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ABSTRACT
Two-sided markets disrupted our economies, reshaping markets
as diverse as tourism (airbnb), mobility (Uber) and food deliveries
(UberEats). New market leaders arose leveraging on platform-based
business model, questioning well-established paradigms. The un-
derlying processes behind their growth are non-trivial, inherently
microscopic, and leverage on complex human interactions. Plat-
forms need to reach critical mass of both supply and demand to
trigger the so-called cross-sided network effects.

To this end, platforms adopt a variety of strategies to first cre-
ate the market, then expand it and finally successfully compete
with others. Such a complex social system with many non-linear
interactions and learning processes calls for a dedicated modelling
approach. State-of-the-art methods well estimate the macroscopic
equilibrium conditions, but struggle to reproduce the complex
growth patterns and individual human behaviour behind.

To bridge this gap, we propose the microscopic S-shaped learn-
ing model where agents build their perception on the new service
with time, affected by both endogenous (service quality) and ex-
ogenous (marketing and word-of-mouth) factors cumulated from
experiences. We illustrate it with the case of two-sided mobility
platform (Uber), where the platform applies a series of marketing
actions leading to rise and then fall on the market where 200 drivers
serve 2000 travellers on the complex urban network of Amsterdam.

Our model is the first to reproduce not only behaviourally sound,
but also empirically observed growth trajectories, it remains sen-
sitive to a variety of marketing strategies, allows reproducing the
competition between platforms and is designed to be integrated
with machine learning algorithms to identify the optimal market
entry strategy.
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1 INTRODUCTION
Two-sided platforms have reached significant market shares on
a variety of markets (like eBay for online shopping, Netflix for
streaming, Uber for transportation or airbnb for housing) in a short
time through the two-sided platform business model. The reason
underlying such a tremendous potential to grow in two-sided mar-
kets is the power of network. Two-sided markets are classically
defined as the markets in which one or several platforms enable
interactions between end-users and aim to onboard both supply
and demand sides by implementing appropriate charges [27]. In
essence, platforms associated with these markets rely on critical
mass, i.e., the minimum market size necessary to trigger cross-side
network effects and induce growth [3, 11]. This, in turn, forms a
positive feedback loop, where the value created for one side of a net-
work increases by adding users to another side [8]. These dynamics
are taking place within the complex social system where suppliers
and clients make individual, subjectively rational decisions to join
the platform - here we aim to explicitly reproduce their long-term
decision process in an agent-based model.

Platforms implement various market entry strategies in the early
adaptation phase to pursue a desired growth pattern, typically com-
prised of different stages from launch to maturity [18, 22]. Albeit
proven potential to grow rapidly, platforms face serious challenges
to reach and sustain market shares sufficient to become profitable.
First, platforms have no direct control on the supply and demand
since both are decentralized. For instance, travellers on the mobility
market can shift to alternative travel modes (public transport or
competing platform) and drivers can opt for another occupation,
benefiting from the flexibility of gig economy [15]. Second, the
three involved parties have inherently conflicting interests: i) plat-
forms aim to maximize their market shares and revenue, ii) clients
wants high quality at low price, and iii) suppliers intend to earn
enough to cover their costs, as well as to be at least on par with the
so-called reservation wage, i.e., the minimum wage that workers
require to join the labour market [33].

2 RELATEDWORK
Platform revolution attracted a wide body of research address-
ing concerns on their viability, leading to a series of agent based
models of two-sided markets [16, 17, 25, 32]. Yet only few studies
focus explicitly on the system evolution, growth mechanisms and
underlying process of learning the expected platform utility by
both the clients and suppliers. Two-sided platforms are, by nature,
complex and highly dynamic social systems, driven by non-linear
interactions of involved parties to evolve [27]. Classic studies on
the elements of two-sided markets and their interactions (with po-
tential to affect system evolution) including qualitative, analytical,
mathematical, or simulationmethods were either equilibrium-based
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Figure 1: Methodology at glance: We use a microscopic simulator of two-sided mobility platform environment (top) and extend it with
day-to-day S-shaped learning model (bottom) from [21]. In within-day simulations, drivers serve the trip requests made by travellers on a
detailed urban road network. Accumulated within-day experiences together with other exogenous utility components (such as marketing and
word-of-mouth) determine agent’s (traveller/driver) choice on the next day. To reproduce how the experience is accumulated, we propose
the S-shaped learning curves to update agent’s perceived utility based on new signals. Perceived utility adjustment through signal rely on
signal strength Δ𝑈 , learning sensitivity parameter 𝛼 and, notably, the learning process depends also on the position on the S-shaped curve.The
learning updates are low for both highly negative and positive utilities and high when the opinion is neutral.

or assumed fixed demand and/or supply [14, 20, 26, 36]. Which is
insufficient to provide a complete image of the system evolution.
Sun et al., [29] forecast ride-sourcing platforms’ growth on the
series of key performance indicators and the influence of various
internal and external factors. They argue that ride-sourcing growth
pattern is S-shaped (see fig. 2), which is inline with the empirical
patterns . Yet, the fundamental element of growth mechanism -
network effect is given as an input to the model rather than being
generated from natural interaction of agents. This is because of
macroscopic nature of their framework, which is not capable to
reproduce the system interactions at individual level. This is, to
some extent, addressed by Øverby et al., [24] who extended the
compartmental model to multi-sided platforms. Agent-based mod-
elling, with individual agents, is better suited for complex social
interactions behind the platform growth [5, 28].

