or conceded.

Overcooked. We use the Overcooked [24] environment, which re-
quires multi-step coordination. The goal of Overcooked is to com-
plete a recipe by moving and processing foods in a grid world.
Figure 2b shows the configuration of our Overcooked sub-task cur-
riculum. In the target task, agents must coordinate to pass and chop
the tomato on the chopping board (1,2), put the chopped tomato
on a plate (3), and pass the plate with the chopped tomato back to
serve at the starred counter (4,5). The skills to complete steps 2 and
3 can be learned in the “Right” task; and skills to complete step 5
can be learned in the “Left” task. Steps 1 and 4 require learning new
behaviour in the target task. The team is rewarded for completing
each step in the recipe, except steps 1 and 4 in the target task.

VMAS Football. The VMAS Football environment [2] is a 2D physics-
based version of football. VMAS Football has a discrete action space
(control inputs in four cardinal directions). Our sub-task curriculum
in VMAS football closely follows that shown in Figure 1, except
we do not use goalkeeper agents. We use a sparse reward of +1
for scoring and −1 for conceding. Episodes terminate when either
team scores, or after 1024 timesteps. The opponent team uses the
heuristic policy provided by the VMAS environment.

3.2 Protocol and Baselines
In our initial experiments we consider two settings: 1. training from
scratch in the target task, and 2. training using a simple sub-task
curriculum approach.

(1) For our “From-Scratch” baselines, we consider the state-of-
the-art MARL algorithms multi-agent PPO (MAPPO) [39] and
QMIX [23]. We also test the independent PPO (IPPO) [20] al-
gorithm in a from-scratch setting, as an ablation of our sub-task
curriculum method which uses IPPO. We run each of these
algorithms for 16 seeds directly on the target task. Due to com-
putational constraints, in VMAS Football we use 8 seeds.

(2) To investigate the utility of a sub-task curriculum (STC), we use
a simple approach extending IPPO, which we label Naive STC.
For each source task, we generate four seeds of skilled sub-
teams by training agents using the standard IPPO algorithm
(without parameter sharing) until convergence. In Chainball,
we use tabular actors and critics; whereas in Overcooked and
VMAS Football we use neural networks. We initialise the target
task team networks by cloning final actors and critics from
the source tasks. This gives 16 final teams, formed by the 42

pairings of source task teams. Given these initialisations, Naive
STC then fine-tunes in the target task using the standard IPPO
algorithm, and we average the results over these 16 runs. For
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(a) 5-state Chainball Environment. Here states are labelled with GK
(goalkeeper), D (defence), M (midfield), and A (attack).
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Right Source Task

Left Source Task
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(b) Overcooked sub-task curriculum. Arrows represent cooking steps
within each task.

(c) VMAS Football target task. The sub-task curriculum used is simi-
lar to that shown in Figure 1.

Figure 2: Environments used in our experiments.

Chainball we use 3 seeds per fine-tuning stage, giving a total of
48 runs. Plots in this section also show results for our proposed
approach named MEDoE, which we discuss in Section 4.

We describe our hyperparameter tuning protocol and report chosen
hyperparameters in ??.

3.3 Results
Our experiments in Figure 3 show mixed results for the Naive STC
approach relative to standard MARL baselines. In Chainball, we
observe that the use of a sub-task curriculum allows the agent to re-
ceive a higher converged return than all the from-scratch baselines.
Nevertheless, Naive STC falls short of achieving the maximum at-
tainable return of 1.0. In Overcooked, Naive STC outperforms IPPO
and MAPPO, which do not learn at all in any of their 16 runs. How-
ever, it does not perform as well as QMIX from-scratch. In VMAS
Football, using a sub-task curriculum enables finding a solution to
the task in many fewer timesteps than from-scratch methods.

