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ABSTRACT
Large events such as conferences, concerts and sports games, often
cause surges in demand for ride services that are not captured in
average demand patterns, posing unique challenges for routing
algorithms. We propose a learning framework for an autonomous
fleet of taxis that leverages event data from the internet to pre-
dict demand surges and generate cooperative routing policies. We
achieve this through a combination of two major components: (i) a
demand prediction framework that uses textual event information
in the form of events’ descriptions and reviews to predict event-
driven demand surges over street intersections, and (ii) a scalable
multiagent reinforcement learning framework that leverages de-
mand predictions and uses one-agent-at-a-time rollout, combined
with limited sampling certainty equivalence, to learn intersection-
level routing policies. For our experimental results we consider real
NYC ride share data for the year 2022 and information for more
than 2000 events across 300 unique venues in Manhattan. We test
our approach with a fleet of 100 taxis on a map with 2235 street in-
tersections. Our experimental results demonstrate that our method
learns routing policies that reduce wait time overhead per serviced
request by 25% to 75%, while picking up 1% to 4% more requests
than other model-based RL frameworks and classical methods from
operations research.
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1 INTRODUCTION
Large events such as conferences, concerts, and sports games lead
to large agglomerations of people and hence tend to produce de-
mand surges for ride services. Efficiently servicing these surges
requires the orchestration of fleet-wise coordinated plans that lever-
age accurate estimates of event-driven demand fluctuations (see
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Fig 1). Unfortunately, most on-demand mobility routing algorithms
in the literature do not address event-driven demand surges, either
because they do not consider potential future requests and thus do
not plan ahead [5, 11, 21, 24, 33, 41, 61], or because they plan ahead
using demand models that are based on averaged or short-term
history and hence do not account for point disturbances associated
with event-related surges [1, 16, 17, 23, 28, 30, 44, 48, 58].

Figure 1:Motivating example

The plethora of event data
freely available on the inter-
net and recent advances in
language models allow for
the development of event-
informed demand prediction
mechanisms [38, 39, 51]. Ad-
ditionally, recent advances in
multiagent Reinforcement Learn-
ing (RL) [26, 29], including
rollout-basedmechanisms [7, 9,
30], allow for learning multia-
gent cooperative plans. Ideally,
demand prediction mechanisms and RL-based routing algorithms
could be combined to obtain a fine-grained event-informed multia-
gent routing framework that predicts event-driven demand surges
and routes taxis accordingly. However, designing and implement-
ing such a framework for a city-scale application is a non-trivial
task. Tackling this task requires addressing two major challenges:
(i) demand predictions should leverage data from multiple events
to generate accurate estimates of future demand, that additionally,
are usable by intersection-level multiagent RL routing algorithms
and (ii) the expected cost of agents’ actions should be approximated
by the multiagent RL routing algorithm at a city-scale without
incurring prohibitively long execution times.

In this paper we address these two challenges by introducing
a multiagent routing framework that leverages event-informed
hourly demand predictions to learn cooperative routing policies on
a city-scale environment. To our knowledge, our proposed method
is the first work to integrate event-driven surge demand prediction
and intersection-level multiagent routing. Our approach solves the
first challenge by leveraging an unsupervised aggregation mecha-
nism that we develop. This mechanism aggregates data from sev-
eral overlapping events over city blocks (or “sectors”) to gener-
ate sector-level demand predictions. These demand predictions
are then mapped to intersections using a probabilistic assignment
mechanism that we design. In this way, demand predictions over
intersections can then be used to inform future cost estimation
for our RL routing algorithm. Since the state space for a city-scale
application is very large, standard rollout methods [7] tend to need
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a large number of samples to approximate the expected future costs
of actions. In order to make rollout algorithms applicable to these
large settings, we consider a certainty equivalence approximation,
where the demand distribution is replaced by a semi-deterministic
mean value. We also use a limited sampling modification to the
standard certainty equivalence to reduce the sampling space to the
surrounding area of a given sector when estimating future costs for
an agent inside that sector. This modification allows our method
to reduce the number of samples required for estimating the ex-
pected costs of actions while still maintaining similar accuracy,
successfully addressing the second challenge. We are able to main-
tain accuracy since taxis that are very far away from a sector can’t
reach the sector during their planning horizon and hence have very
little effect on that sector’s short-term planning.

More specifically, our proposed framework is composed of four
modules as shown in Fig. 2: 1) the event processing module, 2)
the demand prediction module, 3) the demand assignment module,
and 4) the model-based RL routing module. The event processing
module captures event information from the internet in the form
of event reviews and descriptions by leveraging sentence embed-
dings [3, 14, 20, 36, 56, 60] generated from a pre-trained Masked
Language Model (MLM). Sentence embeddings for events in over-
lapping sectors of the map are aggregated using an unsupervised
aggregation scheme. This aggregation scheme combines spectral
clustering [22, 25, 63] and graph summarization [27, 64] to produce
representative dense vectors for each sector. These dense vectors
are then used by the demand prediction module to predict hourly
demand for the taxi service at each sector. In order to integrate the
demand prediction into the multiagent RL-based routing mecha-
nism, we propose a novel demand assignment module. This module
uses a probabilistic assignment routine that leverages locale max-
imum occupancy data and occupancy schedules (percentage of
maximum occupancy)[2, 19, 31, 47] to map from demand predic-
tions over sectors to demand predictions over street intersections.
These demand predictions over intersections are then used by the
multiagent routing scheme to estimate expected future costs for
each agent’s actions. Our proposed multiagent routing scheme
builds off one-agent-at-a-time rollout [6, 8, 9, 30] and combines it
with a limited certainty equivalence approximation to reduce the
sampling complexity of estimating expected future costs.

We test our approach using real NYC’s Taxi and Limousine High-
Volume For-Hire-Vehicle (HV-FHV) data [18] and information for
more than 2000 events across 300 venues. We consider a region of
Manhattan with 2235 intersections and a fleet of 100 autonomous
taxis. This setup has 3X more intersections and 6X more taxis than
previous work in this area [30], demonstrating the scalability of
our approach. We empirically demonstrate that our event-informed
framework learns routing policies that reduce wait time overhead
per serviced request by 25% to 75% while picking up 1% to 4% more
requests than other model-based RL frameworks and other classical
algorithms in operations research. 1

1We define wait time overhead as the additional time that a request will have to wait
in a realistic stochastic setting. In contrast to a setting in which the locations and entry
times of all requests are known a-priori, taxis cannot be routed to the exact locations
of requests from the beginning of the episode.