Djavadian and Chow [10] take an ABM approach to model the
day-to-day dynamics of the urban mobility system. The proposed
framework is adaptive at individual level due to learning process
of agents based on past experiences, and system evolution depends
on the actual interactions of travellers and drivers. Yet, the growth
pattern produced by their framework is unalike empirical patterns
(see fig. 2). First, because of the optimistic initial utility perceived

by the agents for ride-sourcing platform, second, due to applying
the model developed by Bogers at al., [4], which produces concave
patterns, not inline with the platform growth patterns. In a similar
study, de Ruijter et al., [9] focus on evolution in ride-sourcing
labour supply with a day-to-day ABM to evaluate the effect of
supply market properties and pricing strategies. They reach to
reasonable equilibria, yet via unrealistic trajectories, with a very
high participation at the beginning, damped to the convergence
(see fig. 2). Similar agent-based models are available for housing
(where airbnb market oscillations around stability are reproduced
for Oslo [32] and Amsterdam [25]), food-deliveries ([17] where
UberEats restaurants optimize their locations in mean-field space
and customers do not opt out), or eBay ([16] where winner takes-
it-all mechanism is explicitly simulated). Yet, up to our knowledge,
the agents’ participation choice model is typically simplified, and
the behaviourally sound learning process of individual agents is
not addressed explicitly. Making state-of-the-art models unsuitable
for evaluating and optimizing platform policies.

Contribution: Understanding how platforms grow and what
is their optimal growth pattern is of paramount importance not
only to the platforms themselves, but also to the public, interested
in predicting and controlling their potentially disruptive impact
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Figure 2: This study’s research gap and contribution: Mobility plat-
form growth trajectories empirically observed in NYC, Seattle and
Amsterdam (dashed-lines), despite differences follow the similar
patterns: start slowly in the early phase, reach the critical mass
and steadily grow fuelled with cross-sided network effects. State-of-
the-art microscopic models fail to reproduce those empirical pat-
terns, consistent with theory of platform economies. Existing mod-
els either reach stability very fast without inducing network effects
(Djavadian and Chow [10], green), or start with high market-share
asymptotically damped to the equilibrium (de Ruijter et al. [9] -
orange). Sun and Ertz [29] - blue, obtain a reasonable pattern with
the macroscopic setting. Here, we propose the microscopic model to
realistically reproduce platform growth patterns (red).

on the economy. Identifying the optimal strategy is far from triv-
ial, as it requires realistic representation of the environment and
its dynamics, which are missing in the literature. Consequently,
strategies adopted by the platforms are likely to be suboptimal, as
there is no framework where optimal strategies or adaptive policies
could be learnt. We propose such a framework, capable to evaluate
any predefined strategy and integrable with state-of-the-art deep
learning methods.

Novelty lies in the realistic representation of adaptive learning of
individual agents, capturing their sequential learning process while
exposed to various signals (experience, word of mouth, marketing)
and sensitive to the policies of the platform and its competitors.
We propose a microscopic co-evolutionary model featured by the S-
shaped learning curves to represent the day-to-day learning process
of autonomous agents. Here, instead of memory-based learning [4],
which lead to unrealistic growth patterns, we followMurre [21] and
propose a more adequate formulation, with the so-called S-shaped
learning curve. Unlike machine learning approaches, which aim
to optimize the actions, our model provides agents with a realistic
behaviour adjustment. It stabilizes, and at the same time, remains
sensitive to the system changes, naturally balancing between the
memory (exploitation) and adaptation (exploration). In the proposed
framework, agents are successively exposed to experiences of their
own, their peers, and marketing image to gradually build their
perceived utility of the platform (see fig. 1 for overview). This,
thanks to reproducing the crucial platform-specific phenomena,
gives rise to the desired emergent growth for the system at the
aggregated level.

We propose a generic model applicable to the variety of plat-
form models, which explicitly reproduces non-deterministic and

suboptimal learning process of agents, who decide to join the plat-
form and collectively create the desired critical mass, triggering
non-linear cross-sided network effects and value creation effects
as observed empirically (see fig. 2). With reproducible examples
and open-source repository, this framework can evaluate any al-
ternative platform entry strategy or learn the optimal one, when
integrated within a reinforcement learning framework.

