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ABSTRACT
Learning in general-sum games often yields collectively sub-optimal
results. Addressing this, opponent shaping (OS) methods actively
guide the learning processes of other agents, empirically leading
to improved individual and group performances in many settings.
Early OSmethods use higher-order derivatives to shape the learning
of co-players, making them unsuitable to shape multiple learning
steps. Follow-up work, Model-free Opponent Shaping (M-FOS),
addresses these by reframing the OS problem as a meta-game. In
contrast to early OS methods, there is little theoretical understand-
ing of the M-FOS framework. Providing theoretical guarantees for
M-FOS is hard because A) there is little literature on theoretical
sample complexity bounds for meta-reinforcement learning B) M-
FOS operates in continuous state and action spaces, so theoretical
analysis is challenging. In this work, we present R-FOS, a tabular
version of M-FOS that is more suitable for theoretical analysis. R-
FOS discretises the continuous meta-game MDP into a tabular MDP.
Within this discretised MDP, we adapt the 𝑅𝑚𝑎𝑥 algorithm, most
prominently used to derive PAC-bounds for MDPs, as the meta-
learner in the R-FOS algorithm. We derive a sample complexity
bound that is exponential in the cardinality of the inner state and
action space and the number of agents. Our bound guarantees that,
with high probability, the final policy learned by an R-FOS agent
is close to the optimal policy, apart from a constant factor. Finally,
we investigate how R-FOS’s sample complexity scales in the size of
state-action space. Our theoretical results on scaling are supported
empirically in the Matching Pennies environment.
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1 INTRODUCTION
Learning in general-sum games commonly leads to collectively
worst-case outcomes [6]. To address this, opponent shaping (OS)
methods account for opponents’ learning steps and influence other
agents’ learning processes. Empirically, this can improve individual
and group performances.

Early OS methods [6, 11, 13] rely on higher-order derivatives,
which are high-variance and result in unstable learning. They are
also myopic, focusing only on the opponent’s immediate future
learning steps rather than their long-term development [15]. Re-
cent work, Model-free Opponent Shaping (M-FOS) [15], solves the
above challenges. M-FOS introduces a meta-game structure, each
meta-step representing an episode of the embedded “inner” game.
The meta-state consists of “inner” policies, and the meta-policy
generates an inner policy at each meta-step. M-FOS uses model-
free optimisation techniques to train the meta-policy, eliminating
the need for higher-order derivatives to accomplish long-horizon
opponent shaping. The M-FOS framework has shown promising
long-term shaping results in social-dilemma games [10, 15].

The original M-FOS paper presents two cases of the M-FOS al-
gorithm. For simpler, low-dimensional games, M-FOS learns policy
updates directly by taking policies as input and outputting the next
policy as an action. Inputting and outputting entire policies does
not extend well to more complex, higher-dimensional games, e.g.
when policies are represented as neural networks. The original
M-FOS paper also proposes a variant which uses trajectories as
inputs instead of the exact policy representations. In this work we
derive the sample complexity for both cases.

Whereas some previous OS algorithms enjoy strong theoret-
ical foundations thanks to the Differentiable Games framework
[1], the M-FOS framework has not been investigated theoretically.
Understanding the sample complexity of an algorithm is helpful
in many ways, such as evaluating its efficiency or predicting the
learning time. However, providing theoretical guarantees for M-
FOS is challenging because A) there is very little literature on
theoretical sample complexity bounds for even single-agent meta-
reinforcement learning (RL), let alone multi-agent and B) M-FOS
operates in continuous state and action space (the meta-game).
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In this work, we present R-FOS, a tabular algorithm approxima-
tion of M-FOS. Unlike M-FOS, which operates in a continuous meta-
MDP, R-FOS operates in a discrete approximation of the original
meta-MDP. The resulting discrete MDP allows us to perform rigor-
ous theoretical analysis. We adapt R-FOS from M-FOS such that it
still maintains all the key properties of M-FOS. Within this discrete,
approximate MDP, R-FOS applies the 𝑅MAX algorithm [9, 21] to the
M-FOS meta-game. 𝑅MAX is a model-based reinforcement learning
(MBRL) algorithm typically used for the sample complexity analysis
of tabular MDPs. Using existing results developed for 𝑅MAX [3],
we derive an exponential sample complexity PAC-bound, which
guarantees with high probability (1-𝛿) that the optimal policy in the
discretised meta-MDP is very close (< 𝜖 away) to the policy learned
by R-FOS. We then derive several bounds which guarantee policies
between the original meta-MDP and the discretised meta-MDP are
close to each other up to a constant distance. Lastly, combining all
of the previous bounds we derived, we obtain the final exponential
sample complexity result.

For notational simplicity, we mostly omit the “meta” prefix in
the rest of the paper. For example, the terms “MDP”, “transition
function”, and “policy”, refer to the meta-MDP, meta-transition
function, and meta-policy respectively. We use the prefix “inner”
whenever we refer to the inner game. Furthermore, our analysis
of M-FOS is limited to the asymmetric shaping case (i.e. the meta-
game of shaping a naive inner-learner∗) and we leave the extension
to meta-selfplay for future work.

Our contributions are three-fold:
(1) We present R-FOS (see Algorithm 1), a tabular approximation of

M-FOS. Instead of learning a meta-policy inside the continuous
meta-MDP𝑀 , R-FOS learns a meta-policy inside a discretised
meta-MDP which approximates𝑀 . Inside this discretised Meta-
MDP, R-FOS uses 𝑅MAX as the meta-agent. Note that R-FOS
still maintains key properties of the original M-FOS algorithm,
such as being able to exploit naive learners.

(2) We present an exponential sample complexity bound for both
cases described in M-FOS (See Theorems 4.12 and 4.13). Specif-
ically, we prove that, with high probability, the final R-FOS
policy is close to the optimal policy in the original meta-MDP
up to a constant distance.

(3) We implement R-FOS † and analyse the empirical sample com-
plexity in theMatching Pennies environment. We establish links
between theory and experiments by demonstrating that in both
realms, sample complexity scales exponentially with the inner-
game’s state-action space size.

2 RELATEDWORK
Theoretical Analysis of Differentiable Games:Much past work
assumes that the game being optimised is differentiable [1]. This
assumption enables far easier theoretical analysis because one can
directly use end-to-end gradient-based methods rather than rein-
forcement learning in those settings. Several works in this area
investigate the convergence properties of various algorithms Bal-
duzzi et al. [1], Letcher [12], Schäfer and Anandkumar [18].