Contrary to the expectation that the use of a sub-task curriculum
can make learning a complex target task more efficient, our results
show that this is not always the case. This may explain why, de-
spite the simplicity, naive sub-task curriculum approaches have
not been widely used or investigated in the MARL literature. We

State 1 2 3 4 5 6 7 8 9 10 11

Sub-optimal 90 63 54 38 2 0 2 6 4 23 54
PD NE 7 3 38 27 0 - 0 0 50 91 58
PD 𝜖-NE 23 3 38 56 0 - 0 67 50 91 81
Table 1: Chainball equilibrium analysis for Naive STC, show-
ing for each state the percentage of runs where the agents’
most likely joint action is sub-optimal; and the percentage
of those sub-optimal joint-actions which are also Pareto-
Dominated Nash Equilibria (PD NE) or 𝜖-NE with 𝜖 = 0.05.

continue to investigate these approaches by asking why they some-
times fail to perform as well as hoped. Via analysis of our chosen
test domains, we conjecture two pitfalls: coordination difficulties
arising from miscoordinated exploration (Section 3.4); and issues
caused when agents forget useful behaviours they learned during
source task training (Section 3.5). In Section 4, we propose an algo-
rithm designed to address these issues, and show that it leads to an
improvement in performance in Chainball and Overcooked.

3.4 Miscoordinated Exploration
The first problem with naive sub-task curricula we identify is most
evident in the Chainball environment — miscoordinated explo-
ration, which can lead to convergence upon Pareto-dominated Nash
equilibria which is a well-known cause of coordination failure in
multi-agent learning systems [6, 10]. Pareto-dominated Nash Equi-
libria in cooperative games are Nash equilibria which are Pareto-
dominated by some other Nash equilibrium. That is, a joint strategy
in which no agent has the incentive to unilaterally deviate from,
but where there exists some other Nash equilibrium with a higher
return to all players. It is possible that learning agents can get
“stuck” in Pareto-dominated Nash equilibria if the risks of occa-
sional deviation from the equilibrium strategy are larger in the
Pareto-dominated Nash equilibrium than the Pareto-optimal Nash
equilibrium. A classical example of this is the Stag-Hunt game,
where independent learning agents – particularly those which take
exploratory actions which cause them to sometimes deviate from
the optimal (Stag, Stag) equilibrium – often converge upon the
sub-optimal (Hare,Hare) equilibrium in practice.

Recall that at each timestep, Chainball has a matrix-game struc-
ture where agents jointly choose an action which determines the
probability with which the players move towards the opponent’s
goal. This allows us to perform an equilibrium analysis to demon-
strate this issue by examining the policies obtained by fine-tuning
agents in the target task using Naive STC, as shown in Figure 3a.
Consider the most likely joint action given by the policies at the
end of fine-tuning. For each state, we count the fraction of runs
(over our 48 Chainball runs) where the most likely joint action is
not the optimal action in that state. We report results in Table 1.
Focussing on states 10 and 11 (as the lower states are less frequently
visited), we see that convergence to Pareto-dominated Nash equi-
libria is particularly common in Chainball, and leads to degraded
performance of sub-task curriculum methods.
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(b) Overcooked
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(c) VMAS Football
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Figure 3: Target task training returns for each environment. Mean episodic returns (100 episodes), averaged over 16 runs (16
different team combinations). The “from-scratch” baselines are averaged over 16 runs (16 seeds; 8 seeds for QMIX on VMAS
Football). Shaded area shows the 95% confidence interval of the mean over the runs. Naive STC and MEDoE are shifted on the
training step axis to account for the total training steps required across all the sub-tasks, shown by the dashed line.
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Figure 4: Forgetting curve in Overcooked.

3.5 Forgetting
We identify a problem prominent in Overcooked— agents forgetting
useful behaviours. Consider the Overcooked target task (initial
state shown in Figure 2b). The “right” agent needs to learn step 1.
However, until it does so, neither agent receives a reward signal. As
we use entropy regularisation, this means that both agents’ policies
will gradually reset towards uniform policies until eventually steps
1 and 2 are completed. We hypothesise that this gradual resetting
causes agents to gradually forget skills relevant to steps 2, 3, and 5.

To investigate this hypothesis, we perform an experiment in which
we take agents trained in source tasks and fine-tune them in the
target task. As we fine-tune the agents, we periodically re-evaluate
the agents in their respective source tasks to test whether they have
retained the skills learned in their source task. The results shown in
Figure 4 show evidence of forgetting — as agents are fine-tuned on
the target task, their sub-task performance drops, corresponding to
a loss of skill on the sub-task.