3 METHOD
In the proposed framework (synthesized on fig. 1), agents gradually
learn the actual platform utility from multiple (endogenous and
exogenous) signals. While the experience (income for the suppliers
and performance/quality for clients) collected from the environ-
ment is the main component, the platform’s marketing and peer’s
word-of-mouth are also included in the agent’s decision making
process. We argue that these three components are sufficient to
cover the essence of agents’ decision to participate in the two-sided
mobility market. Here, we detail the method for the case of urban
mobility, and discuss its applicability to other two-sided markets.

The learnt expectations of utility components are summed with
respective weights and used to evaluate the participation probabil-
ity of each agent in the new run of environment simulation. Here,
we implement the binary logit choice model where each traveller
and driver make daily choices between platform and alternative op-
tions. Remarkably, each agent (traveller/driver) undergoes a unique
evolutionary path of the perceived platform utility. Thanks to the
proposed S-shaped learning, unlike in the previous approaches,
an agent with consecutive positive experiences/exposures rapidly
adopts the platform, becomes loyal, and positively influence the
other agents. Similarly, an unsatisfied agent hardly returns to the
platform again, spreading the negative perception to her peers. Such
framework explicitly reproduces both the positive and negative
cross-sided network effects. Like in reality, signals differing from
expectations may shift attitude at any moment - a critical mod-
elling feature for the platform strategy evaluation. The open-source
Python framework is available on the public repository [13] for
reproducible experiments.

Environment simulator (MaaSSim): We apply the proposed
model in the case of urban mobility by extending the MaaSSim [19]
agent-based simulator for two-sided mobility platforms. MaaSSim
simulates, on the dense urban road network, the detailed behaviour
and interactions of two kind of agents: (i) travellers, requesting
to travel from their origin to destination at a given time, and (ii)
drivers supplying their travel needs by offering them rides. The
spatiotemporal interactions between the two types of agents are
mediated by the platform, linking demand to supply through the
matching algorithm (we use the "first-dispatch” protocol for match-
ing, which simply pairs the traveller with the nearest idle driver
[34]). To model market growth, we propose daily participation rules
for individual agents as detailed below. MaaSSim can be replaced
with any microscopic simulator, as long as it outputs the individual
performance for each supply and demand agent as well as the plat-
form and its performance is sensitive to the platform strategy and
other agents daily participation decisions. This allows to apply the
proposed model to markets as diverse as streaming, house-sourcing
or food deliveries by simply changing the simulation environment.
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Agents’ participation model: First, agents need to become
aware of the new service by marketing (mainly) or word-of-mouth
(sporadically), before they include the platform alternative in their
choice-sets (represented with a binary variable 𝑁𝑖,𝑡 in Eq. 2) and
curiously start exploring it. Each notified traveller (client) 𝑟 in our
model on a day 𝑡 selects among two alternatives from a binary
choice set 𝐶𝑟 = {𝑟𝑠, 𝑝𝑡} of public transport (𝑝𝑡 ) and a new ride-
sourcing mode of transport offered by the mobility platform (𝑟𝑠).
While, public transport utility is fixed (with constant cost based on
the actual access/egress, waiting times, transfers, etc.), the expected
ride-sourcing platform utility will vary along with the agents’ learn-
ing process. Similarly, each notified driver (supplier) 𝑑 selects be-
tween working for the platform 𝑟𝑠 or elsewhere 𝑟𝑤 from choice set
𝐶𝑑 = {𝑟𝑠, 𝑟𝑤}. Everyday driver may opt for the so-called reserva-
tion wage 𝑟𝑤 (expected wage on the market), instead of serving
the platform.

For both sides’ agents (denoted by 𝑖), we compose the platform
utility with three components: experienced utility (𝑈 𝐸 ), word of
mouth utility (𝑈𝑊𝑂𝑀 ) and marketing utility (𝑈𝑀 ):

𝑈𝑖,𝑡 = 𝛽𝐸𝑖 𝑈
𝐸
𝑖,𝑡−1 + 𝛽𝑀𝑖 𝑈𝑀

𝑖,𝑡−1 + 𝛽𝑊𝑂𝑀
𝑖 𝑈𝑊𝑂𝑀

𝑖,𝑡−1 +𝐴𝑆𝐶 + 𝜖𝑖 (1)

Experienced utility is endogenous and comes directly from the
environment (simulation): drivers experience the actual income
(𝐼𝑑,𝑡 ), travellers experience travel time, waiting time and trip fare.
The marketing is exogenous and can express both positive (e.g., me-
dia campaign) and negative image (e.g., PR scandals) of the platform.
Word-of-mouth represents the perceived utility of peer agents and
is diffused between agents over underlying social network. When
agents interact on a specific day, they exchange their perceived
utilities𝑈 𝑟𝑠

𝑗,𝑡
and diffuse opinions.

