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ABSTRACT
Simultaneous localisation and mapping (SLAM) algorithms are
commonly used in robotic systems for learning maps of novel envi-
ronments. Brains also appear to learn maps, but the mechanisms are
not known and it is unclear how to infer these maps from neural
activity data. We present BrainSLAM; a method for performing
SLAM using only population activity (local field potential, LFP)
data simultaneously recorded from three brain regions in rats: hip-
pocampus, prefrontal cortex, and parietal cortex. This system uses
a convolutional neural network (CNN) to decode velocity and fa-
miliarity information from wavelet scalograms of neural local field
potential data recorded from rats as they navigate a 2D maze. The
CNN’s output drives a RatSLAM-inspired architecture, powering an
attractor network which performs path integration plus a separate
system which performs ‘loop closure’ (detecting previously visited
locations and correcting map aliasing errors). Together, these three
components can construct faithful representations of the environ-
ment while simultaneously tracking the animal’s location. This is
the first demonstration of inference of a spatial map from brain
recordings. Our findings expand SLAM to a new modality, enabling
a newmethod of mapping environments and facilitating a better un-
derstanding of the role of cognitive maps in navigation and decision
making.
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1 INTRODUCTION
Cognitive maps can be conceived as spatial representations within
the brain that are derived across any number of individual expe-
riences. Such spatial representaitons would include information
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about paths not directly traveled but that can be inferred from the
relationships among experienced routes [9]. Once a cognitive map
is formed, it can be reactivated when an animal subsequently enters
the same environment and updated using information from new
experiences that occur in that environment. When familiar routes
to a goal are blocked, use of the cognitive map enables naviga-
tion through alternative paths because information about novel (i.e.
never before traveled) routes is included in a single representational
structure of the environment.

Evidence supporting the cognitivemap hypothesis was presented
in [21]. Here, researchers recorded rodent hippocampal activity as
these animals moved freely in an environment. Analysis of the
gathered data showed the presence of place cells; hippocampal
cells with firing rates modulated by the location of the animal. The
firing rates of each cell increased dramatically when the animal
was moving through a specific region of an environment, known
as the place field of that cell [22]. Further research has discovered
many other types of spatially sensitive neuron which are believed
to form the basis of the cognitive map [7].

Though the concept of an internal cognitive map has been ex-
plored in much detail [26], no algorithms have yet been presented
which attempt to infer an explicit representation of the internal
cognitive map from individual animals or people. The extraction of
such representations would be valuable for two reasons. First, these
representations would be useful for both neurobiology research and
bio-inspired control. For example, we could examine to what extent
the navigational decisions an animal makes as it moves through an
environment can be predicted by its inferred cognitive map of that
environment. This would help us understand if and how animals
use cognitive maps for navigation, test how map use varies de-
pending on context, and design control algorithms based on these
observations. Secondly, methods which extracted cognitive maps
could be used within brain-computer interfaces (BCIs) to provide
an innovative approach for humans to map out their surroundings.
By decoding cognitive maps from neural data, we could better un-
derstand how we interact with and perceive our spaces, offering
applications in areas like virtual reality, augmented reality, and
even physical navigation assistance for those with impairments.

Simultaneous localisation and mapping (SLAM) is the problem
of using an agent to build a map of an unknown environment while
at the same time maintaining a location estimate of that agent
as it moves through that environment. There are many proposed
solutions to the SLAM problem [1], the majority of which can be
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summarized as methods for taking noisy data encoding velocity
and location information and generating maps.

The goal of this project was to use local field potential (LFP) data
recorded from the brains of rats as they navigated a 2D maze to
perform SLAM. LFP is a measure of the spatially-weighted average
of electrical potential in the extracellular space around populations
of neurons and their synaptic connections [3]. This data is gathered
using intracranial tetrodes implanted in the hippocampus. Notably,
LFP data taken from the hippocampus, prefrontal cortex, and pari-
etal cortex, such as that used in the research presented here, has all
been shown to encode velocity and location information to some de-
gree [2, 20, 27]; thus, one might expect that some SLAM algorithms
may be extendable to this form of input.

