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ABSTRACT
While reinforcement learning (RL) algorithms have been success-
fully applied to numerous tasks, their reliance on neural networks
makes their behavior difficult to understand and trust. Counter-
factual explanations are human-friendly explanations that offer
users actionable advice on how to alter the model inputs to achieve
the desired output from a black-box system. However, current ap-
proaches to generating counterfactuals in RL ignore the stochastic
and sequential nature of RL tasks and can produce counterfactuals
that are difficult to obtain or do not deliver the desired outcome.
In this work, we propose RACCER, the first RL-specific approach
to generating counterfactual explanations for the behavior of RL
agents. We first propose and implement a set of RL-specific coun-
terfactual properties that ensure easily reachable counterfactuals
with highly probable desired outcomes. We use a heuristic tree
search of the agent’s execution trajectories to find the most suit-
able counterfactuals based on the defined properties. We evaluate
RACCER in two tasks as well as conduct a user study to show that
RL-specific counterfactuals help users better understand agents’
behavior compared to the current state-of-the-art approaches.
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1 INTRODUCTION
Reinforcement learning (RL) has shown remarkable success in re-
cent years and is being developed for high-risk areas such as health-
care and autonomous driving [2]. However, RL algorithms often use
neural networks to represent their policies, making them difficult
to understand and apply to real-life tasks [22].

Counterfactual explanations are user-friendly explanations for
interpreting decisions of black-box algorithms [18]. In machine
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learning, counterfactuals are defined as an answer to the ques-
tion: “Given that the black-box model M outputs 𝐴 for input features
𝑓1, ..., 𝑓𝑘 , how can the features change to elicit output B from M?” [25].
They give users actionable advice on how to change their input to
obtain a desired output, and are inherent to human reasoning, as
we rely on them to assign blame and understand events [3].

In recent years, numerous methods for generating counterfac-
tual explanations have been developed both for supervised [6, 9,
10, 16, 17, 19, 21, 23, 26] and RL [12, 20]. In RL, Olson et al. [20]
propose a generative model for generating realistic counterfactu-
als that requires access to internal parameters of the black-box
model. In contrast, Huber et al. [12] propose GANterfactual-RL,
the only model-agnostic approach to generating counterfactuals
in RL. GANterfactual-RL uses generative modeling to generate
counterfactuals for visual tasks.

The majority of proposed methods for generating counterfactu-
als in supervised and RL search for the smallest change in features
that leads to a change in outcome. However, due to the sequential
nature of RL tasks, two states with similar features can be far away
in terms of execution and even small changes in features can have
uncertain outcomes due to stochasticity in the environment [8].
Offering users counterfactuals that are not easy to reach or do not
deliver on the promised outcome can cost users substantial time,
and cause them to lose trust in the AI system. Additionally, current
approaches do not distinguish between the two types of counter-
factual explanations that can be defined for RL – those that change
causes from the past, from those that provide actionable advice for
the future. For example, if a user’s loan is denied, the counterfactual
can either state that “Had your income been higher you would have
been approved”, or “If you increase your income, you will be approved
in the future” [5].

In this work, we propose RACCER (Reachable And Certain
Counterfactual Explanations for Reinforcement Learning), to the
best of our knowledge the first approach for generating counter-
factual explanations for RL tasks which takes into account the
sequential and stochastic nature of the RL framework. RACCER
generates explanations that explore how changes to the current
state can affect future outcomes, sometimes referred to prefactual
explanations [5]. Firstly, we propose three novel RL-specific coun-
terfactual properties – reachability, stochastic certainty, and fidelity.
These counterfactual properties rely on the stochastic and sequen-
tial nature of RL tasks and ensure that counterfactuals are easy to
reach and deliver the desired outcome with high probability. RAC-
CER searches for the most suitable counterfactual by optimizing a
loss function consisting of the three RL-specific properties using
a heuristic tree search of the agent’s execution tree. We evaluate
RACCER in two environments and compare it to the only other
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model-agnostic approach for RL – GANterfactual-RL [12]. We find
that RACCER performs better on feature-based and RL-specific
counterfactual properties when explaining both fully-trained and
suboptimal models. Additionally, we conduct a user study in which
we compare the effect of counterfactual explanations on user under-
standing of RL agents and show that RACCER generates counterfac-
tuals that help humans better understand and predict the behavior
of RL agents.

Our contributions are as follows:
(1) We design three RL-specific counterfactual properties – reach-

ability, stochastic certainty, and fidelity, and provide metrics
for their estimation.

(2) We propose RACCER, the first algorithm for generating RL-
specific counterfactual explanations, which relies on the
above counterfactual properties.

(3) We conduct a user study and show that RACCER can pro-
duce counterfactuals that help humans better understand an
agent’s behavior compared to the baseline approaches.

The implementation of RACCER and evaluation details can be
found at https://github.com/jas97/RACCER.