4 MODULATING EXPLORATION AND
TRAINING VIA DOMAIN OF EXPERTISE

In this section, we introduce a novel approach, Modulating Explo-
ration and Training via Domain of Expertise (MEDoE), designed to
facilitate efficient learning in the fine-tuning stage of a sub-task
curriculum. We focus on addressing the identified problems of mis-
coordinated exploration (Section 3.4) and forgetting (Section 3.5).
MEDoE comprises two key components: a module which predicts
based on source task information whether an agent’s policy is likely
to be optimal in the current state; and a module which takes this

prediction of expertise to modulate exploration and training hy-
perparameters. The key intuitions motivating MEDoE are that i) if
an agent’s policy is already near-optimal, it should explore less
aggressively; and ii) if an agent’s policy is near-optimal then the
policy update should be regularised to stay close to this policy in
order to prevent forgetting. In the following subsections, we discuss
each of the two components of MEDoE in turn. We then carry out
experiments to show that MEDoE can indeed address these issues.

4.1 Domain of Expertise Classification
The first component of MEDoE is the domain of expertise (DoE)
classifier, which for each agent makes a prediction about whether
that agent’s policy is already close to the optimal decentralised
policy for the target task. MEDoE makes these predictions based
on information from the source tasks, using the heuristic that if a
target-task state is similar to states observed in an agent’s source
task, then that agent’s policy is more likely to be near-optimal.

We formalise the notion of DoE as follows: Let 𝜋𝑖 be agent 𝑖’s
current policy. Let Π∗,𝑇 be the set of optimal decentralised policies
of the target task T𝑇 . We consider a target task observation 𝑜𝑖 ∈ Ω𝑇

𝑖

to be in the domain of expertise, E𝑇
𝑖
, of agent 𝑖 if and only if

∃𝜋∗,𝑇 ∈ Π∗,𝑇 , 𝐷𝐾𝐿 (𝜋𝑖 (·|𝑜𝑖 ) ∥ 𝜋∗,𝑇𝑖 (·|𝑜𝑖 )) < 𝜏, (2)

where 𝜏 is a similarity threshold, and 𝐷𝐾𝐿 is the KL divergence.

It is impossible to find an algorithm which improves generalisation
performance on average across an unconstrained set of source and
target tasks [37]. We therefore only expect MEDoE to work in cases
where, at any given time, typically at least one agent’s source task
policy is optimal in the target task, i.e.

⋃
𝑖∈𝐼𝑇 E𝑇

𝑖
≈ S𝑇 .

Knowing the ground-truth DoE set requires knowing the opti-
mal policy, which is not practical. Instead in MEDoE we use ex-
perience buffers from each source tasks to infer a DoE Classifier,
𝐷𝑖 : Ω𝑇

𝑖
↦→ [0, 1] for each agent 𝑖 . The ideal DoE classifier outputs

𝐷∗
𝑖 (𝑜𝑖 ) =

{
1 if 𝑜𝑖 ∈ E𝑇

𝑖
,

0 if 𝑜𝑖 ∉ E𝑇
𝑖
.

(3)

In practice, we formulate the DoE classifier training as a binary clas-
sification problem where positive examples are taken from agent 𝑖’s
source task experience buffer, and negative examples are taken from
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the experience buffers of all agents trained in a different source
task to 𝑖 . We train a multi-layer perceptron (MLP) which learns
to identify features of observations which differ between different
source tasks, using the heuristic that if the current observation in
the target task has features present in a particular source task, then
it’s likely the agents trained in that source task have expertise. For
example, a classifier trained to distinguish between sample observa-
tions from attack drills and defence drills in football might identify
the position of the ball on the pitch as a feature of interest. Defence
drills would be identified by the ball being dear our team’s goal,
which likely corresponds with the DoE for defenders.

Concretely, let C𝑖 represent the source task agent 𝑖 was trained
in. Each agent has an associated source task experience buffer
𝐸𝑖 =

{
𝑜𝑒
𝑖

: 𝑒 ∈ 1 . . . 𝐸max
}
. For each agent 𝑖 ∈ 𝐼𝑇 we form a dataset

D𝑖 =

{
⟨𝑜𝑒
𝑗
,1

[
C𝑖 = C𝑗

]
⟩ : 𝑗 ∈ 𝐼𝑇

}
. We then train an MLP classifier

which uses a sigmoid final layer to output a probability 𝑝 ∈ (0, 1),
with the objective of minimising binary cross entropy loss on D𝑖 .