In this work, we propose a novel approach that facilitates the use
of LFP data as an input to SLAM systems. Our proposed system uses
a deep convolution neural network (CNN) to predict velocity and lo-
cation information from LFP data [6], and uses these predictions to
power a RatSLAM architecture [17] which produces graphical rep-
resentations of the environment being explored. Predictions from
the CNN are used to transform activation within a 3-dimensional
attractor network encoding position within an environment; path
integration is performed on these estimated positions and mapped
to a corresponding experience map representing our current knowl-
edge of the environment being explored. A separate system uses
location features extracted from the convolutional network to infer
uniqueness of the current location and detect when the rodent has
returned to a previously visited location; at which point, discrepan-
cies between current estimated location and this previously visited
location will be minimized in our experience map representation,
preventing aliasing in the system.

We provide visualisations of the inferred cognitive maps, show-
ing that our system is capable of outputting high fidelity graphical
maps given only LFP data. Such visualisations have never been
produced before, and represent a new path to researching how
cognitive maps are formed in the brain, which brain regions are
necessary, and how these maps reflect experience and affect conse-
quent behaviour.

2 METHODS
2.1 Dataset & Data Preprocessing
The data for this project was recorded from the brains of 3 adult,
male Long-Evans rats navigating a memory and decision-making
task to find sucrose rewards on a maze [8]. We note that all proce-
dures were performed from 2009 - 2010, and in accordance with
the UK Animals Scientific Procedures Act (1986) and approved
by the University of Bristol Animal Welfare and Ethical Review
Board. This data has been utilized as part of numerous other studies
[4, 5, 8, 11, 25].

The rats had to choose between left and right maze arms based on
the direction of an initial guided turn (see Figure 1a). Animals were
trained initially under a “match turn” rule (i.e. if initially forced to
turn right, turn right again at the choice point, and vice versa). The
maze was of dimension 1.3m × 1.7m, and this task was designed
to incorporate both visual discrimination and a memory-guided
responses. Rats ran 15–25 trials per 20- to 30-min recording session,

and each trial of the task consisted of a ‘forced-turn’ and ‘choice’
epoch.

While performing this task, datawas collected from 16 chronically-
implanted adjustable tetrodes placed in three distinct brain regions
of each rat; dorsal CA1 of hippocampus (HPC), prefrontal cortex
(PFC), and the parietal cortex (PC). LFP from each tetrode was
sampled at 2kHz, bandpass filtered at 0.5-475Hz and reflects the
aggregate activity of populations of neurons and synapses near the
tetrode tip [12]. The animals’ location, speed, and direction data
was also calculated by tracking head-mounted LEDs at 25Hz.

Head locations, as measured by LEDs, were first projected onto
a skeleton representation of the maze to reduce noise caused by
head movements that do not represent true movements through
the maze – for example, a rat moving their head from left to right as
they travel down the central arm of the maze. This preprocessing
step also simplified the direction estimation problem, as it reduced
the search space of possible directions to only those which can be
travelled on the skeleton representation (i.e. four directions, each
± 10 degrees of 0◦, 90◦, 180◦, or 270◦). Speed and direction values
were calculated by examining position change across timesteps.
Location, direction, and speed values are all used as outputs to train
the deep neural decoding system described in Section 2.2.

Following the approach described in [6], raw LFP data was
transformed using a wavelet decomposition to generate a three-
dimensional representation depicting time, channels, and frequency
bands [32]. For the wavelet transformation, we used the Morlet
wavelet:

𝜓 (𝑡) = 𝜋−
1
4 exp(𝑖𝜔0𝑡) exp(−𝑡2/2), (1)

where 𝑡 is time and 𝜔0 is a non-dimensional frequency constant (in
our case 𝜔0 = 6). Additionally, channel and frequency-wise normal-
ization was applied using a median absolute deviation approach.
Median and corresponding median absolute deviation values were
calculated for each frequency and channel in our dataset, and inputs
were then normalized using

𝑋𝑖 ←
𝑋𝑖 − 𝑋𝑖

median( |Xi − X̂i |)
, (2)

where 𝑋𝑖 denotes the mean activity for channel 𝑖 . Wavelet images
were generated using 64 subsequent LFP values, meaning each im-
age represented 32ms of recorded data. Thus for each 32ms window,
a set of 16 wavelet images were generated: one for each tetrode
present in the rodent.

For each set of wavelet images generated, there exists in the
dataset a corresponding ground truth location, speed, and direction
value. A single maze session consisting of 20-30 minutes of activity
was used for each rodent, with the first 80% of the data collected for
each rat used to train the deep neural decoding system described in
Section 2.2, and the final 20% used both as testing data and as input
to our extended RatSLAM system to generate the maps shown in
Section 3.2.