In Eq.1, the relative weights of respective utility components
ensure that 𝛽𝐸

𝑖
, 𝛽𝐸

𝑖
, 𝛽𝑊𝑂𝑀

𝑖
> 0 and 𝛽𝐸

𝑖
+ 𝛽𝐸

𝑖
+ 𝛽𝑊𝑂𝑀

𝑖
= 1 while

they can be user-specific. The alternative-specific constant (𝐴𝑆𝐶)
captures the effect of unobserved factors on the perceived utility
of alternatives and 𝜖𝑖 is the error term. In such form, the utility is
consistent with the discrete choice theory and can be applied e.g.,
in the logit model, to obtain participation probability 𝑃𝑎

𝑖,𝑡
:

𝑃𝑎𝑖,𝑡 = 𝑁𝑖,𝑡

(
exp

(
`𝑈 𝑎

𝑖,𝑡

)
/
( ∑︁
𝑎′∈𝐶𝑖

exp
(
`𝑈 𝑎′

𝑖,𝑡

)
(2)

S-shaped learning and adaptation: The key element of the
proposed framework lies in the following adjustment mechanism,
which allows us to realistically represent the agents’ dynamics
specific to the platform growth. Here, we adhere to Murre [21]
and propose a behaviourally sound formulation of the so-called
S-shaped learning curve in the context of two-sided platforms, il-
lustrated in fig. 1. The adjustment process can be seen as moving
along the S-shaped curve, where the incoming positive signal (from
environment, marketing or peers) pushes perception to the right
tail of the curve, while the negative signal to the lower tail. Notably,
learning can go both directions at every state based on the relative
signal value. The learning is slow at the tails when perceptions
are strong and fast in the middle when perception is neutral. We
assume all agents have the same and fixed learning rate 𝛼 and we
make a conservative assumption that agents start with negative per-
ceptions of the new service: (𝑈𝑡=0 = 0 for all components), which

may be easily extended to heterogeneous behaviours. With the pro-
posed formulas, each agent may have a unique learning trajectory:
first due to different alternatives (each traveller has unique public
transport alternative quality) and second due to individual history
of experienced and received signals.

We formalize the S-shaped adjustment model with a sigmoid
function, and update respective perceived utility component (𝑈 𝑐

𝑖,𝑡
,

𝑐 ∈ {𝐸, 𝑊𝑂𝑀, 𝑀}) day-to-day as follows (the procedure can be
followed from fig. 1). First, we retrieve the cumulative utility on the
previous day 𝐶𝑈𝑖,𝑡−1 by applying the inverse sigmoid function (Eq.
3) on the yesterday’s utility𝑈𝑖,𝑡−1. Then, we update the cumulative
utility 𝐶𝑈 based on the utility difference Δ𝑈 at the current day
𝑡 (Eq. 4), with sensitivity parameter 𝛼 determining the speed of
learning. Eventually, we use the sigmoid function to obtain the
updated utility for the day 𝑡 (Eq. 5). Here, the learning depends on
the previous position on the S-shaped curve.

𝐶𝑈 𝑐
𝑖,𝑡−1 = ln(1/𝑈 𝑐

𝑖,𝑡−1 − 1) (3)

𝐶𝑈 𝑐
𝑖,𝑡 = 𝐶𝑈 𝑐

𝑖,𝑡−1 + 𝛼 · Δ𝑈 𝑐
𝑖,𝑡 (4)

𝑈𝐶
𝑖,𝑡 = 1/(1 + exp(𝐶𝑈 𝑐

𝑖,𝑡 )) (5)

The above formulation is generic to represent various kinds of
learning from new exogenous and endogenous signals. The specific
formulas for three components of utility adjusted in our urban-
mobility case are following: Experienced cumulative utility of dri-
ver 𝑑 on day 𝑡 is updated through the relative difference between
her reservation wage (𝑅𝑊 𝑑 ) and the most recently experienced
income: Δ𝑈 𝐸,𝑟𝑠

𝑑,𝑡
= (𝑅𝑊𝑑 − 𝐼𝑑,𝑡 )/𝑅𝑊𝑑 . Driver’s income on day 𝑡

(𝐼𝑑,𝑡 ) is the sum of trip fares of the served rides minus the platform
commission fee (we assume flat commission rate) and operational
costs. Similarly, traveller 𝑟 adjusts its experienced cumulative util-
ity on day 𝑡 through the relative difference between the cost of
the ride-sourcing platform (𝑟𝑠) and the public transport alternative
(𝑝𝑡 ): Δ𝑈 𝐸,𝑟𝑠

𝑟,𝑡 = (𝐶𝑝𝑡
𝑟 − 𝐶𝑟,𝑡 )/𝐶𝑝𝑡

𝑟 . The perceived cost of using the
platform for a traveller𝐶𝑟,𝑡 is composed of the trip fare, travel time
and waiting time where trip fare is controlled by the platform - can
be subsidised, and the waiting time depends on the supply-demand
balance in the system, i.e. indirectly on the number of drivers in
the system, consistently with travel behaviour literature [35]. Note
that the utilities of both reservation wage and public transport
are fixed, while the experiences of the platform service will vary
substantially day-to-day. Thanks to the S-shaped learning model,
such fluctuations cumulate in the perceptions of the agents and are
smoothed for a stable, yet sensitive behaviour.