∗Naive learners are players who update their policy assuming other learning agents
are simply a part of the environment.
†The project code is available on https://github.com/FLAIROx/rfos

Opponent Shaping:More closely related to our work are meth-
ods that specifically analyse OS. SOS [13] and COLA [22] both anal-
yse opponent-shaping methods that operate in the differentiable
games framework. These works provide theoretical convergence
analysis for opponent-shaping algorithms; however, neither work
analyzes sample complexity. POLA [24] theoretically analyses an
OS method that is invariant to policy parameterization. M-FOS
does not operate in the differentiable games framework. While this
enables M-FOS to scale to more challenging environments, such
as Coin Game [15], it comes at the cost of convenient theoretical
analysis. Khan et al. [10] empirically scales M-FOS to more chal-
lenging environments with larger state spaces, while Lu et al. [16]
empirically investigates applying M-FOS to a state-based adversary.
To the best of our knowledge, our work is the first to theoretically
analyse OS outside of the differentiable games framework. Further-
more, our work is the first to analyse the sample complexity of an
OS method.

Theoretical Analysis of Sample Complexity in RL: There
are several works that use the 𝑅MAX [3] framework to derive the
sample complexity of RL algorithms across a variety of settings.
Closely related to our work is Zhang et al. [23], which uses the
𝑅MAX algorithm to derive sample complexity bounds for learning
in fully-cooperative multi-agent RL.

Our work is also related to methods that analyse sample com-
plexity on continuous-space RL. Analyzing the sample complexity
of algorithms in continuous-space RL is particularly challenging
because there are an infinite number of potential states. To address
this, numerous techniques have been suggested that each make
specific assumptions: Liu and Brunskill [14] assumes a stationary
asymptotic occupancy distribution under a random walk in
the MDP. Malik et al. [17] uses an effective planning window to
handle MDPs with non-linear transitions. However, neither of these
assumptions applies to M-FOS.

Instead, this work focuses on discretising the continuous space
and expresses the complexity bounds in terms of the discretisation
grid size. This is related to the concept of state aggregation [2, 20],
which groups states into clusters and treats the clusters as the
states of a new MDP. These previous works only formulated the
aggregation setting in MDPs and did not provide theoretical or
empirical sample complexity proofs.

Furthermore, prior studies on PAC-MDP did not empirically ver-
ify the connection between the sample complexity and size of the
state-action space. In this work, we empirically verify the rela-
tionship between the sample complexity and the cardinality
of the inner-state-action-space in the Matching Pennies game.

3 BACKGROUND
3.1 Stochastic Game
A stochastic game (SG)‡ is given by a tuple 𝐺 = ⟨I, 𝑆,𝑨,𝑇 , 𝑹, 𝛾⟩.
I = {1, · · · , 𝑛} is the set of agents, 𝑆 is the state space, 𝑨 is the
cross-product of the action space for each agent such that the joint
action space 𝑨 = 𝐴1 × · · · × 𝐴𝑛 , 𝑇 : 𝑆 × 𝑨 ↦→ 𝑆 is the transition
function, 𝑹 is the cross-product of reward functions for all agents

‡We use the bold notation to indicate vectors over 𝑛 agents.
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Algorithm 1 The R-FOS Algorithm

Meta-game Inputs: Discretised meta-MDP ⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩
𝑚-known, meta-game horizon ℎmeta

Inner-game Inputs: Inner game G = ⟨𝑆,𝐴,𝑇inner, 𝑅inner⟩
inner-game horizon ℎinner

Initialisation: ∀𝑠𝑑 ∈ 𝑆𝑑 , 𝑎𝑑 ∈ 𝑆𝑑 , 𝑠′𝑑 ∈ 𝑆𝑑
𝑄̂ (𝑠𝑑 , 𝑎𝑑 ) ← 0, 𝑟 (𝑠𝑑 , 𝑎𝑑 ) ← 0, 𝑛(𝑠𝑑 , 𝑎𝑑 ) ← 0, 𝑛(𝑠𝑑 , 𝑎, 𝑠′) ← 0
1: for meta-episode = 0, 1, .. do
2: Reset environment
3: for meta-time step = 1, 2, ..., ℎmeta do
4: Choose 𝑎𝑑 := argmax

𝑎𝑑 ∈𝐴̂𝑑
𝑄̂ (𝑠𝑑 , 𝑎′𝑑 )

5: Roll-out 𝐾 inner games of length ℎinner using 𝑎𝑑 = 𝜙𝑡
6: Inner-game opponents each update their own inner-

policies naively
7: Let 𝑅 be our agent’s 𝐾 inner-games’ discounted return
8: Let 𝑠′

𝑑
be the next meta-state after executing meta-action

𝑎𝑑 from meta-state 𝑠𝑑
9: if 𝑛(𝑠𝑑 , 𝑎𝑑 ) < 𝑚 then
10: 𝑟 (𝑠𝑑 , 𝑎𝑑 ) ← 𝑟 (𝑠𝑑 , 𝑎𝑡 ) + 𝑅
11: 𝑛(𝑠𝑑 , 𝑎𝑑 ) ← 𝑛(𝑠𝑑 , 𝑎𝑡 ) + 1
12: 𝑛(𝑠𝑑 , 𝑎𝑑 , 𝑠′𝑑 ) ← 𝑛(𝑠𝑑 , 𝑎𝑑 , 𝑠′𝑑 ) + 1
13: if 𝑛(𝑠𝑑 , 𝑎𝑑 ) =𝑚 then

14: for 𝑖 = 1, 2, 3, · · · , ⌈
𝑙𝑛 ( 1

𝜀 (1−𝛾 ) )
1−𝛾 ⌉ do

15: for all (𝑠, 𝑎) do
16: if 𝑛(𝑠𝑑 , 𝑎𝑑 ) ≥ 𝑚 then
17: 𝑄̂ (𝑠𝑑 , 𝑎𝑑 ) ← 𝑅𝑑 (𝑠𝑑 , 𝑎𝑑 ) +

𝛾
∑
𝑠′
𝑑
𝑇𝑑 (𝑠′ |𝑠𝑑 , 𝑎𝑑 )max𝑎′

𝑑
𝑄̂ (𝑠′

𝑑
, 𝑎′
𝑑
)

18: 𝑠 ← 𝑠′

such that the joint reward space 𝑹 = 𝑅1 × · · · × 𝑅𝑛 , and 𝛾 ∈ [0, 1)
is the discount factor.