2.2 Deep neural decoding for odometry and
loop closure modules

In [6], a generalizable deep learning framework is presented for de-
coding sensory and behavioural variables directly from wide-band
neural data. The approach requires little user input and generalizes
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Figure 1: In the research presented here, local field potential data collected from the dorsal CA1 of hippocampus (HPC),
prefrontal cortex (PFC), and the parietal cortex (PC) of rodents as they completed a simple behavioural task within a maze
is transformed into wavelet decomposition images (a). This data is used to train a deep neural decoding system with 13
downsampling layers and separate fully connected layers for each output; this network predicts both odometry values (speed
and direction) and location (b). These predictions are used to shift activation within a competitive 3D attractor network,
powering a RatSLAM architecture which produces graphical representations of the environment being explored (c). Panel c
adapted with permission from Milford and Wyeth [15]

across stimuli, behaviours, brain regions, and recording techniques.
This framework has been shown to achieve state of the art results
on neural localization tasks using Morlet wavelet decompositions
of LFP recordings taken from the CA1 pyramidal cell layer in the
hippocampus of freely foraging rodents, and is also capable of
accurately decoding head direction and speed. We note that this
approach to decoding has been shown to be versatile to multiple
forms of input including calcium imaging data [23], thus it is natu-
ral to assume that the method presented in this paper would also
be versatile to these other modalities.

A modified version of the architecture originally presented in [6]
is used here. Our deep convolutional network uses only 13 down-
sampling time-distributed (i.e. with shared weights across channels)
layers followed by two fully connected layers for each output. A
kernel size of 3 was used throughout the model, and the number of
filters was kept constant at 64 for the first 10 layers while sharing
weights across the channel dimension, then doubling the number
of filters for the following 3 layers. For downsampling the input,
we used a stride of 2 intermixed between the time and frequency
dimension. We used 2D-convolutions which share weights across
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the channel dimension for the first 10 convolutions and across
the time dimension for the last 3 convolutional layers. Sharing
weights across channels prevents overfitting to channel-specific
features and thus improves generalisation by making sure there
exists a global representation of important features e.g. of spikes
or other prominent oscillations in the local field potential. The full
architecture of the network used is presented in the supplemental
material.

Notably, as this system takes minimally-processed input, it is able
to perform sensory decodingwithout spike sorting (a computationally-
intensive process for detecting action potentials and assigning them
to specific neurons [10]). Necessarily, spike sorting discards infor-
mation in frequency bands outside of the spike range which po-
tentially introduces biases implicit in the algorithm. Also, as the
system is versatile to different forms of input, it is natural to think
that the SLAM system presented here may also be extendable to
non-LFP forms of neural input, for example two-photon calcium
imaging data [30].

Separate networks were trained for each rat using the training
portion of the data generated from a single maze task session. Net-
works were trained to decode location, speed, and direction for
1000 epochs with 250 training steps per epoch. A batch size of 8
was used, as was an AMSGrad optimizer [24] with a learning rate
of 7𝑒−4. The decoding accuracy of the finished networks for each
considered rat are shown and discussed in Section 3.1.

Trained networks for each rat are used for two functions in our
extended RatSLAM system: speed- and direction-decoding func-
tionality is used as an odometry module in the system (discussed in
Section 2.3.2) and location decoding functionality is used as part of
a loop closure module in the system to produce a similarity metric
when comparing two units of input (discussed in Section 2.3.3).

2.3 RatSLAM
RatSLAM [17] is an approach to the SLAM problem inspired by
computational models of the hippocampus of rodents; namely, the
concept of place fields [19] and their modulation by the rodent’s
movement, visual stimuli or other sensory information. Though
RatSLAM has only been shown to function using camera input,
in principle it could be extended to accept any form of input that
fulfils two conditions: first, it must be possible to infer velocity
from input (or by comparing subsequent inputs); second, it must
be possible to examine pairs of inputs and produce a familiarity
score, giving a measure of confidence that the two input signals
arose while the agent was in the same location. Here we present a
modified RatSLAM system that achieves good results using only
local field potential data.

The RatSLAM system represents an agents pose by the activity
in a competitive 3-dimensional attractor network called the pose
cell network (Figure 1c). Path integration is performed by injecting
activity into the pose cell network, shifting the current activity
bump. New input data is compared with data associated with pre-
viously visited locations; if similarity is high, activation is injected
into the particular pose cell associated with this previously visited
location.

2.3.1 Pose Cells. The pose cell module is responsible for maintain-
ing an estimate of the agent’s position within the environment; it

consists of a competitive 3-dimensional attractor network, with
each node representing a point on a discretised version of the en-
vironment being explored, with the dimensions of the attractor
network representing the 𝑥 , 𝑦, and 𝜃 coordinates.