4.2 Exploration Modulation
The second module of MEDoE is the modulation of the exploration
and training process during target task fine-tuning, informed by
the DoE classifier. In this paper, we focus on our variant of MEDoE
based on PPO [25], which modulates three quantities:

1) to address forgetting (Section 3.5), MEDoE modulates a) the
policy entropy regularisation coefficient, 𝛼 and b) the policy
behaviour prior coefficient, 𝜅;

2) to address miscoordinated exploration (Section 3.4), MEDoE
modulates the policy softmax action selection temperature, 𝑇 .

In the following section, we discuss the intuition behind the modu-
lation of these quantities, and describe MEDoE. We provide pseu-
docode for our algorithm in ??.

Experts should retain relevant skills. and non-experts should forget
irrelevant skills. During the source task, agents learn skills which
are relevant to the completion of the target task, but also skills
which might be irrelevant. Such irrelevant skills can arise from
differences in skill requirements between source and target tasks, or
from extrapolation. Ideally, agents should quickly forget irrelevant
behaviours. However, at the same time, they must retain useful
skills, which may be difficult in settings which require complex
coordination or with sparse rewards, since forgetting can occur
during extended low-reward periods.

To control the rate of forgetting skills, MEDoE modulates two pa-
rameters. Firstly, we use entropy-regularised policies, and encour-
age non-experts to forget irrelevant skills by increasing non-experts’
entropy regularisation coefficient, setting 𝛼𝑖 = 𝛼base × 𝛽

(1−𝐷̂𝑖 (𝑜𝑖 ) )
𝛼 ,

where 𝛼base is the base entropy coefficient, and 𝛽𝛼 ≥ 1 is the
entropy boost coefficient introduced by MEDoE. A high entropy
regularisation coefficient increases the rate at which a policy re-
laxes towards a uniform distribution, intuitively corresponding to
an increased rate of forgetting skills.

Secondly, we use fixed behaviour priors [30] to encourage experts
to retain useful skills. This entails using KL-regularised policies (see

Equation (6)), where we aim tominimise the KL divergence between
the agent’s current policy 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ), and its frozen source task
policy 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃BP𝑖 ), thereby encouraging the agent to stay close to
its source task behaviour. We boost the KL regularisation coefficient
for experts, setting 𝜅𝑖 = 𝜅base × 𝛽

𝐷̂𝑖 (𝑜𝑖 )
𝜅 , where 𝛽𝜅 ≥ 1.

Non-experts should explore. and experts should be predictable to
other agents by exploiting existing skills. By definition, non-expert
agents need to learn new behaviours. To do so they must explore.
Exploration in multi-agent systems can have negative effects on
learning, such as reducing training stability, and as discussed in
Section 3.4, increasing the difficulty of selecting equilibria which
require stable coordination. We therefore aim to restrict exploration
to situations where it is necessary, i.e., when agents are non-experts.
MEDoE takes a simple approach: modulate an agent’s exploration
parameter using that agent’s DoE classifier. For the PPO-based
MEDoE, the relevant exploration parameter is the stochastic action
selection temperature 𝑇𝑖 , which scales the policy softmax input:

𝑎𝑖 ∼ 𝜋 (·|𝑜𝑖 ;𝑇𝑖 = 𝑇base × 𝛽
(1−𝐷̂𝑖 (𝑜𝑖 ) )
𝑇

), ∀𝑖 ∈ 𝐼 , (4)

where 𝛽𝑇 ≥ 1. During evaluation, we fix the action selection temper-
ature to𝑇base. We therefore apply an importance sampling reweight-
ing𝑤𝑖 (Equation (5)) during training:

𝑤𝑖 =
𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ,𝑇 = 𝑇base)
𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ,𝑇 = 𝑇𝑖 )

. (5)

Ultimately, we minimise the following policy and value losses for
each agent 𝑖 in the target team:

L (𝜃𝑖 ) =𝑤𝑖PPOClip(𝐴𝑖 , 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ), 𝜖)
− 𝛼𝑖𝐻 (𝜋𝑖 (·|𝑜𝑖 ;𝜃𝑖 ))