2 RELATEDWORKS
In this section, we review the current state-of-the-art for the two
problems related to event-informed multiagent routing: Dynamic
Vehicle Routing (DVR), and demand prediction.

Dynamic Vehicle Routing. Earlier works tackled this problem us-
ing instantaneous assignment approaches [5, 11, 24, 33], and routing
heuristics, [21, 41, 61]. Instantaneous assignment approaches, how-
ever, produce myopic policies since they do not consider potential
future requests. Sampling-based stochastic optimization [37] tries
to solve this issue, but incurs long computation times due to the
multistep planning objective and large state space. To improve
computation times, several authors considered offline trained ap-
proximations [1, 23, 44, 48, 58]. Offline learning methods tend to be
computationally faster at inference time, but they do not generalize
to unknown scenarios not represented in the training data, and
tend to not scale well as the state space becomes larger. This makes
them infeasible for deployment in city-scale urban environments,
where the state space is very large and new changes in demand
are not necessarily represented in the historical demand data. To
try to address this issue, and allow policies to adapt to changes in
the demand, other authors have considered online optimization
methods [4, 7, 8, 54], queuing theory [55, 57, 62], and hybrid ap-
proaches [30]. These online learning methods, however, do not
consider event-driven surges in demand, and hence they tend to
not be applicable to realistic urban settings. In this paper we aim
to address this limitation by integrating event-informed demand
prediction into model-based RL routing.

Demand Prediction. Some authors have considered time series
analysis techniques [34, 40, 42]. These approaches, however, rely on
the data being stationary or following predictable seasonal changes
that can easily be removed by seasonal-differencing. Demand for
transportation services, however, tends to be highly dynamic and it
is affected by external events like concerts or traffic accidents. This
situation prevents time series analysis methods from performing as
expected. To address this shortcoming, various authors have consid-
ered learning approaches [13, 15, 35, 45] to predict demand based
on spatial and temporal features (time of day, weather conditions,
etc.). However, these methods generally do not employ information
about events, and hence do not generalize to scenarios where events
cause demand surges. Other authors also look at predicting demand
using spatial and temporal features, as well as event information
[38, 39, 51]. One limitation of these methods that we address in
this paper is the ability to include information from an arbitrary
number of events over overlapping regions of the map. The ability
of our method to aggregate event information makes it applicable
to city-scale environments where there are multiple venues hosting
simultaneous events in the same region of the map.

3 PROBLEM FORMULATION
In this section, we present the formulation for our multiagent taxi-
cab routing problem, casting it as a city-scale discrete time, finite
horizon, stochastic Dynamic Programming (DP) problem. We de-
fine the environment, requests, state and control space, the basics
of rollout and our problem of interest in the following subsections.
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Figure 2: General System Overview showing our proposed approach’s four modules: 1) the event processing module, 2) the demand prediction
module, 3) the demand assignment module, and 4) the model-based RL routing module.

3.1 Environment
We assume that taxicabs are deployed in an urban environment
with a fixed street topology (see Fig. 3). The environment is ex-
pressed as a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 = {1, . . . , 𝑛} corresponds
to the set of intersections in the map numbered 1 through 𝑛, while
𝐸 ⊆ {(𝑖, 𝑗) |𝑖, 𝑗 ∈ 𝑉 } corresponds to the set of directed streets that
connect intersections 𝑖 and 𝑗 in the map. The set of adjacent inter-
sections to intersection 𝑖 is denoted as N𝑖 = { 𝑗 | 𝑗 ∈ 𝑉 , (𝑖, 𝑗) ∈ 𝐸}.
We also assume that the environment is divided into sectors 𝑠𝑘 ⊆ 𝑉 ,
such that 𝑉 =

⋃
𝑘 𝑠𝑘 and 𝑠𝑘 ∩ 𝑠ℎ = ∅,∀𝑘 ≠ ℎ. We denote the set of

all sectors in the map as the set 𝑆 , where 𝑆 is then a set of sets. We
define A(𝑠𝑘 ) ⊆ 𝑆 as the set of all the sectors adjacent to sector 𝑠𝑘 .
We define I𝑠𝑘 ⊆ 𝑠𝑘 as the set of intersections in sector 𝑠𝑘 that can
be used as pickup or drop-off locations, following local regulations.
We denote the set of intersections that can be used for pickup or
drop-off of requests over the entire map as I𝑉 =

⋃
𝑠𝑘 ∈𝑆 I𝑠𝑘 .

3.2 Requests

Figure 3: Our
NYC environ-
ment with 2235
intersections

We define a request 𝑟 for the ride service as a
tuple 𝑟 = ⟨𝜌𝑟 , 𝛿𝑟 , 𝑡𝑟 , 𝜙𝑟 ⟩, where 𝜌𝑟 ∈ I𝑉 and
𝛿𝑟 ∈ I𝑉 correspond to the nearest available
intersection to the request’s desired pickup
and drop-off locations, respectively; 𝑡𝑟 cor-
responds to the time at which the request
entered the system; and 𝜙𝑟 ∈ {0, 1} is an indi-
cator, such that 𝜙𝑟 = 1 if the request has been
picked up by a vehicle, 𝜙𝑟 = 0 otherwise. We
model the number of new pickup requests
for a specific sector 𝑠𝑘 as a random variable
𝜂𝑠𝑘 with an unknown underlying distribu-
tion 𝑝𝜂𝑠𝑘

. Its estimation is denoted as 𝑝𝜂𝑠𝑘 .
We denote the realization of 𝜂𝑠𝑘 at time 𝑡 as 𝜂𝑠𝑘 (𝑡). We denote
the set of new pickup requests at time 𝑡 for a specific sector 𝑠𝑘 as
rsk,t = {𝑟 |𝜌𝑟 ∈ I𝑠𝑘 , 𝑡𝑟 = 𝑡}, such that |rsk,t | = 𝜂𝑠𝑘 (𝑡). We model
the exact pickup intersections for an arbitrary request given that
the request originated at sector 𝑠𝑘 as the random variable 𝜌𝑠𝑘 with
support I𝑠𝑘 . Similarly, we model the exact drop-off intersection for

an arbitrary request given that the request will be dropped off at
sector 𝑠𝑘 as the random variable 𝛿𝑠𝑘 with support I𝑠𝑘 . Both of these
random variables have unknown underlying distributions that we
denote as 𝑝𝜌𝑠𝑘 and 𝑝𝛿𝑠𝑘 , respectively.We also denote their estimated
probability distributions as 𝑝𝜌𝑠𝑘 and 𝑝𝛿𝑠𝑘 , respectively. We model
the drop-off sector for an arbitrary request given that the request
has pick up sector 𝑠𝑘 as the random variable 𝛽𝑠𝑘 with an unknown
probability distribution 𝑝𝛽𝑠𝑘