In an SG, agents simultaneously choose an action according to
their stochastic policy at each timestep 𝑡 , 𝑎𝑖𝑡 ∼ 𝜋𝑖𝜙𝑖 (·|𝑠𝑖𝑡 ). The joint
action at timestep 𝑡 is 𝒂𝒕 = {𝑎𝑖𝑡 , 𝒂−𝒊

𝒕 }, where the superscript −𝒊
indicates all agents except agent 𝑖 and 𝜙𝑖 is the policy parameter
of agent 𝑖 . The agents then receive reward 𝑟 𝑖𝑡 = 𝑅𝑖 (𝑠𝑡 , 𝒂𝒕 ) and
observe the next state 𝑠𝑡+1 ∼ 𝑇 (·|𝑠𝑡 , 𝒂𝒕 ), resulting in a trajectory
𝜏𝑖 = (𝑠0, 𝒂0, 𝑟 𝑖0, ..., 𝑠𝑇 , 𝒂𝑻 , 𝑟

𝑖
𝑇
), where 𝑇 is the episode length.

3.2 Markov Decision Process
A Markov decision process (MDP) is a special case of stochastic
game and can be described asM = ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩, where 𝑆 is the
state space, 𝐴 is the action space, 𝑇

(
𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡

)
is the transition

function, 𝑅 (𝑠𝑡 , 𝑎𝑡 ) is the reward function, and 𝛾 is the discount
factor. At each timestep 𝑡 , the agent takes an action 𝑎𝑡 ∈ 𝐴 from a
state 𝑠𝑡 ∈ 𝑆 and moves to a next state 𝑠𝑡+1 ∼ 𝑇

(
· | 𝑠𝑡 , 𝑎𝑡

)
. Then, the

agent receives a reward 𝑟𝑡 = 𝑅 (𝑠𝑡 , 𝑎𝑡 ).

3.3 Model-Free Opponent Shaping
Model-free Opponent Shaping (M-FOS) [15] frames the OS problem
as a meta-reinforcement-learning problem, in which the opponent
shaper plays a meta-game. The meta-game is an MDP (sometimes

we also refer to it as meta-MDP ), in which the meta-agent controls
one of the inner agents in the inner game.

The inner game is the actual environment that our agents are
playing, which is an SG. The original M-FOS describes two cases
for the meta-state:

(1) In the meta-game at timestep 𝑡 , the M-FOS agent is at the
meta-state 𝑠𝑡 = [𝜙𝑖𝑡−1, 𝝓

−𝒊
𝒕−1], which contains all inner-agents’

policy parameters for the underlying SG. In this work, we
assu,e all inner-agents are parameterised by their Q-value
table.

(2) Alternatively, 𝑠𝑡 = 𝝉 in cases where past trajectories of the
inner-game represent the policies sufficiently.

We provide theoretical sample complexity results for both of these
two cases

The meta-agent takes a meta-action 𝑎𝑡 = 𝜙𝑖𝑡 ∼ 𝜋𝜃 (·|𝑠𝑡 ), which is
the M-FOS’ inner agent’s policy parameters. The action is chosen
from the meta-policy 𝜋 parameterized by parameter 𝜃 . In this work,
we only look at the case where the meta-policy is a Q-value function
table, and is denoted as 𝑄̂ instead. TheM-FOS agent receives reward
𝑟𝑡 =

∑𝐾
𝑘=0 𝑟

𝑖
𝑘
(𝜙𝑖𝑡 , 𝝓−𝒊

𝒕 ), where 𝐾 is the number of inner episodes.
A new meta-state is sampled from a stochastic transition function
𝑠𝑡+1 ∼ 𝑇 (·|𝑠𝑡 , 𝑎𝑡 ).

Note that the original paper introduces two different algorithms:
The first meta-trains M-FOS against naive learners commonly re-
sulting in exploiting them. The second instead considers meta-self-
play, whereby two M-FOS agents are trained to shape each other,
resulting in reciprocity. In this work we only consider the first,
asymmetric case.

3.4 The 𝑅MAX Algorithm
𝑅MAX [3] is an MBRL algorithm proposed for analysing the sample
complexity for tabular MDPs. Given any MDP𝑀 , 𝑅MAX constructs
an empirical MDP 𝑀̂ that approximates𝑀 . The approximation is
done by estimating the reward function 𝑅 and transition 𝑇 using
empirical samples. The resulting approximate reward and transition
models are denoted by 𝑅 and 𝑇 respectively.
𝑅MAX encourages exploration by dividing the state-action pairs

into two groups - those that have been visited at least 𝑚-times,
and those that haven’t. The set of state-action pairs that have been
visited at least𝑚-times is called the “𝑚-known set”. Using the empir-
ical MDP 𝑀̂ , the 𝑅MAX algorithm constructs an𝑚-known empirical
MDP. This𝑚-known empirical MDP behaves almost exactly as the
empirical MDP, except when the agent is at a state-action pair out-
side the𝑚-known set. When the agent is outside the𝑚-known set,
the transition function is self-absorbing (i.e. the transition function
only transitions back to the current state) and the reward function
is the maximum (See Table ?? in the appendix). The consequence
of the𝑚-known setup is the agent is encouraged to explore state-
action pairs that have high uncertainty (i.e. that has been visited
under𝑚 times). Specifically, the value function for the under-visited
states is the maximum possible expected return, which gives the
algorithm its name. This is in line with optimism in the face of
uncertainty.
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3.5 𝜀-Nets
Definition 3.1. (𝜀-Net [5, 8]) For 𝜀 > 0,N𝜀 is an 𝜀-net over the set
Θ ⊆ R𝐷 if for all 𝜃 ∈ Θ, there exists 𝜃 ′ ∈ N𝜀 such that



𝜃 − 𝜃 ′

2 ≤ 𝜀.
To discretise a 𝐷-dimensional sphere of radius 𝑅, we can use

a 𝜀-net containing 𝐷-dimensional cubes of sides 𝜆. This results

in
(
2𝑅
𝜆
+ 1

)𝐷
points. Within each 𝐷-dimensional cube, the largest

distance between the vertices and the interior points comes from
the center of the cube, which is 𝜆

√
𝑑

2 . Therefore, to guarantee a full
cover of all the points in the sphere, the largest cube size that we
can have should satisfy 𝜀 = 𝜆

√
𝑑

2 .From here on, we will replace the
𝜀 in 𝜀-net with 𝛼 to avoid notation overloading.

4 SAMPLE COMPLEXITY ANALYSIS WITH
𝑅MAX AS META-AGENT

As introduced in Section 3, 𝑅MAX [3] is a MBRL algorithm for
learning in tabular MDPs. We adapt the original M-FOS algorithm
to use 𝑅MAX as the meta-agent (see Algorithm 1) and refer to this
adapted algorithm as R-FOS from here on. We use a tabular Q-
learner as the naive learner for all inner-game opponents. While
the original M-FOS paper uses PPO [19], we choose the Q-learner
for the ease of sample complexity analysis.