For the sake of simplicity, here the marketing is an abstract unit-
less utility, spread uniformly among all the agents (target clients)
and additively accumulated upon exposure in time over the period
of the marketing campaign: Δ𝑈𝑀,𝑟𝑠

𝑖,𝑡
= 𝑝𝑀

𝑖
(1 − 𝑈𝑀

𝑖,𝑡
). We assume

that the marketing produces a positive effect on each exposure,
upper bounded with 1. The exposure probability depends on the
campaign intensity (𝑝𝑀

𝑖
), controlled by the platform via the budget.

Such naive formulation can be extended to cover negative or non-
linear, non-additive models. Notably, marketing signal does not
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depend on the system performance but only its perception (which
may be fake, like most of the marketing actions).

For the word-of-mouth, we assume random pairwise interactions
among the agents, who share their perceived utility with each other
bi-directionally. Analogically to the marketing, 𝑊𝑂𝑀 intensity
(𝑝𝑊𝑂𝑀
𝑖,𝑗

) determines the likelihood of the agent 𝑖 to share his/her
opinion with the agent 𝑗 on the day 𝑡 . Here, we used synthetic uni-
form social network for the sake of simplicity, which can be replaced
with the actual topology and proper social diffusion models. Upon
contact, agents exchange views and cumulative utility of word-of-
mouth, with the signal strength proportional to difference between
their perceive utilities: Δ𝑈𝑊𝑂𝑀,𝑟𝑠

𝑖,𝑡
= 𝑝𝑊𝑂𝑀

𝑖,𝑗
(𝑈𝑊𝑂𝑀

𝑖,𝑡
−𝑈 𝑗,𝑡 ) . Note

that while agents diffuse opinions along the full simulation period,
the marketing campaign runs only on predetermined days based
on the platform strategy.

Evaluating platform’s policy: Platforms aim tomaximize long-
term revenues, which typically requires a planning horizon longer
than just immediate profits. They invest capital to grow, hoping for
future returns, which may come only after the market is generated
and said platform reaches critical mass at both the supply and
demand and becomes profitable [7]. Notably, non-linear network
effects may induce a harsh competition in this winner-takes-all
market [12]. To win, platforms implement diverse market entry
strategies, formalized for our case of urban-mobility as the sequence
of actions: 𝐴𝑡 = {𝑓𝑡 , 𝑐𝑡 , 𝑑𝑡 ,𝑚𝑡 } , a tuple of trip fare 𝑓𝑡 , commission
rate 𝑐𝑡 , discount 𝑑𝑡 and marketing budget𝑚𝑡 for each day 𝑡 of its
operations.

Formally, our contribution can be seen as a function R which
returns the platform reward (revenue) from the environment E as
the consequence of exploiting some policy 𝜋 , i.e. taking a sequence
of actions 𝐴𝑡 on each day of the simulated episode. In the experi-
ments, we evaluate a fixed, pre-defined policy, i.e. assume the static
environment on which we apply a sequence of predefined actions,
hoping to maximise the cumulative reward.

Yet, our framework allows for more complex settings with an
adaptive policy, which takes optimal actions in a given state of the
environment (𝜋∗𝑡 (𝑠 |𝑎)). The state 𝑠 may be the actual market share,
possibly enhanced with the utilities of individual agents (potential
clients) to better tailor actions for the actual position on the growth
trajectory. In the multi-platform scenario, the state may include
actions of competitors (historical or predicted), which yields an
intriguing game-theoretical setting. Both settings require applying
some algorithms to learn an efficient policy, presumably with deep
reinforcement learning (which is out of scope of this study, here
we introduce the sound framework, an inevitable prerequisite to
evaluate and train such policies). Which can be easily integrated
in the classical RL training framework in the future, within the
Algorithm 1.