2 RELATEDWORK
In supervised learning, counterfactual explanations have been used
to propose changes in input features that elicit a desired prediction
from a black-box model. Various counterfactual properties have
been defined to evaluate different counterfactuals [25]. For example,
validity is used to measure whether counterfactual achieves the
desired output, proximity is a feature-based similarity measure
that ensures counterfactual features are similar to those in the
original instance, and sparsity measures the number of features
changed. In recent years, numerous works have proposed methods
for generating counterfactual explanations in supervised learning
[6, 16, 17, 19, 21, 23, 26]. The majority of these methods follow
the same approach, where a loss function is defined by combining
different counterfactual properties and optimized over the training
data set. The methods differ in their design of the loss function
and the choice of the optimization method. For example, in the
first work on counterfactual explanations for supervised learning,
Wachter et al. [26] use gradient descent to optimize a loss function
based on proximity and validity properties. Similarly, Mothilal et al.
[19] propose DICE, which introduces a diversity property to the
approach of Wachter et al. [26] to ensure users are offered a set
of diverse, high-quality explanations. Dandl et al. [6] poses the
problem of counterfactual search as multi-objective optimization
and uses a genetic algorithm to optimize validity, proximity, sparsity,
and data manifold closeness of counterfactual instances.

In RL, counterfactual explanations aim to explain a decision of a
black-box RL model in a specific state by proposing an alternative
state in which the model would choose the desired action. Olson
et al. [20] propose an approach that relies on generative modeling
to create realistic counterfactuals, similar in features to the orig-
inal instance, and produce a desired output. The approach is not
model-agnostic and requires access to the internal parameters of
the black-box model that is being explained. In contrast, Huber
et al. [12] propose a model-agnostic approach GANterfactual-RL,
which frames the counterfactual search as a domain translation

problem, where each domain contains states in which the agent
would choose a specific action. To find a suitable counterfactual, the
original instance is translated to the target domain. The algorithm
is based on the StarGAN architecture [4] and includes training
a discriminator 𝐷 and generator 𝐺 . The generator receives as an
input a state and target domain and produces a translated state.
The role of the discriminator is to distinguish between real and
fake images. The generator and discriminator are trained on states
extracted from the agent’s policy.

Current approaches in RL [12, 20] generate realistic counterfac-
tuals that can help users better understand agents’ decisions and
even detect faulty behavior in Atari agents. However, they focus on
the same feature-based counterfactual properties such as proxim-
ity and sparsity as supervised learning methods. In RL where two
states can be similar in features but distant in terms of execution,
feature-based metrics are not sufficient for measuring how obtain-
able a counterfactual is [8]. Relying only on feature-based similarity
measures can produce counterfactuals that are not easily (or at all)
obtainable, and decrease human trust in the system. In contrast,
our work proposes the first approach for generating RL-specific
counterfactuals that take into account the stochastic and sequential
nature of RL tasks.

Although the purpose of counterfactual explanations is to show
a path to the desired outcome, this path can be uncertain due to the
environment in which the system operates. For example, even if the
loan applicant fulfills all conditions stipulated in a counterfactual,
the bank might change the conditions for approving a loan. Delaney
et al. [7] recognize the need for estimating and presenting the un-
certainty associated with counterfactuals to the user in supervised
learning tasks. In this work, we estimate uncertainty from an RL
perspective and use it not only as additional information for the
user but as an important factor in searching for the counterfactual.

3 RACCER
In this section, we describe RACCER, our approach for generating
counterfactual explanations for RL tasks. To generate a counter-
factual explanation 𝑥 ′, we require oracle access to the black-box
model𝑀 being explained, the state 𝑥 being explained, and the de-
sired outcome 𝑎′. Additionally, the approach needs access to the
RL environment. RACCER generates a counterfactual state 𝑥 ′ that
can be easily reached from 𝑥 and in which the black-box model𝑀
chooses 𝑎′ with a high probability. RACCER is fully model-agnostic,
does not require information on model parameters, and can be used
for generating counterfactual explanations of any RL model.

RACCER does not search for the counterfactual directly but looks
for a sequence of actions to transform the original into the counter-
factual instance [13, 14, 24]. This way of conducting counterfactual
searches is more informative for the user, as they can be presented
with not just the counterfactual instance, but also the sequence of
actions they need to perform to obtain their desired outcome. To
that end, we set out to find the optimal sequence of actions 𝐴 that
can transform 𝑥 into a counterfactual state 𝑥 ′. In the remainder of
this section, we describe how we can evaluate action sequences
that lead to counterfactual states (Sections 3.1 and 3.2) and describe
our approach to searching for the optimal one (Section 3.3).
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3.1 Counterfactual Properties for RL
Counterfactual properties guide the counterfactual search and are
used to select the most suitable counterfactual explanation. In this
section, we propose three RL-specific counterfactual properties that
take into account the sequential and stochastic nature of RL tasks.
These properties ensure that counterfactuals are easily obtainable
from the original instance, and produce desired output with high
certainty.We define these properties as functions of action sequence
𝐴 that transforms 𝑥 into counterfactual 𝑥 ′.

3.1.1 Reachability. In RL two states can be similar in terms of state
features, but far away in terms of execution. This means that, de-
spite appearing similar, a large number of actions might be required
to reach the counterfactual from the original state. Conversely, a
state can be reachable by a few RL actions even if it appears dif-
ferent based on its feature values. Additionally, state features can
be affected by stochastic processes outside of the agent’s control.
Relying solely on feature-based similarity measures (e.g. proxim-
ity, sparsity) could dismiss easily reachable counterfactuals where
changes in features are beyond the agent’s control and do not affect
action choice.