We provide theoretical results for the two cases of M-FOS’ meta-
agent proposed by the original paper [15]. Case I uses all agents’
inner policy parameters from the previous timestep as the meta-
state. Case II instead uses the most recent inner-game trajectories
as the meta-state. In both cases, the meta-action determines the
inner agent’s policy parameters for the next inner episode.

At a high level, we first discretise the meta-MDP, which allows
us to use the theoretical bounds from 𝑅MAX (only suitable for tabu-
lar MDPs), then we develop theory for bounding the discrepancy
between the continuous and discrete meta-MDP, and lastly, we use
all of this to bound the final discrepancy. Specifically, the sample
complexity analysis consists of six steps §:

(1) To use 𝑅MAX as the M-FOSmeta-agent, we first discretise the
continuous meta-MDP𝑀 = ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩ into a discretised
meta-MDP 𝑀𝑑 = ⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩. We first discretise the
continuous meta-state space and meta-action space using
epsilon-nets [5, 8]. Based on this discretised meta-state and
meta-action space, we define the discretised transition and
reward function. See Section 4.2 for details.

(2) We then construct a 𝑚-known discretised MDP 𝑀𝑚, 𝑑 , as
described by the R-MAX algorithm [21]. See Section 4.3 for
details.

(3) Then, we deploy the 𝑅MAX algorithm in𝑀𝑚, 𝑑 . 𝑅MAX both
estimates the empirical𝑚-known discretised MDP, 𝑀̂𝑚, 𝑑 ,
using a maximum likelihood estimate from empirical sam-
ples and learns an optimal policy in 𝑀̂𝑚, 𝑑 . For example, to
estimate the meta-reward, our algorithm, R-FOS evaluates
the inner-game policy outputted by the meta-policy using
episodic rollouts. The estimates are then used to update the
meta-policy according to the R-FOS algorithm. Our R-FOS
algorithm optimistically assigns rewards for all under-visited

§see detailed proof in the appendix on arXiv [7]

discretised (meta-state, meta-action) pairs to encourage ex-
ploration (like 𝑅MAX). See Section 4.4 for details.

(4) We next prove a PAC-bound which guarantees with large
probability, that the optimal policy learnt in 𝑀̂𝑚, 𝑑 is similar
to the optimal policy in𝑀,𝑑 . This step uses results from [21].
See Section 4.5 for details.

(5) We also prove a strict bound that guarantees the optimal
policies learnt in 𝑀,𝑑 and 𝑀 are similar up to a constant.
This step uses results from [4]. See Section 4.8 for details.

(6) Using the two bounds from above, we prove the final sam-
ple complexity guarantee which quantifies that, with large
probability, the optimal policy learnt in 𝑀̂𝑚, 𝑑 is similar to
the optimal policy in𝑀 up to a constant. See Section 4.9 for
details.

4.1 Assumptions
We first outline all assumptions made in deriving the sample com-
plexity of the R-FOS algorithm.

Assumption 4.1. Both meta-game and inner-game are finite hori-
zon. We use ℎmeta to denote the meta-game horizon, and ℎinner to
denote the inner-game horizon.

Assumption 4.2. We assume the inner-game reward is bounded.
For simplicity of the proof and without loss of generality, we set
this bound as 1

ℎinner
, where ℎinner is the horizon of the inner game.

Formally, for all (𝑠, 𝑎), 0 ≤ 𝑅inner (𝑠, 𝑎) ≤ 1
ℎinner

. This allows us to
introduce the notion ofmaximum inner reward andmaximum inner
value function as 𝑅max,inner =

1
ℎinner

and 𝑉max,inner = 1 respectively.
This implies that the reward and value function in the meta-game
are also bounded, i.e., 𝑅max = 1 and 𝑉max = 1

1−𝛾 (the latter being
an upper bound).

Assumption 4.3. The meta-game uses a discount factor of 𝛾 . For
simplicity of the proof, the inner-game uses a discount factor of 1.
This assumption can be easily deleted by adapting 𝑅max, inner (see
above) in the original proof in [21].

Assumption 4.4. For simplicity, the inner game is assumed to be
discrete.

Assumption 4.5. Themeta-reward function is Lipschitz-continuous:
For all 𝑠1, 𝑠2 ∈ 𝑆 and 𝑎1, 𝑎2 ∈ 𝐴,��𝑅(𝑠1, 𝑎1) − 𝑅(𝑠2, 𝑎2)�� ≤ L𝑅

(𝑠1, 𝑎1) − (𝑠2, 𝑎2)

∞
where L𝑅 is the meta-reward function’s Lipschitz-constant.

Assumption 4.6. Themeta-transition function is Lipschitz-continuous:
For all 𝑠1, 𝑠′1, 𝑠2 ∈ 𝑆 and 𝑎1, 𝑎′1, 𝑎2 ∈ 𝐴,��𝑇 (𝑠′1 | 𝑠1, 𝑎1) −𝑇 (𝑠′2 | 𝑠2, 𝑎2)�� ≤ L𝑇 

(𝑠′1, 𝑠1, 𝑎1) − (𝑠′2, 𝑠2, 𝑎2)

∞
where L𝑇 is the meta-transition function’s Lipschitz-constant.

Assumption 4.7. There’s a Lipschitz-continuous point-to-set map-
ping between meta-state space and meta-action space such that for
any 𝑠, 𝑠′ ∈ 𝑆 and 𝑎, 𝑎′ ∈ 𝐴, there exists some 𝑎 ∈ 𝑈 (𝑠) such that

𝑎 − 𝑎′

∞ < L



𝑠 − 𝑠′

∞
Assumption 4.8. The meta-game transition function 𝑇 (· | 𝑠, 𝑎)
is a probability density function such that 0 ≤ 𝑇 (𝑠′ | 𝑠, 𝑎) ≤
L and

∫
𝑆
𝑇 (𝑠′ | 𝑠, 𝑎) 𝑑𝑠′ = 1, ∀𝑠, 𝑠′ ∈ 𝑆 and 𝑎 ∈ 𝐴
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The first four assumptions are required to be able to use the
R-MAX algorithm, while the latter assumptions are needed for
bounding the discrepancy between the continuous meta-MDP and
the discretised meta-MDP.

4.2 Step 1: Discretising the Meta-MDP
To use𝑅MAX as theM-FOSmeta-agent, we discretise the continuous
meta-MDP 𝑀 = ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩ into a discretised meta-MDP 𝑀𝑑 =

⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩. We discretise the continuous state and action
space using 𝜀-nets with spacing 𝛼 .