4 RESULTS
Experimental setting: We run an Uber experiment in Amster-

dam, the Netherlands, where 2000 travellers and 200 drivers adapt
over 400 days to the time-varying platform strategy. Each trav-
eller every day chooses between public transport and ride-sourcing
platform service to travel from her origin to destination. We sam-
ple these 2000 trips from the real-world Albatross tripset [1]. For

Algorithm 1: Platform policy - pseudo-code
MarketEntryStrategy

inputs :
Q # agents’ of supply and demand

𝛽’s, params, G # behavioural & control

parameters, environment setting
output :

R # rewards (profit and /or market size)

Env.init(params, Q,G) # initialise environment

for each day 𝑡 in 𝐷 do
for each platform do

make action 𝐴𝑡

end
# policy evaluation or exploitation

Env.simulate(𝑆𝑡 ) # simulate single day

for each agent do
# agents’ learning

update𝑈 𝐸
𝑡 ,𝑈𝑊𝑂𝑀

𝑡 ,𝑈𝑀
𝑡 ,utility components (Eq. 3-5)

update total utility𝑈𝑖,𝑡 (Eq. 1)
update participation probability 𝑃𝑖,𝑡 (Eq. 2)

end
store single day results R𝑑

end
Result: R,KPI

each trip request, we query for the public transport alternative
and obtain the detailed trip utility with OpenTripPlanner. Each
of 200 drivers choose between working as a platform driver and
alternative occupations with reservation wage of 10.63[€/hour]
(based on the minimum daily wage in the Netherlands [23]). We
simulate a four-hour period (8:00-12:00) of each day, during which
we reproduce ride-sourcing service operations: travellers request
rides, and the platform matches them with the vehicles. The speed
of ride-sourcing vehicle is set to the flat 36 [km/h]. We assume
the trip requests do not change day-to-day (travellers have fixed
origins, destinations and departure times) and drivers start their
shifts from the same positions every day (drawn randomly at day
one). A single day of the simulation is simulated in around 30s and
a complete 400 day experiment took 3h on the standard laptop.

In our experiment, for all the agents we fixed the corresponding
utility components’ weight to 𝛽𝐸

𝑖
= 0.8 for the weight of experience,

𝛽𝑊𝑂𝑀
𝑖

= 0.18 for word-of-mouth and 𝛽𝑀
𝑖

= 0.02 for marketing.
This is in-line with the findings on the actual platform-growth
trajectories, which are fuelled first with marketing, secondly with
WOM, yet mainly with a positive experience in a cross-side network
effects at the later stages [6]. We arbitrarily assume the probability
of being exposed to the marketing information during a single day
of the campaign 𝑝𝑀

𝑖
= 10%. Similarly, each agent has 10% probability

to exchange views with some other agent every day 𝑝𝑊𝑂𝑀
𝑖,𝑗

. We
do this by simply sampling 10% of agents every day and randomly
assigning them in pairs among which they exchange views (which
can be enhanced with the more adequate social diffusion models
and social network topologies). The patience threshold of travellers
to be matched is set to 10 minutes, after which they leave unsatisfied
(if no driver is available to supply their demand). Such unfulfilled
requests yield extra disutility for the platform (lost revenues) and for
the travellers (strongly negative experience in Δ𝑈 𝐸

𝑖,𝑡
). The trip fare
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Table 1: The predetermined platform strategy for the 400
days of operations used in the experiments.

Day Stage Stage Marketing Comm. Disc.
𝑡 number name [€/agent/day] 𝑐𝑡 𝑑𝑡

0 - 25 I Kick-off – 10% –
25 - 50 II Discount – 10% 40%
50 - 100 III Launch 5 10% 40%
100- 200 IV Growth – 10% 40%
200 - 300 V Maturity – 10% –
300 - 400 VI Greed – 50% –

is 1.2 [€/km] with a minimum fare of 2 [€] (based on the Uber price
estimator for Amsterdam [31]). The revenue of drivers working for
the platform equals the fares of all trips served, minus the platform
commission fee (varying). The drivers operational costs (0.25 [€/km]
for fuel, depreciation costs, etc. [30]) are deducted from revenues
to obtain the profit.

After each day of the simulation, we record the actual experience
of each agent, from which we update their expectations for future
days. We store both individual performance of agents and system-
wide indicators. We report the results first by showing individual
learning trajectories of the selected agents at fig. 3, followed with a
system-wide supply and demand evolutions at fig. 4. On fig. 5 we
report the system-wide performance for both travellers and drivers.
Finally, on fig. 6 we show sensitivity of resulting growth patterns
to various strategies and stability across replications.

Platform strategy: We hand-craft a reasonable and complex
market entry strategy with six consecutive stages for the 400 days
of simulation (summarized in Table 1). Platform starts with 10%
commission at the kick-off stage, which is followed by a 40% dis-
count on trip fares in the discount stage. The discounting scheme
is a specific one, at the platform’s expense not the suppliers: the
platform reduces the trip fare only for the travellers and the drivers
receive the full fare minus commission. Moreover, we offer the
discount only for those travellers who are not yet loyal to the plat-
form (i.e. their probability to use platform is below 50%). Initially,
agents are not notified about the new mode of transport and the
market shares are null (fig. 4). This changes in the launch stage,
the 50-day marketing campaign (costing 5[€/recipient/day]) trig-
gers the user acquisition by notifying them (𝑁𝑟,𝑡 in Eq. 2 becomes
one) and creating a positive image of the platform. After 50 days
of marketing, when the majority of agents are notified, platform
reaches a desired fast growth pace and quits the campaign in the
growth stage. When sufficient market size is reached, the platform
quits discounting on the day 200 and enters the maturity stage
when it stabilizes profits, market shares and agent behaviour. For
illustrative purposes, in the last 100 days of the proposed scenario,
the platform opts for a greedy move via increasing the commission
rate to 50 to maximize the profit during the greed stage, which
has catastrophic consequences (such reverse trend would not be
reproduced in state-of-the-art methods).