To account for the sequential and stochastic nature of RL tasks,
we propose measuring reachability. For a state 𝑥 and a sequence of
actions 𝐴, we define reachability as:

𝑅(𝑥,𝐴) = 𝑙𝑒𝑛(𝐴) (1)
𝑅(𝑥,𝐴) measures the number of actions in the sequence that

navigates to the counterfactual. Minimizing this property ensures
counterfactuals can be reached within a small number of steps.

3.1.2 Fidelity. RACCER searches for counterfactuals by finding an
optimal sequence of RL actions to transform the original instance.
For the counterfactual to be representative of the agent’s behavior,
the sequence of actions has to be likely under the agent’s policy.
As an example, consider a simple grid world where an agent needs
to pick up one of the two keys – red or blue and open the door.
To explain why the agent did not choose to go to the door in a
specific step, the counterfactual explanation might show that the
agent would have gone to the door had they collected the red key
first. However, if the agent’s policy prefers the blue key over the
red, this counterfactual is not representative of the agent’s behavior
and could be misleading to the user.

For this reason, RACCER prioritizes counterfactual states that
can be reached under the agent’s policy. We calculate the fidelity
of a sequence of actions 𝐴 as the probability that the agent will
choose these actions from state 𝑥 :

𝐹 (𝑥,𝐴) = 1 −
∏
𝑎∈𝐴

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄 (𝑥,A))[𝑎] (2)

where 𝑄 (𝑥, 𝑎) is the Q-value of taking action 𝑎 in state 𝑥 , and
A is the action space of the task. By optimizing fidelity, we ensure
that generated counterfactuals are representative of the agent’s
behavior.

3.1.3 Stochastic certainty. One of the main qualities of counterfac-
tual explanations is that they deliver the desired outcome. Asking
the user to put their time and effort into changing the model inputs,
only to obtain another unsatisfactory output can have detrimental

Algorithm 1 Counterfactual heuristic tree search

1: Input: state 𝑥 , desired outcome 𝑎′, black-box model 𝑀 , envi-
ronment 𝐸

2: Parameters:number of iterations 𝑇
3: Output: counterfactual state 𝑥 ′
4: 𝑡 = {𝑥} {Initializing search tree}
5: 𝑖 = 0
6: while i < T do
7: n = select(t) {Select state 𝑛 to be expanded}
8: S = expand(n) {Expand 𝑛 by performing available actions}
9: for all 𝑠 ∈ 𝑆 do
10: 𝑣𝑎𝑙 (𝑠) = 𝐿(𝑥,𝐴, 𝑎′) {Evaluate states in 𝑆 according to 𝐿}
11: 𝑡+ = 𝑠

12: end for
13: backpropagate() {Propagate values back to the root}
14: 𝑖+ = 1
15: end while
16: 𝑝 = []
17: for all 𝑠 ∈ 𝑡 do
18: if 𝑣𝑎𝑙𝑖𝑑 (𝑠) then
19: 𝑝+ = 𝑠 {Filter valid counterfactuals}
20: end if
21: end for
22: 𝑐 𝑓 = argmin𝑠∈𝑝 𝐿(𝑥, 𝑠 (𝐴), 𝑎′) {Select the best counterfactual}

effects on user trust in the system. During the time that is needed to
convert the original instance into a counterfactual, the conditions
of the task can change, rendering the counterfactual invalid.

In RL, the stochastic nature of the environment can make a
counterfactual instance invalid during the time it takes to reach
it from the original state. To ensure that users are presented with
counterfactuals that are likely to produce the desired output, we
propose stochastic certainty. For instance 𝑥 , a sequence of actions𝐴,
black-box model𝑀 and the desired action 𝑎′ stochastic certainty is
defined as:

𝑆 (𝑥,𝐴, 𝑎′) = 1 − 𝑃 [𝑀 (𝑥 ′) = 𝑎′ | 𝑥 ′ = 𝐴(𝑥)] (3)

where 𝐴(𝑥) is a state obtained by applying actions from 𝐴 to
state 𝑥 . Intuitively, stochastic certainty measures the probability of
the desired outcome still being chosen by𝑀 after the time it takes
to navigate to the counterfactual state. By maximizing stochastic
certainty we promote sequences of actions that more often lead to
the desired outcome.