+ 𝜅𝑖𝐷𝐾𝐿 (𝜋𝑖 (·|𝑜𝑖 ;𝜃𝑖 ) ∥ 𝜋𝑖 (·|𝑜𝑖 ;𝜃BP𝑖 )),
(6)

L (𝜓𝑖 ) = 𝑤𝑖 ∥𝐺𝑡 :𝑡+𝑛 −𝑉𝑖 (𝑜𝑖 ;𝜓𝑖 )∥2
2 . (7)

where PPOClip(𝐴, 𝜋, 𝜖) is the PPO policy ratio clipping function
described by Schulman et al. [25] with clipping coefficient 𝜖 . The
advantage function for agent 𝑖 , 𝐴𝑖 = (𝐺𝑡 :𝑡+𝑛 −𝑉𝑖 (𝑜𝑖,𝑡 ;𝜓𝑖 )), and the
𝑛-step return for agent 𝑖 , 𝐺𝑡 :𝑡+𝑛 = 𝛾𝑛𝑉𝑖 (𝑜𝑖,𝑡+𝑛 ;𝜓𝑖 ) +

∑𝑛−1
𝑖=0 𝛾𝑖𝑟𝑡+𝑖 ,

are defined in the usual way.

4.3 MEDoE Results
In this section, we present and discuss results from using our pro-
posed approach,MEDoE.We investigate three questions: (1) whether
MEDoE can improve the performance of using a sub-task curricu-
lum; (2) whether behaviour priors alone are responsible for pre-
venting forgetting; and (3) which of the MEDoE-modulated hyper-
parameters affect performance the most.

Does MEDoE improve performance? In Figure 3, we compare our
approach, MEDoE to the naive sub-task curriculum approach de-
scribed in Section 3. We find that for Chainball and Overcooked,
MEDoE significantly outperforms the from-scratch baselines where
the naive sub-task curriculum approach did not, solving the task in
many fewer timesteps than all other baselines. This suggests that
MEDoE can indeed address the problems identified in Section 3.
However, we also find that MEDoE does not improve performance
in VMAS Football relative to a naive sub-task curriculum, where
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(a) Chainball-11
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(b) Overcooked
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(c) VMAS Football
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Figure 5: Ablations of MEDoE. Returns are averaged over 16 runs (4 runs in VMAS Football). Error bars are omitted to improve
clarity. In the legend, labels show a letter if that coefficient is modulated, or a dash otherwise. E.g., “𝑇–𝛼” modulates temperature
coefficient (𝑇 ) and entropy coefficient (𝛼) but not KL coefficient (𝜅).

the naive approach already significantly outperforms from-scratch
baselines. Our ablation study (Figure 5c) suggests that temperature
modulation is particularly harmful to the performance of MEDoE
in VMAS Football. We hypothesise that this is because the quasi-
continuous nature of VMAS Football requires effective exploration
over temporally extended sequences [18], whereas MEDoE’s instan-
taneous increase in action selection temperature merely leads to
poor performance (e.g., “dithering” causing an inability to consis-
tently move in a straight line). Future work could therefore consider
coupling a MEDoE-like approach with hierarchical RL to improve
performance in (quasi-)continuous control settings.

Are behaviour priors sufficient to address forgetting? MEDoE adds
a behaviour prior [30] term to the policy loss to prevent expert
agents from forgetting useful skills. We investigate whether it is
the behaviour priors alone which cause the improved performance
due to preventing forgetting, or whether MEDoE provides benefits
of its own. To do so, we present an additional baseline where we
augment the naive sub-task curriculum approach with behaviour
priors. Figure 3 shows that although the inclusion of behaviour
priors alone does lead to increased performance of the naive sub-
task curriculum approach, we find that MEDoE still outperforms
this augmented baseline. This is particularly evident in Overcooked,
which was the motivating case for controlling the rate of forgetting.

Secondly, results from the forgetting experiments (Figure 4) show
that the use of behaviour priors does indeed slow the rate of forget-
ting, as expected. However, we also see that MEDoE enables agents
to forget less than both from-scratch baselines and the behaviour
prior augmented naive sub-task curriculum approach. Interestingly,
with MEDoE we see a rapid drop in source task performance during
the initial stages of target task fine-tuning, but MEDoE then rapidly
recovers as the skills are recalled from the behaviour priors.