4.2.1 Discretising the State and Action Space: Case I

In Case I, the meta-state 𝑠𝑡 is all inner agents’ policies parame-
ters from the previous timestep. Each of the inner agent 𝑖’s policy
is a Q-table, denoted as 𝜙𝑖 ∈ R |𝑆 |× |𝐴 | . Formally, 𝑠𝑡 := 𝝓𝑡−1 =

[𝜙𝑖
𝑡−1, 𝝓

−𝒊
𝒕−1] . The meta-action 𝑎𝑡 is the inner agent’s current policy

parameters 𝜙𝑖𝑡 .
For the meta-action space 𝐴 and a chosen discretisation error

𝛼 > 0, we obtain the 𝜀-net 𝐴𝑑 ⊂ 𝐴 such that for all 𝑎 ∈ 𝐴, there
exist 𝑎𝑑 ∈ 𝐴𝑑 where 

𝑎 − 𝑎𝑑

 ≤ 𝛼. (1)

Dividing the space with grid size 𝜆 results in the size of discre-
tised meta-action space upper bounded by

|𝐴𝑑 | ≤
(
2
√︁
|𝑆 | |𝐴|
𝜆

+ 1
) |𝑆 | |𝐴 |

. (2)

Similarly, the size of the discretised meta-state space is upper
bounded by

|𝑆𝑑 | ≤
(
2
√︁
𝑛 |𝑆 | |𝐴|
𝜆

+ 1
)𝑛 |𝑆 | |𝐴 |

. (3)

4.2.2 Discretising the State and Action Space: Case II

In Case II, the meta-state 𝑠𝑡 is all inner agents’ past trajectories.
Formally, 𝑠𝑡 := 𝝉𝑡 ., where 𝜏𝑖𝑡 = {𝑠0, 𝑎0, 𝑠1, 𝑎1, ..., 𝑠𝑡 , 𝑎𝑡 }. Because
we assume the Inner-Game is discrete (i.e. the state and action
space are both discrete), the meta-state in this case does not need
discretisation. Let ℎ be the maximum length of the past trajectories
combined, i.e. ℎ = ℎinner · ℎmeta. The size of the meta-state space is

|𝑆𝑡 | = ( |𝑆 | |𝐴|)𝑛ℎ . (4)

The meta-action remains the same as Case I.

4.2.3 Discretising the Transition and Reward Function

Under the above discretisation procedure, we define the discretised
MDP𝑀𝑑 = (𝑆,𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾), where the state space remains contin-
uous and the action space is restricted to discretised actions. We
define the transition function and reward function for𝑀𝑑 as:

𝑇𝑑 (𝑠′ | 𝑠, 𝑎𝑑 ) =
𝑇 (𝑠′

𝑑
| 𝑠𝑑 , 𝑎𝑑 )∫

𝑆
𝑇 (𝑧𝑑 | 𝑠𝑑 , 𝑎𝑑 )𝑑𝑧

(5)

Intuitively, 𝑇𝑑 (𝑠′ | 𝑠𝑑 , 𝑎𝑑 ) is a normalized sample of 𝑇𝑑 (· | ·, 𝑎𝑑 ) at
𝑠′, 𝑠𝑑 , and the transition probability 𝑇𝑑 (· | 𝑠, 𝑎𝑑 ) takes a constant
value within each grid in the state space. This means that instead

of treating the transition function as a discretised distribution of all
possible values of 𝑆𝑑 , we treat it as a continuous distribution over
the original continuous state space, but normalize each grid from
the 𝜀-net into a step function.

𝑅𝑑 (𝑠, 𝑎𝑑 ) = 𝑅(𝑠𝑑 , 𝑎𝑑 ) (6)

Similarly, the reward function is continuous over the state space,
but normalized each grid from the 𝜀-net into a step function.

4.3 Step 2: The𝑚-known Discretised MDP
In the previous step, we converted the meta-MDP 𝑀 into a discre-
tised meta-MDP 𝑀𝑑 . From 𝑀𝑑 , R-FOS builds an𝑚-known discre-
tised MDP𝑀𝑚,𝑑 (see Table 1).

Definition 4.9 (m-Known MDP). Let 𝑀𝑑 = ⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩ be
an MDP. We define𝑀𝑚, 𝑑 to be the𝑚-known MDP. As is standard
practice,𝑚-known refers to the set of state-action pairs that have
been visited at least𝑚 times. For all state-action pairs in𝑚-known,
the induced MDP 𝑀𝑚,𝑑 behaves identical to 𝑀𝑑 . For state-action
pairs outside of𝑚-known, the state-action pairs are self-absorbing
(i.e. only self-transitions) and maximally rewarding with 𝑅𝑀𝐴𝑋 .

4.4 Step 3: The Empirical Discretised MDP
From the𝑚-known discretised MDP𝑀𝑚,𝑑 , we then learn an empir-
ical𝑚-known discretised MDP𝑀𝑚,𝑑 by calculating the maximum
likelihood from empirical samples (see Table 1). As shown in Al-
gorithm 1, R-FOS learns an optimal policy within this empirical
𝑚-known discretised MDP.

Definition 4.10 (Empirical m-Known discretised MDP). 𝑀𝑚,𝑑 is
the expected version of 𝑀̂𝑚,𝑑 where:

𝑇𝑚,𝑑 (𝑠′𝑑 | 𝑠𝑑 , 𝑎𝑑 ) :=
{
𝑇𝑑 (𝑠′𝑑 | 𝑠𝑑 , 𝑎𝑑 ) if (𝑠𝑑 , 𝑎𝑑 ) ∈ m-known
1[𝑠′

𝑑
= 𝑠𝑑 ], otherwise

𝑇𝑚,𝑑 (𝑠′𝑑 | 𝑠𝑑 , 𝑎𝑑 ) :=

𝑛 (𝑠𝑑 ,𝑎𝑑 ,𝑠′𝑑 )
𝑛 (𝑠𝑑 ,𝑎𝑑 ) , if (𝑠𝑑 , 𝑎𝑑 ) ∈ m-known
1[𝑠′

𝑑
= 𝑠𝑑 ], otherwise

𝑅𝑚,𝑑 (𝑠𝑑 , 𝑎𝑑 ) :=
{
𝑅𝑑 (𝑠𝑑 , 𝑎𝑑 ), if (𝑠𝑑 , 𝑎𝑑 ) ∈ m-known
𝑅max otherwise

𝑅𝑚,𝑑 (𝑠𝑑 , 𝑎𝑑 ) =


∑𝑛 (𝑠𝑑 ,𝑎̂𝑑 )
𝑖

𝑟 (𝑠𝑑 ,𝑎𝑑 )
𝑛 (𝑠𝑑 ,𝑎𝑑 ) , if (𝑠𝑑 , 𝑎𝑑 ) ∈ m-known

𝑅max, otherwise
(7)

4.5 Step 4: The Bound Between𝑀𝑑 and 𝑀̂𝑚,𝑑
We first prove the PAC bound which guarantees that, with high
probability, the optimal policies learnt in the discretised MDP𝑀𝑑
and empirical𝑚−𝑘𝑛𝑜𝑤𝑛 discretised MDP are very close. We prove
the bound using results from [21].