3.2 Loss Function
To optimize the counterfactual properties, we design a weighted
loss function encompassing RL-specific objectives. For a state 𝑥 ,
sequence of actions 𝐴, desired output 𝑎′, loss function is defined as:

𝐿(𝑥,𝐴, 𝑎′) = 𝛼𝑅(𝑥,𝐴) + 𝛽𝐹 (𝑥,𝐴) + 𝛾𝑆 (𝑥,𝐴, 𝑎′) (4)

where 𝛼, 𝛽 and 𝛾 are parameters determining the importance of
different properties. By minimizing 𝐿 we can find a sequence of
actions that quickly and certainly leads to a counterfactual expla-
nation. However, 𝐿(𝑥,𝐴, 𝑎′) does not verify that 𝑎′ is predicted in
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Figure 1: Heuristic tree search: in each iteration, a node is
selected by navigating the tree from the root to a leaf by
choosing actions according to the UCT formula. The node is
expanded by performing all possible actions and appending
all obtained states as children of the node. Finally, newly gen-
erated nodes are evaluated and their values are propagated
back to the root to update the values of parent nodes. The
white nodes represent states, while black nodes are deter-
mination nodes, that serve to instantiate all possible child
states of a node in a stochastic environment.

the obtained counterfactual. To that end, we additionally have to
ensure that a validity constraint is satisfied:

𝑉 (𝑥, 𝑥 ′, 𝑎′) = 𝑀 (𝑥 ′) == 𝑎′ (5)
where 𝑥 ′ is obtained by performing actions from 𝐴 in 𝑥 . Validity

is used to filter potential counterfactual instances as is described in
more detail in the next part of this section.

3.3 Counterfactual Search
Our goal is to obtain a sequence of actions𝐴 that minimizes the loss
function 𝐿 and satisfies the validity constraint. Unlike traditional
counterfactual search which directly searches for a counterfactual
in a data set, we are looking for an optimal sequence of actions
that can transform the original state into a counterfactual one.
This means that we cannot directly optimize 𝐿 over a data set of
states to find a counterfactual as this would give us no information
about how difficult this counterfactual is to reach in terms of RL
actions. To this end, we propose a counterfactual search algorithm
that utilizes heuristic tree search to find a sequence of actions that
transform the original into a counterfactual state that minimizes the
loss function 𝐿. The details of the algorithm are given in Algorithm
1 and shown in Figure 1.

The proposed algorithm builds a tree to represent the agent’s
execution – each node corresponds to a state, and each edge to
one action. Each node 𝑛 is also associated with a value 𝑣𝑎𝑙 (𝑛) and
each edge is assigned a value 𝑄 (𝑛, 𝑎). These values are based on
the loss function 𝐿 and are used to determine which node should be
expanded in the next iteration. Children of a node are obtained by
taking a specific action in that node. To account for the stochasticity
in the environment, we apply determinization to the expanding
process by adding hidden determinization nodes each time an action
is performed. The children of determinization nodes are sampled
from the possible states that result from performing a specific action.

To calculate 𝑣𝑎𝑙 (𝑛) we compute the value of 𝐿(𝑥,𝐴, 𝑎′), where 𝐴 is
the sequence of actions that navigates from root 𝑥 to node 𝑛 in the
tree.𝑄 (𝑛, 𝑎) is calculated for each node𝑛 and action 𝑎 as the average
of values 𝑣𝑎𝑙 of the children nodes obtained when performing 𝑎 in 𝑛.
To estimate 𝐿(𝑥,𝐴, 𝑎′) we need to calculate the values of individual
counterfactual properties of reachability, fidelity, and stochastic
uncertainty for nodes in the tree. We calculate the reachability of
node 𝑛 as the length of the path between the root and 𝑛. Similarly,
to calculate fidelity, we use the Q-values of state-action pairs on the
path from the root to 𝑛 according to Equation 2. Finally, to calculate
stochastic certainty, we perform 𝑁 simulations by unrolling the
sequence of actions 𝐴 from 𝑥 in the environment and record the
number of times a desired outcome is obtained in the resulting state.
We then calculate stochastic certainty as:

𝑆 (𝑥,𝐴, 𝑎′) = 1 − 𝑁 (𝑀 (𝑥 ′) == 𝑎′)
𝑁

(6)

where 𝑥 ′ is a state obtained after following𝐴 in 𝑥 . We normalize
the values for reachability so that they fall within the [0, 1] range,
while fidelity and stochastic uncertainty values naturally belong to
that range. We can then evaluate a node in a tree by combining and
weighting the three counterfactual properties to obtain 𝐿(𝑥,𝐴, 𝑎′)
as shown in Equation 4.

At the start of the search, a tree is constructed with only the
root node corresponding to the state 𝑥 that is being explained. At
each step of the algorithm, a node in the tree is chosen and the
tree is expanded with the node’s children. All actions are expanded
simultaneously in the node. The resulting child nodes are then
evaluated against 𝐿, and the results are propagated back to the tree
root to update the value of nodes and edges. To decide which node
is expanded in each iteration we navigate the tree from the root,
at each node 𝑛 taking the action decided by the Upper Confidence
Bound applied for Trees (UCT) formula [15]:

𝑎∗ = argmax
𝑎∈𝐴

{
𝑄 (𝑎, 𝑛) +𝐶

√︄
ln(𝑁 (𝑛))
𝑁 (𝑠, 𝑎)

}
(7)

where 𝐶 is the exploration constant, 𝑁 (𝑛) number of times 𝑛
was visited and 𝑁 (𝑛, 𝑎) number of times 𝑎 was chosen in 𝑛. UCT
balances between following the paths of high value and exploring
underrepresented paths through the exploration constant 𝐶 . The
process is repeated until a predetermined maximum number of
iterations 𝑇 is reached.