Which hyperparameters are most important to modulate? Our abla-
tion experiments (Figure 5) provide insight into the role the different
modulation parameters play in MEDoE. We find that the impact of
the different parameters depends on the environment.

In Chainball, we see that each of the hyperparameters contributes
somewhat towards MEDoE’ improved performance. As anticipated,
temperature modulation seems to be important to achieving the

highest returns in Chainball. In Overcooked we see that modu-
lating the entropy and behaviour prior KL coefficients is crucial
for MEDoE’s performance, due to the importance of forgetting in
Overcooked. Modulating the action selection temperature in Over-
cooked has little consistent effect, perhaps due to the lack of difficult
equilibrium selection problems posed by Overcooked compared to
Chainball. In VMAS Football, we see that temperature modulation
is actually harmful to the performance of MEDoE. This provides
evidence for our hypothesis (discussed earlier in this section) that
“exploring” by boosting action selection temperature is a poor strat-
egy in quasi-continuous settings like VMAS Football. However, we
also find that modulating KL and entropy coefficients does not im-
prove performance in VMAS Football. We believe this is particular
to the policies learned in VMAS Football — we observe that a team
can achieve high performance provided one agent learns to skilfully
evade the opponent team to score, while the other agents simply
defend in the rare cases it is necessary. This reduces the advantage
to agents retaining their sub-task skills in VMAS Football.

5 RELATEDWORK
To address challenges in multi-agent reinforcement learning, prior
methods also investigatedmodulating training parameters. InWoLF-
PHC [4] and extensions [3], each agent’s policy learning rate is
modulated according to the intuition that an agent’s policy learn-
ing rate should be high when it is underperforming relative to its
expectations, and low otherwise. MA2QL [27] focusses on a team
learning setting. MA2QL tackles non-stationarity by allowing only
one agent to learn at a time, rather than learning simultaneously.

Work by Vrancx et al. [31] considers transfer from simple tasks to
complex target tasks in multi-agent systems. They train a classifier
to distinguish between cases in which agents can learn individually,
and cases in which they must learn to coordinate as part of a team.
Though similar to our DoE classifier, one key difference is that our
DoE classifier attempts to classify states in which further learning
is not required, rather than states in which agents continue to learn
without paying attention to other agents.

Wang et al. [35] also accelerates learning of complex multi-agent
tasks using a curriculum. However, that work focusses on cases in
which the number of agents is progressively increased throughout
the curriculum. By contrast, our work considers cases in which the
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task is decomposed based not upon the number of agents, but upon
the different skills required by agents in the target task. Similarly,
Tang et al. [28] consider scenarios in which agents join an unfamil-
iar team, and have to rapidly learn to adapt to coordinate with the
new team to complete a known task. In contrast with our work,
Tang et al. [28] vary only the number of agents between source and
target tasks, while the underlying dynamics remain the same.

Taylor et al. [29] consider parallel transfer learning, which transfers
experiences collected in parallel by separate agents into a target
agent, similarly to federated reinforcement learning [22]. In con-
trast, our work does not directly transfer skills into individual
agents, but instead attempts to accelerate the progress of the team’s
performance. Another transfer learning work by Yang et al. [38]
provides a framework for transferring skills between agents within
a task. In our work, one agent’s knowledge and skill might not
be useful to another agent — we instead focus on how each agent
should use its own knowledge and skills in the new task.

Several single-agent RL methods use a multi-agent approach to
curriculum learning [8, 15, 21]. Wang et al. [32] consider similar
approaches in a MARL setting. However, these methods focus on
the curriculum design problem (i.e., generating the series of tasks
that form the curriculum) by treating it as a two-player game. We
instead focus on the problem of accelerating learning at each stage
in the curriculum, when the target task and decomposed sub-tasks
are given as input by an expert. Our work can therefore be thought
of as a consumer of sub-task decompositions. Future work could
consider uniting MEDoE with methods that generate a sub-task de-
composition. To our knowledge, there are fewworkswhich consider
the challenge of automatic sub-task decomposition. Approaches
using large language models [12] may be promising for learning to
decompose tasks, using knowledge embedded in human text data.