Theorem 4.11. (𝑅MAX MDP Bound [21]) Suppose that 0 ≤ 𝜀 < 1
1−𝛾

and 0 ≤ 𝛿 < 1 are two real numbers and 𝑀 = ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩ is any
MDP. There exists inputs𝑚 =𝑚

(
1
𝜀 ,

1
𝛿

)
and 𝜀1, satisfying𝑚

(
1
𝜀 ,

1
𝛿

)
=

𝑂

(
(𝑆+ln(𝑆𝐴/𝛿 ) )𝑉 2

max
𝜀2 (1−𝛾 )2

)
and 1

𝜀1
= 𝑂

(
1
𝜀

)
, such that if 𝑅MAX is executed
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Ground Truth
MDP𝑀

Discretised
MDP𝑀𝑑

𝑚-known Discretised MDP
𝑀𝑚,𝑑

Empirical𝑚-known
Discretised MDP 𝑀̂𝑚,𝑑

𝑚-known =𝑀 =𝑀𝑑 =𝑀𝑑 ≈ 𝑀𝑑
Outside𝑚-known =𝑀 =𝑀𝑑 self-loop with maximum reward

Table 1: Comparison between𝑀,𝑀𝑑 , 𝑀𝑚,𝑑 , 𝑀̂𝑚,𝑑

on𝑀 with inputs𝑚 and 𝜀1, the following holds. Let𝐴𝑡 denote 𝑅MAX’s
policy at time 𝑡 and 𝑠𝑡 denote the state at time 𝑡 . With probability at
least 1 − 𝛿 , 𝑉𝐴𝑡

𝑀
(𝑠𝑡 ) ≥ 𝑉 ∗𝑀 (𝑠𝑡 ) − 𝜀 is true for all but

𝑂̃

(
𝑆2𝐴/

(
𝜀3 (1 − 𝛾)6

))
timesteps (final sample complexity bound).

4.6 Case I
Directly plugging in Equations 3 and 2 into Theorem 4.11, we obtain
the following PAC-bound.

Theorem 4.12. Suppose that 0 ≤ 𝜀 < 1
1−𝛾 and 0 ≤ 𝛿 < 1 are

two real numbers. Let M be any continuous meta-MDP with in-
ner stochastic game 𝐺 = ⟨𝑆,𝐴,𝑇inner, 𝑅inner⟩. Let us denote 𝑀𝑑 =

⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩ as discretised version of 𝑀 (as described in Case

I) using grid size of 𝜆. There exists inputs 𝑚 = 𝑚

(
1
𝜀 ,

1
𝛿

)
and 𝜀1,

satisfying

𝑚

(
1
𝜀
,
1
𝛿

)
= 𝑂̃

©­­­­­«
(
2
√
𝑛 |𝑆 | |𝐴 |
𝜆

+ 1
)𝑛 |𝑆 | |𝐴 |

𝜀2 (1 − 𝛾)4

ª®®®®®¬
and 1

𝜀1
= 𝑂

(
1
𝜀

)
, such that if 𝑅-𝑀𝐴𝑋 is executed on 𝑀 with inputs

𝑚 and 𝜀1, then the following holds. Let A𝑡 denote 𝑅-𝑀𝐴𝑋 ’s policy
at time 𝑡 and 𝑠𝑡 denote the state at time 𝑡 . With probability at least
1 − 𝛿 , 𝑉 ∗

𝑀𝑑
(𝑠𝑡 ) −𝑉 A𝑡

𝑀𝑑
(𝑠𝑡 ) ≤ 𝜀 is true for all but

𝑂̃

©­­­­­«
(
2
√
𝑛 |𝑆 | |𝐴 |
𝜆

+ 1
)2𝑛 |𝑆 | |𝐴 | (

2
√
|𝑆 | |𝐴 |
𝜆

+ 1
) |𝑆 | |𝐴 |

𝜀3 (1 − 𝛾)6

ª®®®®®¬
timesteps.

4.7 Case II
Directly plugging in Equations 4 and 2 into Theorem 4.11, we obtain
the folling PAC-bound.

Theorem 4.13. Suppose that 0 ≤ 𝜀 < 1
1−𝛾 and 0 ≤ 𝛿 < 1 are

two real numbers. Let M be any continuous meta-MDP with in-
ner stochastic game 𝐺 = ⟨𝑆,𝐴,𝑇inner, 𝑅inner⟩. Let us denote 𝑀𝑑 =

⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩ as discretised version of 𝑀 (as described in Case

I) using grid size of 𝜆. There exists inputs 𝑚 = 𝑚

(
1
𝜀 ,

1
𝛿

)
and 𝜀1,

satisfying

𝑚

(
1
𝜀
,
1
𝛿

)
= 𝑂̃

(
( |𝑆 | |𝐴|)𝑛ℎ
𝜀2 (1 − 𝛾)4

)
and 1

𝜀1
= 𝑂

(
1
𝜀

)
, such that if 𝑅-𝑀𝐴𝑋 is executed on 𝑀 with inputs

𝑚 and 𝜀1, then the following holds. Let A𝑡 denote 𝑅-𝑀𝐴𝑋 ’s policy
at time 𝑡 and 𝑠𝑡 denote the state at time 𝑡 . With probability at least
1 − 𝛿 , 𝑉 ∗

𝑀𝑑
(𝑠𝑡 ) −𝑉 A𝑡

𝑀𝑑
(𝑠𝑡 ) ≤ 𝜀 is true for all but

𝑂̃

©­­­­­«
( |𝑆 | |𝐴|)𝑛ℎ

(
2
√
|𝑆 | |𝐴 |
𝜆

+ 1
) |𝑆 | |𝐴 |

𝜀3 (1 − 𝛾)6

ª®®®®®¬
timesteps.

4.8 Step 5: The Bound between𝑀 and𝑀𝑑
Next, we give a guarantee that the optimal policies learnt in the
original meta-MDP 𝑀 and the discretised MDP 𝑀𝑑 are similar
enough with a distance up to a constant factor. Using the results
from [4], we obtain the following property.