. We denote its estimated probability
distribution as 𝑝𝛽𝑠𝑘 . We denote the demand model for a given sec-
tor 𝑠𝑘 as the set of random variables 𝐷𝑠𝑘 = {𝜂𝑠𝑘 , 𝜌𝑠𝑘 , 𝛿𝑠𝑘 , 𝛽𝑠𝑘 }. We
denote the global demand model as D =

⋃
𝑠𝑘 ∈𝑆 𝐷𝑠𝑘 . We define

rsk,t = {𝑟 |𝑟 ∈ rsk,t′ , 𝜙𝑟 = 0, 𝑡 ′ = 1, . . . 𝑡} as the set of outstanding
pickup requests for sector 𝑠𝑘 that have not been picked up by any
taxi till time 𝑡 . We denote the set of all outstanding pickup requests
at time 𝑡 as rt =

⋃
𝑠𝑘 ∈𝑆 r(sk,t) .

3.3 State Representation and Control Space
We assume there is a total of𝑚 agents and all agents can perfectly
observe all available requests, and all other agents’ locations and
occupancy status. We assume that this 𝑚 is fixed over time. We
represent the state of the system at time 𝑡 as a tuple 𝑥𝑡 = ⟨ ®𝜈𝑡 , ®𝜏𝑡 , rt⟩.
The vector ®𝜈𝑡 = [𝜈1

𝑡 , . . . , 𝜈
𝑚
𝑡 ] contains the locations for all𝑚 agents

at time 𝑡 , where 𝜈ℓ𝑡 ∈ 𝑉 corresponds to the closest intersection to
the geographical position of agent ℓ . The vector ®𝜏𝑡 = [𝜏1

𝑡 , . . . , 𝜏
𝑚
𝑡 ]

contains the time remaining in current trip for all 𝑚 agents. If
agent ℓ is available, then it has not picked up a request and 𝜏 ℓ𝑡 = 0,
otherwise 𝜏 ℓ𝑡 ∈ N+.

We denote the control space for agent ℓ at time 𝑡 as Uℓ
𝑡 (𝑥𝑡 ).

If the agent is available (i.e. 𝜏 ℓ𝑡 = 0), then Uℓ
𝑡 (𝑥𝑡 ) = {N𝜈ℓ𝑡

, 𝜈ℓ𝑡 ,𝜓 },
where N𝜈ℓ𝑡

corresponds to the set of adjacent intersections to the
current location 𝜈ℓ𝑡 , and𝜓 corresponds to a special pickup control
that becomes available if there is a request 𝑟 ∈ rt a the location
of agent ℓ such that 𝜌𝑟 = 𝜈ℓ𝑡 . On the other hand, if the agent is
currently servicing a request 𝑟 (i.e. 𝜏 ℓ𝑡 > 0), then Uℓ

𝑡 (𝑥𝑡 ) = {𝜁 },
where 𝜁 corresponds to the next hop in Dijkstra’s shortest path
between agent ℓ’s current location 𝜈ℓ𝑡 and the destination of the
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request 𝛿𝑟 . We denote all possible controls for all𝑚 agents at state
𝑥𝑡 as U𝑡 (𝑥𝑡 ) = U1

𝑡 (𝑥𝑡 ) × · · · × U𝑚𝑡 (𝑥𝑡 ).

3.4 Rollout-based Routing
We are interested in learning a cooperative pickup and routing pol-
icy that minimizes the total wait for all passengers over a finite time
horizon of length 𝑁 . We denote the state transition function as 𝑓 ,
such that 𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ,D), where 𝑥𝑡+1 is the resulting state after
control 𝑢𝑡 ∈ U𝑡 (𝑥𝑡 ) has been applied from state 𝑥𝑡 considering the
realizations for all random variables in D. We define the stage cost
𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ,D) = |rt | as the number of outstanding requests over the
entire map at time 𝑡 . We define a policy 𝜋 = {𝜇1, . . . 𝜇𝑁 } as a set of
functions that maps state 𝑥𝑡 into control𝑢𝑡 = 𝜇𝑡 (𝑥𝑡 ) ∈ U𝑡 (𝑥𝑡 ), with
its cost given by 𝐽𝜋 (𝑥1) = 𝐸

[
𝑔𝑁 (𝑥𝑁 ) +∑𝑁−1

𝑡=1 𝑔𝑡 (𝑥𝑡 , 𝜇𝑡 (𝑥𝑡 ),D)
]
,

where 𝑔𝑁 (𝑥𝑁 ) = |rN | is the terminal cost. Since the control space is
a Cartesian product and hence it grows exponentially with the num-
ber of agents, searching the entire control space to find the optimal
policy is computationally intractable. For this reason, we consider
policy improvement schemes, such as rollout [6, 8], that allows us
to obtain a lower cost policy by improving upon a base policy with a
reasonable initial behavior. We define a base policy 𝜋 = {𝜇1, . . . 𝜇𝑁 }
as an easy to compute heuristic that is given. Our objective becomes
then to find an approximate policy 𝜋̃ = {𝜇̃1, . . . 𝜇̃𝑁 }, such that given
base policy 𝜋 , the minimizing action for state 𝑥𝑡 at time 𝑡 is given
by:

𝜇̃𝑡 (𝑥𝑡 ) ∈ arg min
𝑢𝑡 ∈U𝑡 (𝑥𝑡 )

𝐸D
[
𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ,D) + 𝐽𝜋,𝑡 (𝑥𝑡+1)

]
(1)

Where 𝐽𝜋,𝑡 (𝑥𝑡+1) = 𝐽𝑇 + ∑𝑇
𝑡 ′=(𝑡+1) 𝑔𝑡 ′ (𝑥𝑡 ′ , 𝜇𝑡 ′ (𝑥𝑡 ′ ),D) is a cost

approximation derived from applying the base policy 𝜋 for 𝐻 time
steps from state 𝑥𝑡+1 with a terminal cost approximation 𝐽𝑇 = |rT |,
where 𝑇 = (𝑡 + 1) + 𝐻 . The expectation in eq. 1 is estimated using
Monte-Carlo simulations.