Once the tree is fully grown, all nodes are first filtered according
to the validity constraint (Equation 5) to remain only with the states
that deliver the desired output. The remaining nodes are potential
counterfactual explanations. Then all nodes are evaluated against 𝐿.
The state corresponding to the node in the tree with the minimum
value for 𝐿 is presented to the user as the best counterfactual.

4 EXPERIMENTS
In this section, we outline the experiment setup for evaluating
RACCER. We compare RACCER to the only other model-agnostic
algorithm for generating counterfactuals in RL – GANterfactual-RL
[12]. In Section 4.1 we describe evaluation tasks.
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Table 1: Parameters used for generating counterfactual ex-
planations for GANterfactual-RL and RACCER approaches
in Stochastic GridWorld and Frozen Lake environments.

Parameter
Task Stochastic GridWorld Frozen Lake

Number of iterations (𝑇 ) 300 300
Number of simulations (𝑁 ) 10 10

Maximum number of actions (𝑘) 20 20
Evaluation dataset size (|𝐷 |) 500 400

Loss parameter 𝛼 -1 -1
Loss parameter 𝛽 -1 -1
Loss parameter 𝛾 -1 -1

4.1 Evaluation Tasks
We evaluate our approach in two environments – Stochastic Grid-
World and Frozen Lake.

4.1.1 Stochastic GridWorld. Stochastic GridWorld is a simple 5 × 5
grid world, where the agent is tasked with shooting the dragon. To
successfully shoot the dragon, the agent has to be in the same file
or row as the dragon, and the space between them has to be empty.
In that situation, the agent can successfully perform the SHOOT
action and win the game. The environment also contains trees and
walls in the middle file of the grid, that can block the agent’s path to
the dragon. An agent can chop down a tree or a wall by performing
a CHOP action when located directly near it. However, trees are
less costly to chop down than the walls. At each step, the agent
can move one step in any direction or perform SHOOT and CHOP
actions. Additionally, along the middle file of the board, trees can
regrow and walls can be rebuilt with different probabilities. Actions
receive a −1 penalty, and successfully shooting the dragon brings a
+10 reward. The episode ends when the dragon is shot or when the
maximum number of time steps is reached. We consider all states
that contain an agent, a dragon, and have trees and walls only along
the middle file of the grid to be realistic under the game rules.

In this task, two states can appear similar but be far away in
terms of execution, due to the obstacles on the grid. Chopping down
a tree to be able to shoot the dragon might be less preferable than
going around it, and suggesting this to the user could save them
time and effort. Similarly, due to the stochastic nature of the task,
during the time needed to obtain a counterfactual, new trees and
walls can regrow and block the agent’s path to the dragon.

4.1.2 Frozen Lake. The frozen lake is a well-known stochastic grid
world environment, in which the agent is tasked with reaching the
goal while navigating a grid where some squares are covered in
ice. Making an action in icy states can either lead the agent to a
desired state or leave them in the same one with some probability.
All actions carry a -1 reward, while successfully navigating to the
goal brings the agent +10. We consider all states that contain an
agent and the goal to be realistic under the rules of the game.

In this environment, two states with very similar features can be
far away. For example, even if there is only one square difference
between the agent’s locations in two states, it might still be difficult
to reach one from the other given the stochastic nature of the
environment.

5 EVALUATION
To evaluate RACCER, we compare it to the baseline approach
GANterfactual-RL [12] in Stochastic GridWorld and Frozen Lake
environments. We establish 5 hypotheses for evaluating RACCER:

• H1: Counterfactual explanations generated by RACCER will
perform better on RL-specific metrics of fidelity, stochastic
uncertainty, and reachability compared to the baseline.

• H2: RACCER is more suitable for producing counterfactuals
for explaining suboptimal agents compared to the baseline.

• H3: RACCER will produce counterfactuals that can help
users better understand and predict the behavior of RL agents
compared to the baseline.

• H4: RACCER will produce counterfactuals that help users
better choose between agents with different preferences com-
pared to the baseline.

• H5: Counterfactual explanations generated by RACCER will
be perceived as more satisfactory by users compared to ex-
planations generated by the baseline.

To evaluate H1 and H2, we evaluate the counterfactual proper-
ties of explanations generated by RACCER and GANterfactual-RL.
Hypothesis H1 is explored in Section 5.1.1, and H2 in Section 5.1.2.
Hypotheses, H3, H4 and H5 are evaluated through a user study
described in detail in Section 5.2. Hypothesis H3 is evaluated in
Section 5.2.1, H4 in Section 5.2.2 and H5 in Section 5.2.3.

5.1 Evaluating Counterfactual Properties
We evaluate RACCER and GANterfactual-RL based on both feature-
based counterfactual properties (proximity, sparsity, validity, and
realistic counterfactual) and RL-specific properties (reachability,
fidelity, stochastic uncertainty).