The problem of effective fine-tuning on new tasks often appears in
the continual learning literature, typically in single-agent settings.
Nekoei et al. [16] propose using the card game Hanabi as a test-
bed for continual learning in multi-agent settings. Liu et al. [13]
engineer an approach to train humanoid agents to play 2-vs-2
football, which, like MEDoE, uses behaviour priors [30]. However,
unlike MEDoE, their solution is complex and domain-specific.

Some works consider the assignment of agents into different roles,
where agents assigned to the same role employ similar policies [34].
In our case, we assume roles do not have to be discovered, and are
instead provided implicitly via the given sub-task curriculum. We
then focus on efficient use of the sub-task curriculum, rather than
training directly in the target task.

Finally, our work is inspired by Ad hoc teamwork (AHT): the prob-
lem of designing single agents capable of coordinating on the fly
with previously unseen teammates [14, 26]. Fosong et al. [9] ex-
tended the AHT problem to the Few-Shot Teamwork (FST) problem
wherein separate teams of agents must rapidly learn to complete
a new task as part of a unified team. Fosong et al. provide two
framings of the FST problem: an ad hoc teamwork framing and a
curriculum framing. Though our work focuses on the latter framing
by investigating methods to accelerate the MARL training process,
MEDoE may also be applicable under the former framing.

6 CONCLUSION AND FUTUREWORK
In this work, we investigated the use of sub-task curriculum (STC)
methods as an approach for accelerating learning of complex MARL
problems. We found that given a decomposition of a complex team-
work task into simpler sub-task, straightforwardly applying the
standard IPPO method to fine-tune agents trained in the sub-tasks
can sometimes reduce the number of timesteps required to solve
the complex task relative to state-of-the art MARL baselines which
train from scratch on the complex task. However, we also showed
that counter to expectations, the use of an STC does not necessarily
improve performance over from-scratch MARL baselines, and does
not necessarily converge to optimal policies. We identified and in-
vestigated two issues which hamper the performance of the naive
STC approach: miscoordinated exploration and forgetting.

To address these issues, we presented Modulating Exploration and
Training via Domain of Expertise (MEDoE), which modulates rele-
vant hyperparameters of each agent during target task fine-tuning.
Each agent’s modulation is controlled by a domain of expertise clas-
sifier that provides information about whether the agent’s policy
is likely to be useful in the target task, given the current observa-
tion. We found that MEDoE converges to higher returns in fewer
timesteps than the naive STC approach in two out of three domains.

MEDoE is a computationally cheap and scalable extension to exist-
ing centralised training decentralised execution (CTDE) actor-critic
methods, with total computational cost increasing linearly with
the number of agents in a parallelisable manner. Though our ex-
periments extend the IPPO algorithm, other actor-critic methods
can be modified to produce a MEDoE version, if desired. MEDoE
does not require additional expert knowledge or engineering input
beyond that required for a naive STC. Though it may not always
improve performance in all tasks, MEDoE is a promising approach
we recommend deploying whenever naive STC approaches fail.

Our findings open the door for future work on optimal use of sub-
task curricula in MARL, and may be extended in multiple directions.
Firstly, we assumed the target task and the sub-task curriculum was
provided. In many cases, this may be a straightforward part of the
training setup engineering, though sometimes it may be desirable
to automatically propose sub-task decompositions based on task
descriptions. This is an open challenge [11], though recent works
employing large language models for this task (e.g. [12]) may be
promising. Relatedly, future work in the vein of curriculum learn-
ing might focus on learning optimal sub-task curricula for a given
task. Secondly, in our experiments we focus on one-step curricula,
although the framework presented in Section 2.1 can represent
curricula of arbitrary tree depth. Future work could investigate
multi-step curricula, and whether any additional issues arise from
their use. Finally, we present a simple scheme for learning a DoE
classifier (Section 4.1). We show empirically this simple scheme
can be sufficient to attain MEDoE’s performance benefits. However,
future work approaches to obtaining DoE classifiers could be inves-
tigated and tested. DoE classifiers that can be updated throughout
the fine-tuning stage could be investigated. Furthermore, our exper-
iments are in fully-observable environments, so future work could
test MEDoE in partially observable environments and develop new
approaches to learning DoE classifiers under partial observability.
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