3.5 Problem
Recent success of rollout methods in combinatorial applications
[7, 9, 12], including small scale routing [30], makes these rollout-
based methods a natural choice for tackling city-scale routing. How-
ever, applying rollout methods to a city-scale environment with
event-driven demand surges is a non-trivial task. To integrate the
rollout formulation presented in Sec. 3.4 into our city-scale applica-
tion, we need to solve two Problems.
Problem 1: We must estimate the probability distributions of
the random variables that specify the demand model D to ob-
tain D̃ =

⋃
𝑠𝑘 ∈𝑆 {𝜂𝑠𝑘 , 𝜌𝑠𝑘 , 𝛿𝑠𝑘 , 𝛽𝑠𝑘 } with underlying distributions

𝑝𝜂𝑠𝑘
, 𝑝𝜌𝑠𝑘 , 𝑝𝛿𝑠𝑘 , and 𝑝𝛽𝑠𝑘 that capture demand surges produced by

events.
Problem 2:We must reduce the computational cost of approximat-
ing the expectation Eq. 1, for the multiagent case, in order to make
rollout-based methods amenable to city-scale environments.

4 OUR APPROACH
We first provide a brief overview of our method, but details of
all the components are described in the following subsections. To
solve Problem 1 in Sec. 3.5, we need to derive estimates 𝑝𝜂𝑠𝑘 , 𝑝𝜌𝑠𝑘 ,
𝑝𝛿𝑠𝑘

, and 𝑝𝛽𝑠𝑘 . To estimate 𝑝𝜂𝑠𝑘 , we develop a novel event-informed

Figure 4: Example of one-agent-at-a-time rollout with two agents,
where each agent only has two available actions.

demand estimation procedure that leverages sentence embeddings
[36] and spectral clustering techniques[22] to generate vector rep-
resentations for events. We propose a demand prediction scheme
that predicts the number of requests that will enter the system
at each sector 𝑠𝑘 ∈ 𝑆 using these vector representations. Finally,
We build off of the idea of Certainty Equivalence [10] to obtain a
semi-deterministic approximation for 𝑝𝜂𝑠𝑘 by uniformly distribut-
ing the predicted number of requests for sector 𝑠𝑘 over the entire
time horizon 𝑁 . To estimate 𝑝𝜌𝑠𝑘 and 𝑝𝛿𝑠𝑘 , we leverage occupancy
schedules [2, 19] to derive a novel probabilistic method that maps
demand over a sector 𝑠𝑘 to individual intersections 𝑗 ∈ I𝑠𝑘 . To
estimate 𝑝𝛽𝑠𝑘 , we use the relative frequency of pickup and drop-off
sectors in historical data conditioned on having pickup sector 𝑠𝑘 .
The combination of all these estimation procedures, allows our
method to account for demand surges and transfer that information
to our routing framework.

To solve Problem 2 in Sec. 3.5, we build off one-agent-at-a-
time rollout [6, 8] and Certainty Equivalence [10]. We develop a
novel rollout-based scalable routing framework that scales linearly
with the number of agents and has a reduced sampling space. This
allows our system to decrease the number of simulations required
for the Monte-Carlo estimation of the expectation in Eq. 1. The
combination of one-agent-at-a-time rollout and our novel limited
Certainty Equivalence approximation makes our system capable
of handling large taxi fleets over large maps without incurring
prohibitively long computation times.

We will cover the specifics of our scalable routing framework
first, in order to motivate the need for the estimation of 𝑝𝜂𝑠𝑘 , 𝑝𝜌𝑠𝑘 ,
𝑝𝛿𝑠𝑘

, and 𝑝𝛽𝑠𝑘 .

4.1 Rollout-based Scalable Routing Framework
The proposed rollout-based scalable routing framework is mostly
composed of the model-based RL module shown in Fig. 2 module
4, which leverages one-agent-at-a-time rollout [7],[12], combined
with a limited sampling formulation derived from the idea of sce-
narios in certainty equivalence [10] to obtain policy 𝜋̃ . We choose
one-agent-at-a-time rollout as the foundation for our algorithm
since the control space for this rollout variation scales linearly
with the number of agents, instead of exponentially [7]. Under our
proposed framework, we replace the minimization given in the
problem statement (Eq. 1) for a one-agent-at-a-time formulation.
More specifically, agent ℓ ’s one-at-a-time rollout control at state 𝑥𝑡 ,
given that agent ℓ is at an intersection 𝑗 that is inside sector 𝑠𝑘 , is
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then:
𝑢̃ℓ𝑡 ∈ arg min

𝑢ℓ
𝑡 ∈Uℓ

𝑘
(𝑥𝑡 )

𝐸D̃𝑠𝑘

[𝑔𝑡 (𝑥𝑡 , 𝑢, D̃𝑠𝑘 ) + 𝐽
(𝑠𝑘 )
𝜋,𝑡 (𝑥𝑡+1)] (2)

where 𝑢 = (𝑢̃1
𝑡 , . . . , 𝑢̃

ℓ−1
𝑡 , 𝑢ℓ𝑡 , 𝜇

ℓ+1
𝑡 (𝑥𝑡 ), . . . , 𝜇𝑚𝑡 (𝑥𝑡 )); the local set

D̃𝑠𝑘 = {𝜂𝑠ℎ , 𝜌𝑠ℎ , 𝛿𝑠ℎ , 𝛽𝑠ℎ |∀𝑠ℎ ∈ A(𝑠𝑘 )
⋃{𝑠𝑘 }} contains the random

variables for demand in sectors 𝑠ℎ that are adjacent to sector 𝑠𝑘 ,
where each random variable has estimated probability distributions
derived from the event-informed demand estimation procedure; and
𝐽
(𝑠𝑘 )
𝜋,𝑡 (𝑥𝑡+1) = 𝐽𝑇 +∑𝑇

𝑡 ′=(𝑡+1) 𝑔𝑡 ′ (𝑥𝑡 ′ , 𝜇𝑡 ′ (𝑥𝑡 ′ ), D̃𝑠𝑘 ) corresponds to
the cost approximation of executing the base policy for𝐻 steps, con-
sidering samples from the estimated demand distributions in D̃𝑠𝑘 ,
and a terminal cost approximation 𝐽𝑇 = |rT | with 𝑇 = (𝑡 + 1) +𝐻 .
The expectation in Eq. 2 is estimated using Monte-Carlo approxima-
tion. A graphical example of the proposed formulation is presented
in Fig. 4. By considering only the current and adjacent sectors when
obtaining samples for the Monte-Carlo approximation of the ex-
pected cost of each potential action for a given agent we are able to
decrease the sample space and reduce the computational complex-
ity of the sampling procedure for the estimation of the expectation.
If we combine this approach with certainty equivalence scenarios
[10], where we consider a finite number of representative scenar-
ios instead of a full stochastic set of samples, the resulting system
incurs lower execution times when approximating the expectation
in Eq. 2, while still obtaining an accurate approximation.