To evaluate proximity, sparsity, and validity we use metrics de-
fined in Huber et al. [12] originally used to evaluate GANterfactual-
RL. For proximity, we use the L1 distance between instances:

𝑃 (𝑥, 𝑥 ′) = 1 − ||𝑥 − 𝑥 ′ | |1 (8)

Sparsity is calculated as the number of non-modified features
when transforming the original instance 𝑥 into a counterfactual 𝑥 ′:

𝑆 (𝑠, 𝑠′) = | |𝑥 − 𝑥 ′ | |0
𝑆

(9)

where 𝑆 is the total number of features.
Validity denotes whether the target action 𝑎′ is chosen by the

black-box model 𝐵 in the counterfactual instance 𝑥 ′:

𝑉 (𝑥 ′) = 𝐵(𝑥 ′) == 𝑎′ (10)

Additionally, we also evaluate whether the resulting counter-
factuals are realistic. What constitutes a realistic counterfactual is
task-specific and is described in more detail in Section 4.1.

Furthermore, we evaluate RACCER and GANterfactual-RL ac-
cording to RL-specific properties presented in Section 3.1. Evaluat-
ing these properties for RACCER is straightforward as it uses tree
search to navigate to the counterfactual. Properties can be calcu-
lated by analyzing the sequence of actions leading from the root to
the counterfactual. GANterfactual-RL, however, generates counter-
factual using generative models and uses no notion of actions. To
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Table 2: The average values of counterfactual properties for counterfactual explanations of a fully-trained agent generated
using GANterfactual-RL and 𝑅𝐴𝐶𝐶𝐸𝑅 approaches in Stochastic GridWorld and Frozen Lake.

Task Stochastic Gridworld Frozen Lake

Metric
Approach GANterfactual-RL RACCER GANterfactual-RL RACCER

Generated counterfactuals (%) 100 75.4 100 80.75
Realistic counterfactuals (%) 76.0 100 100 100

Proximity (↑) 0.98 0.99 0.90 0.96
Sparsity (↓) 0.19 0.11 0.61 0.14
Validity (↑) 0.58 1.0 0.46 1.0

Reachability (↓) 0.98 0.13 1.0 0.15
Fidelity (↓) 1.0 0.79 1.0 0.6

Stochastic uncertainty (↓) 0.99 0.18 1.0 0.08

measure reachability, fidelity, and stochastic certainty for a coun-
terfactual 𝑥 ′ generated by GANterfactual-RL, we build a tree of the
agent’s execution of length 𝑘 rooted in 𝑥 and find 𝑥 ′ in it. That way,
we estimate properties that rely on actions even for explanations
generated through the direct search for counterfactual states. If 𝑥 ′
cannot be found in the tree, it is assigned the least desirable value
for an RL-specific counterfactual property which is 1.

5.1.1 Explaining Fully-trained Agents. We start by comparing ex-
planations generated by RACCER and GANterfactual-RL when
explaining a fully trained agent. We obtain a fully trained black-box
model 𝑀 by training a DQN on the task until convergence. We
then apply RACCER and GANterfactual-RL approaches to generate
counterfactuals for explaining𝑀 . The parameters for generating
counterfactuals using both algorithms are given in Table 1. Both RL-
specific and feature-based counterfactual properties are evaluated
for the generated counterfactuals. We also record what percent-
age of counterfactuals were successfully created and if they were
realistic. The results for both tasks are recorded in Table 2.

In both environments, RACCER performs better on both
feature-based and RL-specific counterfactual metrics. While
we expected RACCER to perform better on RL-specific properties, it
is surprising that it outperforms GANterfactual-RL in feature-based
metrics, as GANterfactual-RL has been trained to optimize these.We
speculate that this is because the GANterfactual-RL approach has
been optimized for visual tasks, unlike discrete environments used
in this work. RACCER also produces only realistic counterfactuals
as it follows the rules of the environment. GANterfactual-RL, on the
other hand, often changes features outside of the agent’s control
such as adding or removing tree and wall features in the Stochastic
GridWorld environment, resulting in fewer realistic states. Finally,
RACCER generates counterfactuals that are more often valid.

One metric in which RACCER performs worse compared to the
baseline is the number of generated counterfactuals. Due to its
underlying generative model, GANterfactual-RL can generate a
counterfactual for each fact and target action. RACCER, however,
searches the space of the agent’s interactions to find a counterfac-
tual. If the agent is very unlikely to play a certain action in the
environment, RACCER will not be able to generate a counterfactual

for this action. For example, if the dragon in the Stochastic Grid-
World is located in the rightmost file of the grid, a well-trained agent
will never need to play action LEFT. By examining the factual states
and target actions for which RACCER does not generate a counter-
factual we find that a large majority of them correspond to states
where the target action would never be played by a well-trained
agent. Specifically, in Stochastic GridWorld out of 123 situations
where RACCER does not generate a counterfactual, in 80 of them
(65.04%) target action would never be played by an agent. This
means that RACCER fails to find a counterfactual in a situation
where that is possible only 43 times, or for 8.6% of situations. Simi-
larly, in Frozen Lake, out of 77 situations in which RACCER does not
find a counterfactual, 72 corresponds to such impossible situations.
In the Frozen Lake task, RACCER fails to generate counterfactuals
where that is possible only 5 times, or for 0.0125% situations.