Resulting agents’ adaptive behaviour and system perfor-
mance: While the strategies outlined in Table 1 are implemented

Figure 3: Temporal evolution of choice probability (red) and
three components of utility for four sampled agents with
various temporal trajectories.

globally on the market, each agent follows a distinct, unique evo-
lution path depending on her exposition to the marketing, word
of mouth received from her peers and, most notably, her own ex-
periences gained while participating in the platform. On fig. 3 we
illustrate participation probability of selected four agents and the
400-day evolution of their perceived utility components. Passen-
ger A is initially exposed to positive marketing (orange) and later
to positive WOM (green) effects. Despite positive peers’ WOM
opinion, she does not cumulate positive experiences (blue), and
her probability of using the platform remains low. Passenger B,
instead, accumulates considerable positive experiences with the
platform, and her participation probability stabilizes around 0.9
before it drops to 0.1 at the greed stage. For driver A, despite the
positive WOM and marketing, the actual experience is negative and
probabilities remain low. Driver B has an early positive experiences
with using the platform and her participation probabilities are high,
despite lower WOM and marketing effects. Nonetheless, she opts
out from the system already in its maturity stage, due to series
of bad experiences. Consequently, we obtain a rich and diverse
population of agents with unique learning trajectories.

Growth trajectory: The most important result is how these indi-
vidual experiences and trajectories of the agents’ evolution translate
into the rise and fall of the platform, fig. 4 provides system-wide
averages. For the six stages of market entry strategy, it illustrates
the three components of perceived utility (system-wide means) and
the resulting market share. Notably, the demand and supply are
naturally balancing each other, thanks to our model structure, they
produce very similar trends. Agents with no experience remain
inattentive to the new mode until getting notified (stage III). By
adding the ride-sourcing to their mode choice set, they curiously
start to explore it and build their experience (due to long tails of
the logit choice model, the probability remains positive (Eq. 2)).
Later (stage IV), the value creation through the positive cross-side
network effect, fuelled by discounts, speeds up the platform growth.
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Figure 4: Six stages depicting the 400-day evolution of the
market entry strategy in Amsterdam, replicated five times
with varying origins and destinations of agents. The market
share (red) results from individual agents’ decisions, based on
utility, composed of three components: marketing (orange),
word of mouth (green) and experience (blue). In the first two
stages, despite offering discounts from 25th day, the platform
fails to launch. Marketing campaign (III ) launched on day 50
attracts both supply and demand, which allows the platform
to reach 20% market share before the campaign ends on day
100. Nonetheless, the strong word of mouth effect sustains
the steady growth (IV ) until the stabilization before the 200th
day. When stabilized, the platform stops offering discounts
(V ), which only slightly affects its stable market shares. The
greed (VI ), however, leads to a significant drop in market
share from day 300, when the platform recklessly decides to
collect 50% from the drivers as the commission fee.

This results in many agents who preferably opt for ride-sourcing
and find the new mode valuable. When platform ends the discounts
(stage V) it reaches stability with 60% of market share. Intending to
maximize its profit in short while, the platform recklessly raises the
commission rate (stage VI), which turns to a tragedy and a great
market share loses on both demand and supply side.

System performance: We investigate the performance of the
platform for the six stages of the market entry strategy through the
selected key performance indicators (KPIs). On the fig. 5, we report
the average waiting time for travellers (composed of the average
pick-up time and the matching time). We see the positive network
effect: when the market grows, its performance improves. While in
the early stages the waiting time is composed mostly with pick-up
time (since the number of drivers is low), significantly increased
matching time plays a substantial role at the greed stage. The profit
(5, bottom) remains above the reservation wage (RW) for the whole
period when the platform grows, asymptotically approaching it
(equilibrium) - showing that our model well reproduces supply-
demand interactions. We argue that stage V is optimal, with a good
performance for travellers, drivers and the platform. Crucially, our

Figure 5: Evolution of key performance indicators for the
supply (top) and demand (bottom). Travellers’ waiting times
(top) steadily drop to two minutes per traveller after 200
days, fuelling the value creation. The drivers’ profits remain
(red on the bottom) above the reservation wage (dashed) –
showing self-equilibration of supply and demand – until it
drops when the platform opts for 50% commission rate.

simulated system self-equilibrates while growing: drivers’ wages
remain above the reservation wage from 100th to 300th day. In par-
allel, the value creation improves the system performance (waiting
time) while the system grows from 20 to 60% market share.