Theorem 4.14. (MDP Discretization Bound [8]) There exists a con-
stant K (thats depends only on the Lipschitz constant L) such that
for some discretisation coarseness 𝜆 ∈ (0, L2 ]


𝑉 ∗𝑀 −𝑉 ∗𝑀𝑑





∞
≤ K𝜆
(1 − 𝛾)2

.

4.9 Step 6: Adding it together
To combine the bounds we obtained in Step 4 and 5, we need
an additional bound that bounds the policy value between the
continuous and discretised MDP.

Lemma 4.15 (Simulation Lemma for Continuous MDPs). Let 𝑀
and 𝑀̂ be two MDPs that only differ in (𝑇, 𝑅) and (𝑇, 𝑅).

Let 𝜖𝑅 ≥ max𝑠,𝑎 |𝑅(𝑠, 𝑎) − 𝑅(𝑠, 𝑎) | and 𝜀𝑝 ≥ max𝑠,𝑎 ∥𝑇 (· | 𝑠, 𝑎) −
𝑇 (· | 𝑠, 𝑎) | |1. Then ∀𝜋 : Ŝ→ 𝑎,


𝑉 𝜋𝑀 −𝑉 𝜋𝑀̂




∞
≤ 𝜀𝑅

1 − 𝛾 +
𝛾𝜖𝑃𝑉max
2(1 − 𝛾) .

Under discretisation, [4] showed that, with a small enough grid
size, and restricting to the discretised action space, the difference
in transition probability of the continuous MDP𝑀 and discretised
MDP𝑀𝑑 is upper bounded by a constant.

Lemma 4.16. [4] There exists a constant 𝐾𝑃 (depending only on
constant L) such that

|𝑇𝑑 (𝑠′ |𝑠, 𝑎𝑑 ) −𝑇 (𝑠′ |𝑠, 𝑎𝑑 ) | ≤ 𝐾𝑝𝛼
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for all 𝑠′, 𝑠 ∈ 𝑆, 𝑎𝑑 ∈ 𝐴𝑑 and all 𝛼 ≤ (0, 12L]
We now apply the Lemma 4.15 to bound the difference in value

for any discretised policy (i.e. restricting action space to 𝐴𝑑 ) in the
continuous MDP𝑀 and discretised MDP𝑀𝑑 .

Lemma 4.17. Let𝑀
𝐴̂𝑑

= (𝑆,𝐴𝑑 ,𝑇 , 𝑅,𝛾) be the continuous MDP𝑀
restricted to the discretised action space. Recall the discretised MDP
𝑀𝑑 = (𝑆,𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾). Then for any discretised policy 𝜋 : 𝑆 → 𝐴𝑑 ,

∥𝑉 𝜋
𝑀

𝐴̂𝑑

−𝑉 𝜋
𝑀𝑑
∥∞ = ∥𝑉 𝜋

𝑀
−𝑉 𝜋

𝑀𝑑
∥∞ ≤

LR𝛼
1 − 𝛾 +

𝛾𝐾𝑝𝛼

(1 − 𝛾)2

Note that, restricted to discretised policies 𝜋 which only picks
actions in 𝐴𝑑 , the value of 𝜋 in the original MDP𝑀 , 𝑉 𝜋

𝑀
, equals to

its value the same MDP restricted to discretised action space,𝑉 𝜋
𝑀

𝐴̂𝑑

.

4.10 Case I
Summing up the bounds in Lemma 4.17, Theorems 4.12 and 4.14,
we obtain the final bound for Case I. The final bound guarantees,
with high probability, that the policy we obtain from R-FOS is close
to the optimal policy in𝑀 apart from a constant factor.

Theorem 4.18. Suppose that 0 ≤ 𝜀 < 1
1−𝛾 and 0 ≤ 𝛿 < 1 are

two real numbers. Let M be any continuous meta-MDP with in-
ner stochastic game 𝐺 = ⟨𝑆,𝐴,𝑇inner, 𝑅inner⟩. Let us denote 𝑀𝑑 =

⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩ as discretised version of 𝑀 (as described in Case

I) using grid size of 𝜆. There exists inputs 𝑚 = 𝑚

(
1
𝜀 ,

1
𝛿

)
and 𝜀1,

satisfying

𝑚

(
1
𝜀
,
1
𝛿

)
= 𝑂̃

©­­­­­«
(
2
√
𝑛 |𝑆 | |𝐴 |
𝜆

+ 1
)𝑛 |𝑆 | |𝐴 |

𝜀2 (1 − 𝛾)4

ª®®®®®¬
and 1

𝜀1
= 𝑂

(
1
𝜀

)
, such that if 𝑅-𝑀𝐴𝑋 is executed on 𝑀 with inputs

𝑚 and 𝜀1, then the following holds. Let A𝑡 denote 𝑅-𝑀𝐴𝑋 ’s policy
at time 𝑡 and 𝑠𝑡 denote the state at time 𝑡 . With probability at least
1 − 𝛿 ,

𝑉 ∗𝑀 (𝑠𝑡 ) −𝑉
A𝑡

𝑀
(𝑠𝑡 ) ≤ 𝜀 +

K𝜆
(1 − 𝛾)2

+ LR𝛼
1 − 𝛾 +

𝛾𝐾𝑝𝛼

(1 − 𝛾)2
is true for all but

𝑂̃

©­­­­­«
(
2
√
𝑛 |𝑆 | |𝐴 |
𝜆

+ 1
)2𝑛 |𝑆 | |𝐴 | (

2
√
|𝑆 | |𝐴 |
𝜆

+ 1
) |𝑆 | |𝐴 |

𝜀3 (1 − 𝛾)6

ª®®®®®¬
timesteps. I.e. the above is the final sample complexity.

4.11 Case II
Similarly, summing up the bounds in Lemma 4.17, Theorems 4.13
and 4.14, we obtain the final bound for Case II. In Section 5, we also
show empirically that the number of samples needed indeed scales
by a factor of |𝑆 | |𝐴|2𝑛ℎ , as seen in Theorem 4.19.