5.1.2 Explaining Suboptimal Agents. Most often, counterfactual ex-
planations have been applied to explain the behavior of fully-trained
agents. However, understanding suboptimal agents is necessary
for verification and debugging. For example, Olson et al. [20] have
used counterfactuals to help users recognize agents that relied on
artificially inserted pixels correlated with an action choice. These
agents do not base decisions on actual game elements, and their
performance suffers when the spurious correlation is broken.

GANterfactual-RL trains supervised learning models to trans-
late states between domains. We hypothesize that this approach,
although suitable for explaining fully-trained agents, cannot be
applied to suboptimal ones. This is because domains for training
the generator and discriminator models in GANterfactual-RL are
defined based on which actions the RL agent would make in a state.
However, for a suboptimal agent, some randomness in the decision-
making process is likely. This introduces randomness into domains,
resulting in domains that are difficult to separate, making super-
vised learning of discriminator and generator models challenging.

To train a suboptimal agent𝑀𝑠𝑢𝑏 in both tasks, we use a DQN
model, but train it for one-tenth of the time used to train the fully-
trained agent. We evaluate RACCER and GANterfactual-RL on
proximity, sparsity, and validity, as well as reachability, fidelity,
and stochastic uncertainty. Additionally, we record the percentage
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Table 3: The average values of counterfactual properties for counterfactual explanations for a sub-optimal agent generated
using GANterfactual-RL and 𝑅𝐴𝐶𝐶𝐸𝑅 approaches in Stochastic GridWorld and Frozen Lake for a suboptimal agent 𝑀𝑠𝑢𝑏 .

Task Stochastic Gridworld Frozen Lake

Metric
Approach GANterfactual-RL RACCER GANterfactual-RL RACCER

Generated counterfactuals (%) 100 77.6 100 43.50
Realistic counterfactuals (%) 47.00 100 100 100

Proximity (↑) 0.98 0.99 0.87 0.97
Sparsity (↓) 0.24 0.11 0.81 0.14
Validity (↑) 0.55 1.0 0.2 1.0

Reachability (↓) 0.99 0.14 1.0 0.10
Fidelity (↓) 1.0 0.82 1.0 0.76

Stochastic uncertainty (↓) 1.0 0.26 1.0 0.07

of generated counterfactuals as well as the percentage of realistic
counterfactuals. The results are presented in Table 3.

RACCER performs comparably when explaining a sub-
optimal agent 𝑀𝑠𝑢𝑏 (Table 3) and the fully-trained agent 𝑀
(Table 2) in both tasks. In contrast, counterfactuals generated
by GANterfactual-RL show a decline in counterfactual properties
when explaining a suboptimal model compared to a fully trained
model. In the Frozen Lake environment, GANterfactual-RL achieves
lower validity when explaining a suboptimal model compared to
a fully-trained model. Similarly, in the Stochastic Gridworld task,
GANterfactual-RL generates counterfactuals that are far less realis-
tic compared to those generated for a fully-trained model.

5.2 User Study
Counterfactual explanations are ultimately intended to assist hu-
mans in real-life tasks, and evaluating them in this context is nec-
essary to ensure their usefulness. To evaluate hypotheses H3, H4,
and H5 we conducted a user study to compare the counterfactual
explanations produced by GANterfactual-RL and RACCER. We con-
ducted the study in the Stochastic GridWorld environment, as it
has simple rules, and requires no prior knowledge from users.

We sourced 153 participants through the Prolific platform from
English-speaking countries (UK, Ireland, Canada, USA, Australia,
and New Zealand) and split them into two groups. The first group
received counterfactuals generated by GANterfactual-RL and the
second counterfactuals produced by RACCER. After filtering partic-
ipants for those who had passed attention checks, 58 participants
remained in the first and 63 in the second group. Participants were
remunerated for their time according to the Prolific payment policy.

The study consisted of 3 parts – evaluating user understand-
ing of the agent’s behavior, evaluating user understanding of the
agent’s preferences, and evaluating user satisfaction. The study
design follows that used to evaluate the GANterfactual-RL algo-
rithm in Huber et al. [12]. Before the study, users were shown
general information about the task and the study. Users were
also shown a definition and examples of counterfactual explana-
tions and asked to answer test questions to ensure a full under-
standing of the task. The template for the study can be found at:

https://qrxhyre44mt.typeform.com/to/cpeLrWbZ. Section 5.2.1 cov-
ers the evaluation of agent’s behavior, Section 5.2.2 understanding
of agents’ preferences, and Section 5.2.3 user satisfaction.

5.2.1 Agent Understanding. To evaluate howwell users understand
agent’s behavior we use a user study setup similar to that of Huber
et al. [12]. Users are shown the behavior of two agents A and B with
different policies, described in more detail in Section 5.2.2. For each
agent users go through two stages – training and testing stage. In
the training stage, users are shown a game state and the action agent
chooses that state. Then, users are presented with counterfactual
states, describing in which situations the agent would choose an
alternative action. For each agent, the user sees 10 training states,
an example of which is shown in Figure 2. In the testing phase,
users are presented with 10 states and asked to predict an action
the agent would take, without being given the explanations.