Each node in this network has strong excitatory connections to
nearby nodes, and weaker inhibitory connections to more distal
nodes. Global inhibition and normalisation also occurs at every
time step; encapsulated by the following activation update rules,
called in sequence at every time step:

𝑃 ′
𝑖 𝑗𝑘
← 𝑃𝑖 𝑗𝑘 +

𝑁𝑥∑︁
𝑎=0

𝑁𝑦∑︁
𝑏=0

𝑁𝜃∑︁
𝑐=0

𝜖exc(𝑎−𝑖 ) (𝑏− 𝑗 ) (𝑐−𝑘 )𝑃𝑎𝑏𝑐 , (3)

𝑃 ′
𝑖 𝑗𝑘
← 𝑃𝑖 𝑗𝑘 +

𝑁𝑥∑︁
𝑎=0

𝑁𝑦∑︁
𝑏=0

𝑁𝜃∑︁
𝑐=0

𝜖 inh(𝑎−𝑖 ) (𝑏− 𝑗 ) (𝑐−𝑘 )𝑃𝑎𝑏𝑐 , (4)

𝑃𝑖 𝑗𝑘 ← max(0, 𝑃𝑖 𝑗𝑘 −𝜓 ), (5)

𝑃 ′
𝑖 𝑗𝑘
←

𝑃𝑖 𝑗𝑘∑𝑁𝑥

𝑥=0
∑𝑁𝑦

𝑦=0
∑𝑁𝜃

𝑧=0 𝑃𝑥𝑦𝑧
, (6)

where excitatoryweights 𝜖exc are generated using a three-dimensional
discrete Gaussian distribution with variance 1, inhibitory weights
𝜖 inh are generated using a three dimensional discrete Gaussian dis-
tribution with variance 2, and𝜓 is a global inhibition constant, in
our case set to 2𝑒−5. We also note that the 𝜃 dimension is wrapped,
with nodes near the top of the 𝜃 dimension having connections to
those at the bottom.

Together these properties force the network’s activity to con-
verge to a single 3D bump. If activity is injected into the network
far from the existing activity bump, a new bump will be created
which competes with the original. If enough activity is injected
into this new bump, it can become dominant and the old bump will
disappear.

We note here that activation is not only modulated by internal
dynamics, but can also be injected into the network via excitatory
connections from local view cells (discussed in Section 2.3.2), and
activation can be moved within the network via input from the
odometry module (discussed in Section 2.3.3).

Location estimates are found by calculating the center of activa-
tion within this pose cell network: this is the mean of activation
locations in the network, weighted by the activation at each loca-
tion.

2.3.2 View Cells. In the original RatSLAM system, local view cells
each represent a distinct scene observed by the agent as it traverses
the environment being explored.When new image data is processed,
it is first examined by the view cell module to see if the data is
similar enough to previously observed data. If similarity is above a
certain threshold, the view cell corresponding to the most similar
previously seen data will be activated, injecting activity into the
pose cell network at the pose cell associated with the activated local
view cell. If, on the other hand, all existing view cells correspond to
data which is deemed dissimilar to the data being examined, a new
view cell is added and is assigned excitatory connections to the most
currently-activated pose cell. The excitatory links between view
cells and pose cells represent the estimated position and direction
of the agent when the corresponding data was observed.
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In the system presented here, local view cells do not represent
distinct visual scenes, but instead represent distinct periods of neu-
ral activity that are representative of particular locations within the
maze. For example, while in a standard RatSLAM implementation
a local view cell may be activated while the agent is observing
a distinctive red door, in our system this cell may activate when
the agent observes high frequency LFP oscillations coming from a
certain tetrode.

Necessarily, we must provide a method to evaluate similarity
between pieces of input data. In standard RatSLAM systems, this
often makes use of an appearance-based view recognition system
[16]. In our system, however, we use the Euclidean distance between
position estimates as predicted by the deep neural decoding system
described in Section 2.2 as a measure of difference; pieces of neural
data which lead to similar decoded locations are likely to have been
generated when the rat was in similar locations. If a new piece of
data has a decoded positions within some distance (here 20 pixels;
about 58mm) of a previously observed piece of data, the local view
cell corresponding to the previously-observed piece of data will be
activated. This process is called loop closure, and is instrumental
for preventing error accumulation in the generated maps.