4.2 Event-informed Demand Estimation
In this section we explain how we estimate the underlying probabil-
ity distributions 𝑝𝜂𝑠𝑘 , 𝑝𝜌𝑠𝑘 , 𝑝𝛿𝑠𝑘 , and 𝑝𝛽𝑠𝑘 , which compose D̃𝑠𝑘 the
demand model for sector 𝑠𝑘 and hence are needed to approximate
the expectation in Eq. 2. This corresponds to modules 1-3 in in
Fig. 2.

4.2.1 Estimating the Probability Distribution for the Number of Re-
quests 𝑝𝜂𝑠𝑘 . We estimate 𝑝𝜂𝑠𝑘 by leveraging sentence embeddings,
spectral clustering and averaging, the demand prediction module,
and a novel probabilistic approach that derives a semi-deterministic
approximation for 𝑝𝜂𝑠𝑘 from the predicted demand, obtaining a
minute by minute demand distribution from the hourly demand
prediction.

Event Data and Sentence Embeddings. We need a list of events
that includes the event’s date, title, description, and venue. Such a
list of events can be scraped from the internet using queries [38] or
an online database [50]. Events’ attendance depends on multiple
factors, including the public’s attitude towards such an event. For
this reason, we try to estimate a proxy of the public’s attitude
towards an event by considering reviews for event-venues pairs.
We collect 𝑄 reviews for each event-venue pair. For each review’s
textual excerpt we generate a 𝑑-dimensional sentence embedding
using a pre-trained MLM. Sentence embeddings tend to capture
semantic information and inter-word relations in a dense vector
representation [14, 60]. We denote the 𝑞-th sentence embedding
for a specific event as ®𝑒𝑞 ∈ R𝑑 , and we denote the set of all 𝑄
embeddings as E.

Spectral Clustering. For each event, we consider its associated
𝑄 review embeddings. We want to obtain semantically relevant

representations that aggregate the reviews as dense vectors. To do
this we consider spectral clustering on the latent space of the review
embeddings. We assume that the latent space for the embeddings
is approximately euclidean based on the results presented in [53].
For our specific application, since we are dealing with an euclidean
space, we consider a Gaussian radial basis function as the similarity
score 𝑠 (®𝑒𝑞, ®𝑒ℎ) = exp(−𝛾 · | |®𝑒𝑞−®𝑒ℎ | |22) with𝛾 = 1. To execute spectral
clustering, we construct a similarity graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶 ), where
each vertex 𝑣𝑞 ∈ 𝑉𝐶 corresponds to the review embedding ®𝑒𝑞 . We
consider a fully connected graph, where all vertices are connected to
all other vertices, and theweight of each edge (𝑣𝑞, 𝑣ℎ) is given by the
similarity score 𝑠 (®𝑒𝑞, ®𝑒ℎ). Using this complete graph, we then apply
spectral clustering for 𝑏 clusters using the algorithm proposed in
Damle et al. [22]. We denote the cluster label assigned to embedding
®𝑒𝑞 as 𝑏 (®𝑒𝑞) ∈ {1, . . . , 𝑏}. We denote the set of embeddings that have
cluster label 𝑎 for 𝑎 ∈ {1, . . . , 𝑏} as B𝑎 = {®𝑒𝑞 |𝑏 (®𝑒𝑞) = 𝑎, ®𝑒𝑞 ∈ E}.

Cluster Averaging. Once all reviews for an event are clustered,
we average the embeddings for each assigned cluster to obtain se-
mantically relevant averaged embedding 𝑒𝑎 =

∑
®𝑒𝑞 ∈B𝑎 ®𝑒𝑞
| B𝑎 | for each

cluster label 𝑎 ∈ {1, . . . , 𝑏}. We then stack the resulting 𝑏 embed-
dings to obtain a dense representation 𝑅𝑤 = [𝑒⊤1 , . . . 𝑒

⊤
𝑏
]⊤ for ar-

bitrary event 𝑤 . We denote the set of events in sector 𝑠𝑘 as 𝑤𝑠𝑘 .
we denote the average dense representation for events in sector

𝑠𝑘 as 𝑅𝑠𝑘 =

∑
𝑤∈𝑤𝑠𝑘

𝑅𝑤

|𝑤𝑠𝑘
| . For each event title and description we

generate an additional sentence embedding using the same pre-
trained MLM. This embedding provides additional context to the
NN to differentiate between events that share the same venue and
hence might have some of the same reviews. For arbitrary event
𝑤 , we denote this embedding as ®𝑧𝑤 ∈ R𝑑 . We denote the average

title embedding for events in sector 𝑠𝑘 as 𝑧𝑠𝑘 =

∑
𝑤∈𝑤𝑠𝑘

®𝑧𝑤
|𝑤𝑠𝑘

| . We
define the final unified sector feature for an arbitrary sector 𝑠𝑘 as
𝐹𝑠𝑘 = [𝑧⊤𝑠𝑘 , 𝑅

⊤
𝑠𝑘
]⊤ ∈ R(𝑏+1) ·𝑑 . The vector 𝐹𝑠𝑘 is the output of the

event processing module (see Fig. 2 module 1).

Demand Prediction Module. The demand prediction module is
composed of a temporal (day of the week, month, and hour) and
spatial (weather) data collection pipeline followed by a two NN
prediction mechanism (see Fig. 2 module 2). If there are no events
happening on sector 𝑠𝑘 , the system considers a NN that takes as in-
put only temporal and spatial data in the form of a vector ®𝑓 . If there
is an event on sector 𝑠𝑘 , the system enhances ®𝑓 with the unified
sector feature 𝐹𝑠𝑘 from the event processing module to create input
feature 𝐹+𝑠𝑘 = [ ®𝑓 ⊤, 𝐹⊤𝑠𝑘 ]

⊤. For simplicity, we denote the predicted
demand, irrespective of the NN that produced it, as 𝑦𝑠𝑘 .