The factual states in the training and testing phase are selected
by the HIGHLIGHTS-DIV algorithm [1], inspired by the setup
from Huber et al. [12]. This way users are presented with the
most informative states of the agent’s game-play. We modify the
HIGHLIGHTS-DIV algorithm to include states with a diverse range
of Q-values since using the original HIGHLIGHTS-DIV algorithm
results in a mostly homogeneous set of states in which the agent
should perform the SHOOT action. We generate 20 most informa-
tive states according to HIGHLIGHTS-DIV and randomly split them
into training and testing sets. To be able to show counterfactuals to
the users, they need to be realistic. For that reason, we additionally
filter the states obtained by the HIGHLIGHTS-DIV algorithm to
ensure they are realistic. We present two counterfactual states for
each factual one, to reduce the cognitive load required by the ex-
periment. We show counterfactuals for actions CHOP and SHOOT,
as these actions represent the most interesting game-play.

We use the prediction accuracy of the agent’s actions in the
testing phase as a metric for measuring user understanding of the
agent’s behavior. Users who have seen counterfactuals generated by
RACCER have shown 76.19% accuracy in predicting agents’ actions.
In contrast, users who have been presented with counterfactuals
generated using the GANterfactual-RL approach have achieved an
accuracy of 70.94%. After conducting a non-parametric one-tailed
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Figure 2: Example of the counterfactual explanation shown
to the user during the training phase.

Mann-Whitney U test we find a significant difference between the
prediction accuracy of the two approaches (p = 0.0185). This proves
H3 and indicates that RL-specific counterfactuals help users
better understand and predict the behavior of RL agents.

5.2.2 Agent Comparison. In the study, users were asked to evaluate
agents A and B one after the other. Agents A and B are fully trained
on the task. However, they are trained on different reward functions
and have different preferences for completing the task. Agent A
prefers to take the longer, but cheaper paths in the environment,
while Agent B does not care about the cost and wants to finish the
task as quickly as possible. The difference in the behavior between
the two agents is exhibited most clearly in their interaction with the
wall features. When faced with a wall obstacle, Agent A chooses to
go around it to reduce costs, while Agent B chooses to chop down
the wall despite the high cost to finish the task quicker.

Users were presented with the training and testing phase for one
agent, followed by the training and testing phase for the second
agent. The users are informed when they will be switching from
one agent to the other. After seeing both agents, users are asked
to choose a more suitable one according to a specific preference.
Specifically, users are asked which agent they would choose if they
wanted to keep the cost minimal, regardless of the time it takes
to finish the task. Conversely, they were also asked which agent
would they choose to finish the task quickly, regardless of the cost.

Users presented with RACCER explanations choose the correct
agent in 53.17%, while users who have seen GANterfactual-RL ex-
planations made a correct choice in 58.62 of cases (p = 0.6509). This
indicates that contrary to H4, RACCER is not better at help-
ing users distinguish between agents with different policies
compared to GANterfactual-RL.

5.2.3 User Satisfaction. At the end of the study, users were asked
to rank the explanations based on the explanation goodness metrics
[11] on a 1−5 Likert scale (1 - strong disagreement, 5 - strong agree-
ment). Users reported whether explanations were useful, satisfying,
complete, detailed, actionable, trustworthy, and reliable.

The results of this part of the study are presented in Figure 3.
After conducting a non-parametric one-tailed Mann-Whitney U test
we find that users perceive explanations generated by RACCER to
be significantly more useful for understanding the agent (p =
0.0057), more detailed (p = 0.0190) and complete (p = 0.0095)
compared to those generated by GANterfactual-RL approach.
However, there is no significant difference between the approaches
in the perceived trustworthiness (p = 0.7901), reliability (p = 0.1446),

Figure 3: Users’ scores on explanation goodness metrics [11]
for counterfactual explanations generated using RACCER
and GANterfactual-RL algorithms.

and actionability (p = 0.0729) of explanations, resulting in H5 being
only partially confirmed by our experiments.

6 CONCLUSION AND FUTUREWORK
In this work, we presented RACCER, the first RL-specific approach
to generating counterfactual explanations. We designed and imple-
mented three novel counterfactual properties that reflect the se-
quential and stochastic nature of RL tasks, and provided a heuristic
tree search approach for optimizing these properties. We evaluated
our approach in Stochastic GridWorld and Frozen Lake environ-
ments and showed that RACCER generates counterfactuals that are
easier to reach and provide the desired outcomes more often com-
pared to baseline approaches. We have also conducted a user study,
and shown that RACCER helps users better predict the behavior of
RL agents, and produces explanations that are perceived as more
useful, detailed,d and complete compared to GANterfactual-RL.

In this work, we have limited our search to only the best coun-
terfactual. In future work, we hope to expand our search to include
a set of diverse counterfactual explanations optimizing different
counterfactual properties. In this way, users would have a wider
choice of potentially actionable advice. Additionally, we have only
explored the prefactual explanations which explore how changes
in the current state can lead to different outcomes. In future work,
we hope to investigate counterfactuals that explore past decisions
and compare them to prefactuals in RL.
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