Finally, we illustrate the key feature of themodel: its sensitivity to
the platform strategy. On fig. 6 we report the evolution curves over
400-day periods in alternative scenarios and show how it impacts
market shares and platform revenues (rewards). We play with the
commission rate (30%, 20% and 10%), trip fare (1.8, 1.2, 0.6€/km) and
discounting/incentives campaigns. Our model reasonably reacts
to a variety of strategies, providing strong signals for algorithms
to learn the optimal policies. Here, we also report stability of the
proposed model, surprisingly, the trajectories on fig. 6 result from 5
independent replications, but the confidence intervals are too small
to be read from the figure. Apparently, individual agent-dependent
learning trajectories cumulate into a stable market shares.

5 DISCUSSION AND CONCLUSION
In this research, we propose a novel agents’ learning framework,
suitable to reproduce complex interactions between supply, demand
and a platform for the two-sided economies. We develop an em-
pirically valid co-evolutionary model to represent the day-to-day
dynamics of the two-sided market with individually learning agents
of both supply and demand sides. Agents are rational decision-
makers, maximizing their perceived, excepted utility. To properly
reproduce the learning process, we formulate the utility composed
of the endogenous experience, and exogenous word of mouth and
marketing. We argue that such formulation allows to cover the
key phenomena behind the platform growth: critical mass, band-
wagon effect, network effects, cross-sided network effects, tragedy
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Figure 6: Sensitivity analysis of the proposed model. Market shares and platform revenues in three alternative scenarios for
three selected control variables.

of commons, value creation and economies of scale. We apply it for
the mobility platforms, like Uber, presumably the most complex of
all the markets, where on top of platform-related challenges, the
operator needs to address the complex spatiotemporal interactions
of drivers and travellers on dense urban networks.

The proposed model reproduced a strong positive cross-side
network effect at the microscopic level, crucial for the platform
growth. At the beginning of the simulation, the number of agents
is insufficient to reach the high service performance. Travellers
experience long waiting times and there is a low number of trips to
be supplied by the drivers. However, as some travellers and drivers
decide to remain in the platform (due to own positive experiences
or platform marketing and/or subsidy campaigns, as seen on fig. 3),
the value creation begins, feeding the positive cross-side network
effect (as demonstrated on fig. 5). Indeed, along with the market
growth, the travellers’ waiting time decrease and even more of
them join the platform, which affects cross-side as more trips, in
turn, attracts new drivers to join the platform. Which is in line with
theoretical models [2, 8, 18] and empirical observations (fig. 2)

To steer those supply-demand interactions toward the profitabil-
ity, the mobility platform controls: trip fare, commission rate, dis-
counts and launches marketing campaigns. We run a 400-day sim-
ulation with a predefined six-stage market entry strategy of the
ride-sourcing platform. Agents, notified about the new platform
service, start reluctant, but explore it, building their own experience
and sharing views with peers. In the maturity stage, the marketing
campaign and discounts are no longer needed: the market share
remains high without them (fig. 4), as value created for the platform
through network effect does not disappear. This can be interpreted
as the main rationale behind the large subsidies that platforms
(including Uber) apply at the early adaptation phase. Importantly,
platforms can also collapse as a result of inappropriate strategies
or harsh competition, which is also covered with our model. In the
greed stage of our experiment, the platform raises the commission

rate to a reckless 50%. Unlike in the existing methods, this triggers
the downward trend via the negative cross-side network effect, and
the market-share falls in short time. This is possible thanks to S-
shaped learning, where stable positive perceptions can be reversed
after receiving a sufficient number of bad inputs.

In our approach, each agent follows a distinct, unique evolu-
tion path depending on its exposition to the marketing, word-of-
mouth received from the peers and, most notably, own experiences
gained while participating in the platform (as illustrated on fig. 3).
The participation model is probabilistic and allows incorporating
heterogeneity e.g. in learning speed, reservation wage or utility
components weights.

We believe that the proposedmodelling framework offers a richer
and more solid representation of the underlying complexity behind
platform growth and paves the path towards the realistic evalua-
tion of the market entry strategies. With the proposed framework,
we can evaluate multiple strategies and identify the optimal one.
Moreover, now we can further propose the dynamic, adaptive poli-
cies, adjusting the actions every day. This allows to formulate this
complex optimization problem as a (deep) reinforcement learn-
ing problem. In an even more complex scenario, the two or more
competing platforms may concurrently adjust their strategies and
compete for the market shares in an even more intriguing game-
theoretic setting. The case observable on the platform-dominated
markets, yet with no reliable agent-based representations so-far.
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