Deriving Minute Demand Distribution from Hourly Predicted De-
mand. Following the concept of Certainty Equivalence presented
in Bertsekas and Castanon [10], we derive a semi-deterministic
approximation for 𝑝𝜂𝑠𝑘 by evenly distributing the predicted hourly
number of requests for sector 𝑠𝑘 over the time horizon 𝑁 = 60 to
obtain the number of requests that will enter the system at each
minute. In this sense, we obtain a single descriptor 𝜂 (det)𝑠𝑘

for all re-
alizations 𝜂𝑠𝑘 (𝑡), 1 ≤ 𝑡 ≤ 𝑁 . More formally, We define 𝜂 (det)𝑠𝑘

=
𝑦̂𝑠𝑘
𝑁

.
If 𝜂 (det)𝑠𝑘

> 1, we round this value to obtain a deterministic quantity
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Figure 5: Mapping probability distributions over sectors to inter-
sections for pickup and drop-off. The potential number of riders at
each intersection is estimated using occupancy schedules and the
maximum occupancy of the locale

𝜂𝑠𝑘 that will be used as the number of requests that enter sector
𝑠𝑘 at each minute 𝑡 . If 𝜂 (det)𝑠𝑘

< 1, then we define a Bernoulli ran-
dom variable 𝜂bern𝑠𝑘

∼ 𝐵𝑒𝑟𝑛(𝜂 (det)𝑠𝑘
), and its realization at time 𝑡

as 𝜂bern(𝑡 )𝑠𝑘
, such that 𝜂bern(𝑡 )𝑠𝑘

= 1 with probability 𝜂
(det)
𝑠𝑘

. We set
𝜂𝑠𝑘 = 𝜂bern𝑠𝑘

. For each minute 𝑡 in time horizon 𝑁 = 60, we instanti-
ate 𝜂bern(𝑡 )𝑠𝑘

to determine if a request appeared in sector 𝑠𝑘 at minute
𝑡 . In contrast to standard certainty equivalence [10], our approach
does not fully remove the stochasticity for the random variable 𝜂𝑠𝑘
to avoid underestimating demand.

4.2.2 Estimating Probability Distributions for the Pickup and Drop-
off Intersections, 𝑝𝜌𝑠𝑘 and 𝑝𝛿𝑠𝑘 , and the Conditional Matching 𝑝𝛽𝑠𝑘 .
Here, we tackle the problem of going from sector level demand to
intersection-level demand that can be used as input to the routing
optimization in Eq.2. To achieve this, the probability distributions
for pickups and drop-offs over intersections, 𝑝𝜌𝑠𝑘 and 𝑝𝛿𝑠𝑘

, are
estimated by leveraging the demand assignment module (see Fig. 2
module 3), which given a set of intersections I𝑠𝑘 for sector 𝑠𝑘 , re-
turns a probability distribution over I𝑠𝑘 based on the number of
locales of interest (i.e. restaurants, bars, cafes, etc) near that intersec-
tion, their respective occupancy schedules [31, 47], and an estimate
of their maximum occupancy. A graphical representation of this
process is shown in Fig. 5. More formally, let’s consider sector 𝑠𝑘 and
an intersection 𝑗 such that 𝑗 ∈ I𝑠𝑘 . We denote 𝑛𝜆 ( 𝑗), as the number
of locales for a specific locale type 𝜆 ∈ Λ near intersection 𝑗 , where
Λ is the set of all locale types. We denote 𝑜𝜆 and 𝑝𝜆 , as the estimated
maximum occupancy and the occupancy schedule (percentage of
maximum occupancy) for locale type 𝜆, respectively. We denote
the hour of interest for pickups as ℎ𝜌 and the hour for drop-offs as
ℎ𝛿 . If we are interested in pickups and drop-offs during the same
hour, then we have ℎ𝜌 = ℎ𝛿 . For simplicity, we denote an arbitrary
hour irrespective of whether it is for pickups or drop-offs as ℎ𝑡 . We
denote the percentage occupancy of locale type 𝜆 as 𝑝𝜆 (ℎ𝑡 ). We
denote the estimate of the number of potential customers at node
𝑗 given an hour ℎ𝑡 as 𝑂 ( 𝑗, ℎ𝑡 ) =

∑
𝜆∈Λ 𝑛𝜆 ( 𝑗) · (𝑝𝜆 (ℎ𝑡 ) · 𝑜𝜆). There-

fore, for an intersection 𝑗 ∈ I𝑠𝑘 we have 𝑝𝜌𝑠𝑘 ( 𝑗) =
𝑂 ( 𝑗,ℎ𝜌 )∑

𝑖∈I𝑠𝑘
𝑂 (𝑖,ℎ𝜌 ) .

Similarly, we have 𝑝𝛿𝑠𝑘 ( 𝑗) =
𝑂 ( 𝑗,ℎ𝛿 )∑

𝑖∈I𝑠𝑘
𝑂 (𝑖,ℎ𝛿 ) .

To estimate 𝑝𝛽𝑠𝑘 , we consider historical demand data. We denote
the number of historical requests that had sector 𝑠𝑘 as origin and
sector 𝑠𝑙 as destination as 𝑌 (𝑠𝑘 , 𝑠𝑙 ). The probability of dropping

off a request at sector 𝑠𝑙 given that it was picked up at sector 𝑠𝑘 is
given by 𝑝𝛽𝑠𝑘 (𝑠𝑙 ) =

𝑌 (𝑠𝑘 ,𝑠𝑙 )∑
𝑠𝑎 ∈𝑆 𝑌 (𝑠𝑘 ,𝑠𝑎 ) .

5 EXPERIMENTAL EVALUATION
To evaluate our approach, we consider ride-share trip data for the
year 2022 obtained from NYC’s HV-FHV datasets [18]. We consider
a section of the map with 38 sectors (2235 intersections and 4566
streets) across mid and lower Manhattan (see Fig. 3). We collect data
for more than 2, 000 different events during the year 2022 hosted on
300 unique venues across all 38 sectors. We consider that each time
step in the system corresponds to 1 minute, and the time horizon
𝑁 = 60 represents an hour.