When a local view cell is activated, activation is injected into
the pose cell network before the internal dynamics of the network
are applied at the location of the pose cell corresponding to the
activated local view cell.

2.3.3 Odometry. The odometry module is used to examine new
input and infer velocity. After velocity is estimated, activation is
shifted in the pose cell network accordingly; i.e if a clockwise
rotation of 60◦ is predicted and the pose cell network’s 𝜃 dimension
is of size 360, then all activation will be shifted 60 cells upwards,
with any activation hitting the top of this dimension wrapping
back to the bottom. Activation is shifted via stimulation from the
odometry module at each time step after the internal dynamics of
the attractor networks have been applied.

In a standard RatSLAM implementation, this is implemented by
using a simple visual odometry system to compare two subsequent
visual images captured by the agent using a visual odometry system
[18], yielding absolute speed and relative rotation between images.

In the system presented here, however, absolute speed and ro-
tation values are predicted by the deep neural decoding system
described in Section 2.2. Relative rotation is found by calculating
the difference between absolute rotation and current rotation es-
timate, as represented by the centre of activation of the pose cell
network. Speed and inferred relative rotation are then used to shift
activation in the pose cell network identically to a standard Rat-
SLAM system [17].

2.3.4 Experience Map. Activity in the pose cells and local view
cells drives the creation of experiences. Experiences are represented
by nodes in (𝑥,𝑦, 𝜃 ) space connected by links representing transi-
tions between experiences [14]. These nodes form the experience
map; a graphical representation of the environment being explored.
The first experience learned is initialised with an arbitrary (0,0,0)
position within the experience map, and subsequent experiences
are assigned a position based on the last experience’s position and
the agent’s movement that has occurred since.

Each experience node has connections to a single local view
cell, representing in our case the distinctive neural data observed
when the rat is located somewhere within the maze. The local view
cells acts as a controller for the experience map, activating and
deactivating their corresponding experience nodes according to
their own activation:

𝐸𝑖 =

{
0, if 𝑉curr ≠ 𝑉𝑖 ,

1, if 𝑉curr = 𝑉𝑖 ,
(7)

where 𝐸𝑖 is the activation of the 𝑖th experience node, 𝑉curr is the
currently activated local view cell, and𝑉𝑖 is the view cell associated
with experience 𝑖 .

New experience nodes are created during the creation of their
corresponding local view cells, when the input data is deemed dis-
similar enough to data associated with other local view cells. Upon
instantiation, experience nodes are assigned location according to
the location represented by the current center of activation of the
pose cell network.

3 RESULTS
3.1 Neural Decoding Results

Figure 2: Angular histograms showing the distributions of
estimated directions for each true direction value for one rat;
(a) North, (b) East, (c) South, and (d) West. We see that the
system is able to decode all directions with good accuracy.
We note that perfect alignment with cardinal angles is not
expected due to imperfections in the maze shape.

Experiments were conducted for three rats using data collected
from one maze task session per rat, with data ranging from 28 to
34 minutes in duration. The initial 80% of data was used to train
the deep neural decoding system, while the final 20% was used for
testing purposes and to generate the decoded maps shown in Figure
3. Training models for each rat took an average of 13.5 hours using
an NVIDIA 1070 GPU.

High decoding accuracy was achieved for each rat, with mean
absolute error (MAE) for location decoding at 2.188cm, 1.641cm, and
1.849cm, direction MAE at 7.816◦, 6.997◦, and 12.354◦, and speed
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Table 1: Mean absolute location, direction, and speed error
for all rats considered.

Location (cm) Direction (deg) Speed (cm/s)
Rat 1 2.188 7.816 0.486
Rat 2 1.641 6.997 0.316
Rat 3 1.849 12.354 1.487

MAE at 0.486cm/s, 0.316cm/s, and 1.487cm/s, respectively (shown
in Table 1). Notably, this is the first example of a deep convolutional
neural network decoding direction of travel directly (as opposed
to head direction, which is typical). As only four directions are
possible within the considered maze, we show histograms in Figure
2 visualising the distribution of estimated directions for each true
direction value for one rat. We see that the system is able to decode
all directions highly accurately, this is despite large class imbalances,
with the ‘east’ direction being over-represented in the training data
for this rat.

3.2 SLAM Results

Figure 3: The true shape of the environment being explored
by the rats (a), and inferred cognitive maps from each of the
three rats as generated by the system presented here from
∼ 6 minutes of test data (b,c,d). The shape and scale of the
inferred maps was accurate in all cases. A photograph of the
true maze is shown in Figure 1 for comparison.