Theorem 4.19. Suppose that 0 ≤ 𝜀 < 1
1−𝛾 and 0 ≤ 𝛿 < 1 are

two real numbers. Let M be any continuous meta-MDP with in-
ner stochastic game 𝐺 = ⟨𝑆,𝐴,𝑇inner, 𝑅inner⟩. Let us denote 𝑀𝑑 =

⟨𝑆𝑑 , 𝐴𝑑 ,𝑇𝑑 , 𝑅𝑑 , 𝛾⟩ as discretised version of 𝑀 (as described in Case

I) using grid size of 𝜆. There exists inputs 𝑚 = 𝑚

(
1
𝜀 ,

1
𝛿

)
and 𝜀1,

satisfying

𝑚

(
1
𝜀
,
1
𝛿

)
= 𝑂̃

(
( |𝑆 | |𝐴|)𝑛ℎ
𝜀2 (1 − 𝛾)4

)
and 1

𝜀1
= 𝑂

(
1
𝜀

)
, such that if 𝑅-𝑀𝐴𝑋 is executed on 𝑀 with inputs

𝑚 and 𝜀1, then the following holds. Let A𝑡 denote 𝑅-𝑀𝐴𝑋 ’s policy
at time 𝑡 and 𝑠𝑡 denote the state at time 𝑡 . With probability at least
1 − 𝛿 ,

𝑉 ∗𝑀 (𝑠𝑡 ) −𝑉
A𝑡

𝑀
(𝑠𝑡 ) ≤ 𝜀 +

K𝜆
(1 − 𝛾)2

+ LR𝛼
1 − 𝛾 +

𝛾𝐾𝑝𝛼

2(1 − 𝛾)2
is true for all but

𝑂̃

©­­­­­«
( |𝑆 | |𝐴|)2𝑛ℎ

(
2
√
|𝑆 | |𝐴 |
𝜆

+ 1
) |𝑆 | |𝐴 |

𝜀3 (1 − 𝛾)6

ª®®®®®¬
timesteps

5 EXPERIMENTS
We now validate our theoretical findings empirically.

5.1 The Matching Pennies Environment
Matching Pennies is a two-player, zero-sum game with a payoff
matrix shown in Section 5.1. Each agent either pick Heads (H) or
Tails (T), 𝑎𝑖 ∈ {𝐻,𝑇 } and 𝑎𝑖 ∼ 𝜋𝜙𝑖 (· | {}), where 𝜙𝑖 correspond to
the probability of player 𝑖 picking H. Note that in this work, the
game is not iterated. This means that an inner-episode has a length
of 1 and the inner-episodic return corresponds to the payoff after
one interaction 𝑟 = Payoff Table(𝑎1, 𝑎2). For R-FOS, this means that
a meta-step corresponds to one iteration of the Matching Pennies
game. The meta-return corresponds to the discounted, cumulative
meta-reward after playing the Matching Pennies𝐾 times. While the
original M-FOS was evaluated on a more complex, iterated version
of the Matching Pennies game, this simple setting with a binary
action space is sufficient for our empirical validation. Our setting is
also more practical for implementation because the𝑅MAX algorithm
memory usage grows exponentially with the size of the state and
action space. Thus, for any of the more complex environments from
the M-FOS paper we were not able do any empirical analysis of R-
FOS at all, due to the exponential sample and memory requirements.

Player 1\Player 2 Head Tail
Head (+1, -1) (-1, +1)
Tail (-1, +1) (+1, -1)

Table 2: Payoff matrix for the Matching Pennies environ-
ment.

5.2 Experiment Setup
We implement an empirical version of our R-FOS algorithm. Be-
cause the R-FOS algorithm uses Q-value iteration to solve the meta-
game, the algorithm needs to keep a copy of the meta-Q-value
table. Therefore, memory usage grows exponentially with respect
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to the inner-game’s state-action space size. We found that Case I of
the algorithm was intractable to implement even with a compact
environment like MP. The meta Q-table of size |𝑆 | × |𝐴| was sim-
ply too large to fit in memory. Therefore, we focus on empirically
validating a simplified case of Case II. We make two simplifications,

(1) The meta-state uses a partial history of past actions. Only the
most recent ℎ actions are used, where ℎ is a hyper-parameter
we pick. The window size allows us to control the size of the
meta-game state, i.e., 𝑆 ∈ R2ℎ . Because the MP game only
has one state, it is not necessary to include the state.

(2) To further decrease the problem size for tractability, we de-
fine the meta-agent action to be the inner-agent’s greedy
action, instead of the Q-table. This results in a much small
meta-action size of |𝐴| = 2

6 RESULTS AND DISCUSSION

Figure 1: Empirical sample complexity while varying the tra-
jectory window ℎ. We plot the meta-reward per meta-episode.
To better visualise the connection with the theory results,
we plot the x-axis in log16 scale. The reported results are the
mean over 3 seeds with standard error.

We draw connections between our sample complexity theory
results and experimental results in the MP environment. Our goal is
to analyse the scaling law of R-FOS. Specifically, we investigate how
the sample complexity changes when we vary the window-size ℎ.
Under the MP environment settings, the inner-game state-action
space size is |𝑆 | |𝐴| = 2 and the number of players is𝑛 = 2. Following
the bound in Theorem 4.19, we see that the only term that depends
on h is the 16ℎ term:

𝑂̃

©­­­­­«
( |𝑆 | |𝐴|)2𝑛ℎ

(
2
√
|𝑆 | |𝐴 |
𝜆

+ 1
) |𝑆 | |𝐴 |

𝜀3 (1 − 𝛾)6

ª®®®®®¬
∼ 𝑂̃

©­­­­­«
16ℎ

(
2
√
2
𝜆
+ 1

)2
𝜀3 (1 − 𝛾)6

ª®®®®®¬
Hence, our theory results says that whenever the game horizon

is increased by 1, we expect to see the sample complexity to increase

by a factor of 16 in the MP environment. Figure 1 shows the reward
across the meta episodes on a log 16 scale. The graph contains
three reward curves for meta-trajectory length ℎ = 2, 3, 4, which
converges approximately at 163, 164, 𝑎𝑛𝑑165 episodes. Indeed, this
is consistent with our theoretical results in Theorem 4.13.

7 CONCLUSION
We presented three main contributions in our work. First of all, we
presented R-FOS, a tabular algorithm adapted from M-FOS. Unlike
M-FOS, which learns a policy in a continuous meta-MDP, R-FOS
instead learns a policy in a discrete approximation of the origi-
nal meta-MDP which allows us to more easily perform theoretical
analysis. Within this discretised meta-MDP, R-FOS uses the 𝑅MAX
algorithm as the meta-agent. We adapted R-FOS from M-FOS such
that it still maintains all key attributes of M-FOS. Second of all, we
derived an exponential sample complexity bound for both cases
described in M-FOS (the two cases being either inner-game policies
or inner-game trajectory history as meta-state). Specifically, we
proved that with high probability, the policy learnt by R-FOS is
close to the optimal policy from the original meta-MDP up to a
constant distance. Finally, we implemented R-FOS and investigated
the empirical sample complexity in the Matching Pennies environ-
ment. We draw connections between theory and experiments by
showing both results scales exponentially according to the size of
the inner-game’s state-action-space.
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