5.1 Implementation Details
To implement the system, we need to deal with two main areas:

5.1.1 Review Data and Spectral Clustering: We obtain a list of
events for a specific date using the PredictHQ API [50]. We consider
seven event categories: conferences, expos, concerts, festivals, per-
forming arts, community gatherings, and sports events. For each of
these events, we scrape Google Maps using SerpAPI [52] to obtain
reviews related to an event and its venue. We set 𝑄 = 100 to collect
a maximum of 100 reviews. We choose RoBERTa large v1 [36] as
the MLM for sentence embeddings, We choose the number of clus-
ters for the review embeddings 𝑏 = 3 based on previous work on
sentiment analysis [25, 65] that suggests 3 clusters (positive, nega-
tive and neutral reviews). However, 𝑏 can be set to any number, as
long as it is large enough to capture the semantic diversity of the
reviews, but still small enough to produce reasonable sized input
features for the neural networks.

5.1.2 Demand Prediction, Demand Assignment and Model-based
RL Routing Modules: All the weather data is obtained using Open-
Meteo Historical Weather Data API[46], which uses ERA5[32, 43].
We train both NNs for 100 epochs using the first 8 months of data
for the year 2022. The remaining 4 months were held out as a test
set. For both NNs, we select mean squared error (MSE) as the loss
function, we use Adam with a learning rate of 1×10−4 and a weight
decay of 1 × 10−6 as an optimizer, we choose a batch size of 64,
and we shuffle the batches after every epoch. The NN that pre-
dicts demand using ®𝑓 as input has 2 fully-connected hidden layers,
each with 256 neurons. The NN that predicts demand using the
features 𝐹+𝑠𝑘 has 2 fully-connected hidden layers with 4096 neurons
each. Architectural parameters for both NNs were selected using
a hyper-parameter search, and a simple feed forward architecture
was chosen as it was the fastest architecture to train, while still ob-
taining comparable results to other more complex architectures. All
training was done on a single NVIDIA RTX A6000. All evaluation
results are calculated using the predictions for the 4 months of data
in the test set. For the demand assignment module, we retrieve all
locales of interest for each intersection 𝑗 ∈ I𝑉 using Google Maps’
Nearby Search API [49]. We consider four locale types: retail spaces,
restaurants, hotels, and hospitals. We retrieve occupancy schedules
from COMNET [19]. For the rollout-based routing module, we set
the planning horizon 𝐻 = 10 and use 1000 Monte-Carlo simula-
tions to estimate the expectation for the one-agent-at-a-time online
minimization, and choose 𝜋 to be the fastest computing heuristic,
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the greedy policy (see Sec. 5.2). It is important to note that our
proposed method will still work for base policies that are easy to
compute and have a reasonable behavior.

5.2 Baselines
Our main results compare our approach against the following four
baselines: 1) Greedy policy: available taxis are routed to their
nearest outstanding request as given by Dijkstra’s shortest path al-
gorithmwithout coordination. 2) Instantaneous assignment:uses
a variation of broadcast of local eligibility (BLE) [59] for iterative
task assignment, performing a deterministic instantaneous match-
ing of available taxis to request currently in the system. 3) Garces
et al. [30]: in its scalable implementation, this methods uses a one-
agent-a-time rollout with instantaneous assignment as the base
policy. It estimates the current demand using the demand of the pre-
vious hour of operation of the system. This method uses a standard
application of certainty equivalence, utilizing the mean values for
𝜂𝑠ℎ , 𝜌𝑠ℎ , 𝛿𝑠ℎ , but preserving the stochasticity for 𝛽𝑠ℎ and the order
in which requests arrive by independently sampling from a pre-
computed pool of pickups and drop-offs. 4) Oracle: This method
has full a-priori knowledge of the exact time, pickup, and drop-off
locations for the requests entering the system in the future. For this
reason, this method is able to route taxis to the exact location of
each request even before the request has entered the system. This
method minimizes the total wait time for all requests by executing
a series of assignments that leverage the auction algorithm [5] with
full future information. This method is not achievable in practice,
but it provides a lower bound on the cost.

Note that we do not compare against policy gradient methods
as applying these methods to a large scale multiagent routing envi-
ronment with demand surges is still an open problem.

5.3 Main Results
In this section, we present a comparative study of our proposed
approach and the baselines described in Sec. 5.2. We evaluate all
policies using the held out test dataset described in Sec. 5.1. We use
the real requests in the ride service data [18] as the ground truth
requests entering the system, and we select a time window from
3pm to 9pm to include pre-surge scenarios (3pm), event-driven
surge times (5pm and 7pm), and post-surge times (9pm). In the
selected time window events happen 4 to 6 days a week usually in
the selected time range (start time of concerts and theater shows).
All results are obtained by averaging results for 25 random initial
states for a randomly chosen date (in this case, November 17, 2022).

First, we compare the average total cost (total wait time for
all requests at the end of the horizon) incurred by each policy. We
present these results in Table 1. We report both the raw cost and the
percent difference from the oracle (% diff). The percent difference
from the oracle is calculated by subtracting the cost for the oracle
from the cost of a given policy and then dividing the result by the
cost of the oracle. As shown in Table 1, our proposed approach
obtains the lowest average total cost compared to all the other
feasible methods, having a 2% to 10% lower raw cost and 1% to 10%
lower % diff than all the other baselines depending on the hour
considered.

Figure 6: Average wait time overhead per serviced request (in min-
utes).Our proposed approach (green) results in a serviced request
waiting 1 to 2 minutes, while for all the other baselines a serviced
request has to wait 3 to 10 minutes. Surge times are shaded in gray.

We also present results for the average wait time overhead per
serviced request in order to better understand the impact of each
policy on rider experience. Intuitively wait time overhead is the
additional amount of time that a request will have to wait in a
realistic stochastic setting compared to a setting in which the lo-
cations and times of all requests are known a-priori. To calculate
the wait time overhead per serviced request we take the total wait
time for all requests for a given policy, subtract the total wait time
for the oracle and then divide the resulting value by the number
of serviced requests for the given policy. We present these results
in Fig. 6. As shown in Fig. 6, our approach results in 25% to 75%
improvement on wait time overhead per serviced request over all
the other methods, which translates to faster pickups and a better
customer experience overall. Our method is particularly useful in
surge times between 5pm and 7pm, as it results in wait time over-
heads that are 3X smaller than wait time overheads for all the other
methods.