Using each rat’s corresponding deep neural decoder, we per-
formed the RatSLAM algorithm on testing data to produce the
decoded cognitive maps presented in Figure 3. We see that for all
rats, the shape and scale of the maze was correctly inferred. We
also note that there is very little aliasing in the system, indicating a
functional and effective loop closure system; for comparison, maps
generated with no functional loop closure module are presented in
the supplemental material. Maps generated using inaccurate loop
closure modules may also create erroneous links between distant

and unrelated nodes, so it is encouraging to note that this has not
happened for the maps shown in Figure 3.

We note that for one rat, a significant decoding error has oc-
curred on the right decision point of the maze (Figure 3c). This
error is due to the deep neural decoder producing an incorrect
speed prediction during the first navigation through this point
present in the testing data. As the algorithm presented here has
no method for iteratively improving location estimates of experi-
ence nodes upon re-exploration, an incorrect prediction generated
during initial exploration will remain in the generated maps.

During creation of of these maps, an estimate of the rat’s position
within the environment is also maintained. The MAE of this loca-
tion estimate for each rat was 18.353cm, 13.808cm, and 28.118cm,
respectively. We note that though this error is higher than achieved
by predicting location directly using the deep neural decoder (Table
1), our SLAM method may be extendable to predicting location
even in novel environments, which would be previously unseen by
both the deep neural decoder and the rodent. In contrast, predicting
location directly with a deep network requires the network to first
be trained using location training data from that same environment.

4 DISCUSSION & FURTHERWORK
This paper has provided an approach for decoding and visualising
cognitive maps using intracranial neural activity data. All maps
generated were high fidelity graphical representations of the envi-
ronments being explored, capturing the correct shape and scale of
the environment being explored.

It has been shown that head direction and speed decoding is
partially invariant to environment [31]. Thus, a natural avenue
for further research would be to extend BrainSLAM to datasets
with multiple environments; where training data is generated in
one environment, and testing data in another. No such data was
available for use in this project.

Other work should aim to incorporate an experience map cor-
rection process for minimizing the discrepancies between relative
spatial information encoded in the edges between experience nodes,
and the locations of those experience nodes in experiencemap space.
For example, two experience nodes may be far away in the expe-
rience map but linked during a movement which our odometry
module calculates to be a much smaller distance. In this case, by
minimizing the discrepancies between the relative locations of ex-
periences in the experience map and the inter-experience spatial
transition information, the experience map could converge over
time to a higher fidelity representation of the map being explored
[13, 14]

Further work should also explore to what extent the maps gen-
erated by the system presented here can be used to predict a rats
behaviours as it moves through the maze. If it can be shown that
errors in the generated map are associated with related sub-optimal
navigation decisions in the maze, this is evidence that this sys-
tem is generating maps which are in some way congruent to the
true internal cognitive map of the animal. As an example, consider
an experiment showing that a rat with will take a route which is
perceived as shorter in the generated cognitive map of the maze,
despite it being the same length as alternative routes in reality.
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More recent research into hippocampal function [28], suggests
that hippocampal activity tracks distance in semantic space as well
as physical. This supports the growing consensus that the hip-
pocampus is partially responsible for the maintenance of a domain-
general cognitive map [29]. Thus the research presented here could
not only facilitate the use of biological agents to map physical
spaces, but also to map more abstract semantic spaces.

5 CONCLUSION
Using a novel combination of RatSLAM and a deep learning ap-
proach to decoding behavioural variables from wide-band neural
activity, this paper has presented the first approach to decoding and
visualising cognitive maps using only intracranial local field po-
tential data. Maps have been generated using data from the brains
of three rats, with data being gathered from the dorsal CA1 of
hippocampus, prefrontal cortex, and the parietal cortex. All maps
generated were high fidelity graphical representations of the envi-
ronments being explored, capturing the correct shape and scale of
the environment being explored. While maps were being inferred,
the systemwas simultaneously able to maintain reasonable location
estimates for all rats.

The ability to visualise and quantify the cognitive map of an
animal opens up new avenues of research into the role of these
these maps in navigation and decision making. We believe this
work has value in the field of bio-inspired control; shedding light
on the ways that animals form and utilize maps of environments,
and perform navigation in a complex world. Further, the research
presented here extends SLAM algorithms to utilize a novel modality;
neural local field potentials. This could facilitate a wide variety of
further applications related to brain computer interfaces, automated
mapping using biological agents, and environment exploration.
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