Additionally, we present the number of outstanding requests at
the end of the horizon to see which feasible policy services more
requests. Since we are dealing with a fixed fleet-size that is chosen
to satisfy average demand scenarios, demand surges usually lead
to accumulation of unserviced requests at the end of the horizon.
Table 2 contains the results for the number of outstanding requests
at the end of the horizon for all methods. As shown in Table 2, our
method has 1% to 4% fewer outstanding requests at the end of the
horizon than all the other baselines.

From all these results, we obtain that our method does not only
decrease wait time overhead for serviced requests by 25% to 75%,
depending on the hour, but it also services 1% to 4% more requests
than all the other methods.

Table 3: Average computa-
tion time for planning for a
single time step (in seconds)

Policy Runtime (in seconds)
Garces et al. 153.42 ± 7.65
Our approach 56.47 ± 5.40

To emphasize the computa-
tional time reductions associ-
ated with our approach com-
pared to standard one-agent-at-
a-time rollout, we present com-
putation times for the method
in Garces et al. [30] (see Sec. 5.2)
and for our approach in Table 3.

As shown in Table 3 our method is able to plan for the next time
step in approximately a third of the time compared to Garces et al.
[30], making it more suitable for city-scale applications.
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Table 1: Average total cost and percent difference from the oracle for different policies. Percent difference from the oracle is denoted as % diff.

Policies
Greedy Inst. Assign. Garces et al. Our approach Oracle

Time of day raw cost % diff. raw cost % diff. raw cost % diff. raw cost % diff. raw cost
3pm 6671.2 ± 269.0 16.4 6670.6 ± 193.9 16.4 6563.9 ± 243.5 14.5 6121.5 ± 217.5 6.8 5732.1 ± 165.4
5pm 11795.7 ± 202.6 6.4 11848.0 ± 165.1 6.9 11667.9 ± 174.5 5.3 11291.7 ± 169.2 1.9 11082.0 ± 134.7
7pm 17199.8 ± 187.7 3.8 17432.2 ± 187.0 5.2 18070.6 ± 210.6 9.0 16868.2 ± 141.2 1.8 16573.4 ± 103.8
9pm 12102.4 ± 143.1 4.8 12460.4 ± 107.4 7.9 13147.4 ± 217.5 13.8 12020.6 ± 154.6 4.1 11552.6 ± 80.7

Figure 7: 𝑃𝐸𝑠𝑘 for different demand prediction schemes

Table 2: Average number of outstanding requests at the end of the
hour for different policies

Policies
Time of day Greedy Inst. Assign. Garces et al. Our approach
3pm 241.92 ± 7.87 240.92 ± 3.75 238.42 ± 4.66 230.17 ± 4.30
5pm 434.00 ± 4.07 433.33 ± 3.52 426.83 ± 4.76 422.58 ± 4.25
7pm 626.23 ± 5.15 630.15 ± 5.49 632.38 ± 4.89 611.46 ± 3.71
9pm 471.14 ± 5.71 474.93 ± 3.63 479.79 ± 3.53 467.14 ± 5.04

5.4 Ablation Studies
In this section we consider modifications of our approach, mainly
dealing with two aspects: the demand prediction system and the
base policy used for the rollout-based routing algorithm.

5.4.1 Demand Prediction System. To better understand the effect
of including event information in the demand prediction, we isolate
the demand prediction system and compare it against a NN that
only uses temporal and spatial data as input (we call this standard
NN).We also compare our demand prediction against a probabilistic
estimation of demand that uses the previous hour of operation of
the system as a proxy for the current demand as proposed in [30].
Results for the prediction errors of all three methods are shown in
Fig. 7.

Table 4:Average total cost of our
method for two base policies

Base Policies
Time of day Inst. Assign. Greedy
3pm 103.73 ± 3.32 102.57 ± 3.34
5pm 189.25 ± 3.23 189.03 ± 2.12
7pm 279.37 ± 2.47 280.88 ± 2.79
9pm 202.84 ± 2.36 201.79 ± 2.06

The figure presents pre-
diction errors for each hour
in the chosen time window
averaged over all days in No-
vember 2022, where we com-
pute average percent error
𝑃𝐸𝑠𝑘 = 1

|𝑋 |
∑
𝑋

|𝑦𝑠𝑘 −𝑦̂𝑠𝑘 |
𝑦𝑠𝑘

,
where 𝑋 is the number of
data points in the test set for

sector 𝑠𝑘 at the hour of interest, 𝑦𝑠𝑘 is the predicted number of re-
quests entering sector 𝑠𝑘 , and 𝑦𝑠𝑘 is the actual number of requests
entering 𝑠𝑘 . Our prediction scheme outperforms all other methods,
obtaining 3% − 10% improvement on average percent error.

5.4.2 Base Policy. Our proposed approach does not depend on the
choice of the base policy as long as the base policy is reasonable and
easy to compute. To illustrate this point, we consider an ablation
study where we compare the performance of our approach when
we change the base policy. We consider instantaneous assignment
and a greedy policy as defined in Sec. 5.2 as potential candidates for
base policies. The results of this comparison are shown in Table 4,
where we can see that the total cost of our method at the end of
the time horizon is similar for both base policies.

6 LIMITATIONS AND FUTUREWORK
Since we consider a fixed fleet size, larger demand surges still lead to
a larger number of outstanding requests compared to hours where
there are less events. As future work, we want to consider a system
where there are taxis stored at warehouses throughout the map,
and we can dynamically change the fleet size to address this rise
in demand. Another important limitation of our approach is that
it relies on sampling to estimate the expected cost of each action,
and hence there is still a small, but non-zero, probability that the
samples obtained are not representative of the real demand, leading
to a degrade in performance. As shown in the simulations, this
probability is very small and performance degradation happens
very infrequently.

7 CONCLUSION
In this paper we presented an event-informed multi-agent RL rout-
ing framework that leverages event data from the internet to predict
demand surges and route taxis accordingly. The framework pro-
posed in this paper is applicable to multiple multiagent sequential
decision making problems where unstructured textual data can be
used to predict changes in the environment. One of such problems
is the routing application covered in the paper, in which event
data (textual data) is leveraged to predict changes in the demand
(the environment). Other examples of potential applications are:
multirobot repair/maintenance problems where there are textual de-
scriptions of the conditions of facilities, robotic search-and-rescue
tasks where humans collaborate with robots, among others. In the
routing application, our method decreases wait time overhead for
serviced requests by 25% to 75%, while servicing 1% to 4% more
requests than the baselines.
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