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ABSTRACT
As AI agents leave the lab and venture into the real world as au-
tonomous vehicles, delivery robots, and cooking robots, it is increas-
ingly necessary to design and comprehensively evaluate algorithms
that tackle the “open-world”. To this end, we introduce NovelGym1,
a flexible and adaptable ecosystem designed to simulate gridworld
environments, serving as a robust platform for benchmarking rein-
forcement learning (RL) and hybrid planning and learning agents
in open-world contexts. The modular architecture of NovelGym
facilitates rapid creation and modification of task environments,
including multi-agent scenarios, with multiple environment trans-
formations, thus providing a dynamic testbed for researchers to
develop open-world AI agents.
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1 INTRODUCTION
As AI research ventures beyond “closed-worlds” where agents know
all task-relevant concepts in advance, the ability to recognize, learn,
and adapt to conceptually new situations becomes increasingly
important. While significant research effort has been invested in
creating “open-world” systems [4, 7, 18, 22], comprehensively eval-
uating them remains a challenge due to 1) the varying and con-
flicting interpretations of novelty as a concept [4, 6, 15], 2) the
varying architectural choices made in designing novelty-aware
1Project website and codebase source: https://novelgym.github.io/
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Figure 1: NovelGym environment representation. The figure
shows a gridworld environment with various entities, as de-
scribed in the legend. The red box highlights the novelty in
the environment.

agents [3, 8, 12, 24] and 3) the unbounded space of novelties that
an agent may encounter.

In this work, we consider novelty an intrinsically agent-relative
concept: An aspect of the world is novel for an agent, if that agent
has not experienced it in the past or cannot derive it from its current
knowledge. As such, depending on the particular cognitive and per-
ceptual capabilities of a given agent, different aspects of the world
may or may not constitute novelty. Similarly, a particular aspect
of the world that is novel for an agent may also be irrelevant to it,
making adaptation unnecessary. For instance, the height of a lamp
is a novel concept for an automated vacuum cleaner but one that
is irrelevant with respect to its cleaning task. We also emphasize
that what may be novel for one agent may not be novel for another.
Therefore, when comparing agents’ capabilities in novelty adap-
tation, it is important to control for such differences. As a result,
evaluation environments for novelty-aware agents need to be flexi-
ble enough to accommodate varying agent architectures, easy to
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extend to enable rapid development of novelties and tasks, includ-
ing for multi-agent scenarios, and offer agent-agnostic evaluation
metrics that can measure the agent’s ability to adapt to novelty
compared to non-novelty aware agents of similar capabilities.

In our work, we propose a new benchmark for the evaluation of
novelty-aware agents that is consistent with the aforementioned
desiderata. Specifically, NovelGym offers:

(1) A flexible and modular environment featuring easy task and
novelty design for developing and evaluating open-world
agents, in single and multi-agent scenarios.

(2) An ecosystem that seamlessly works with agents of different
architectures, including symbolic planning agents, reinforce-
ment learners, and hybrid neurosymbolic architectures.

(3) Benchmarks of various state-of-the-art learning and hybrid
methods for novelty handling.

(4) Agent-agnostic evaluation metrics for novelty adaptation.
The rest of our paper is structured as follows: First, we discuss

related work on novelty-aware agents and environments to evalu-
ate them, followed by establishing the theoretical framework upon
which the design of NovelGym is based. We present the environ-
ment architecture and current environment transformations that
may serve as novelties for tested agents. We also explain the modu-
lar implementation of the environment and how it facilitates further
design of tasks, agents, and novelties. Finally, we present evaluation
measures and benchmark evaluations of novelty handling agents.

2 RELATEDWORK
Recently, there has been increasing interest in creating agents that
can adapt to sudden and abrupt changes (i.e., novelties). Klenk et al.
[13] present a trainable model for novelty adaptation called World-
Cloner, where a symbolic representation of the pre-novelty world
is learned and then used to detect novelties. WorldCloner uses a
gridworld where an agent must complete a task that may or may
not be obstructed by novelties, but the task is simple and does not
involve a complex sequence of operations like crafting or breaking.
Stern et al. [22] also presents a model-based framework named
HYDRA that uses a domain-independent planner for the popular
video game Angry Birds. Sarathy et al. [18] proposed SPOTTER, an
approach that goes beyond pure reinforcement learning methods to
learn new operators needed to solve a task when symbolic planning
cannot due to novelties. Pardo [16] introduced Tonic, a benchmark-
ing library for deep reinforcement learning that is configurable but
limited to the scope of compatible environments and agents.

Several environments and frameworks for novelties or open-
world scenarios have been developed to aid the research and de-
velopment of those frameworks. NovGrid [2] is a novelty gener-
ator built on MiniGrid that allows the injection of novelties into
any existing minigrid environment. Silver and Chitnis [21] present
PDDLGym, which is a gym environment for RL research that can
be generated from symbolic, PDDL domain files commonly used
in planning. Goel et al. [9] present NovelGridWorlds, a Minecraft-
inspired grid world environment to study the detection and adapta-
tion of novelty that works with Planning and Learning. However,
none of the environments provides an easy injection of novelties
and the ability to integrate Planning and Learning seamlessly. Our
environment provides a modular and highly configurable interface

and the flexibility to integrate with both planning and RL agents in
multiple ways, which, to the best of our knowledge, doesn’t exist.
Hence, the contribution of such an ecosystem can enable research
in the direction of open-world problem-solving.

3 THEORETICAL FRAMEWORK
3.1 Running example
Let us consider a gridworld as shown in Figure 1; the environment
is laid out as the two rooms environment separated by a door and
two cells (shown in dark green). As shown in Figure 1, an agent is
facing a crafting table (used to craft items such as tree tap, axe, etc.).
The agent can collect resources from the environment by moving
around with navigation actions (move forward, turn left, turn right).
The agent can collect resources by breaking them and then craft
them into specific items using certain recipes. For example, an agent
can break the oak tree to get two logs, and one log can be crafted
into four planks. The agent’s goal is to craft a pogostick. The recipe
for crafting a pogostick involves collecting logs, diamonds, and
platinum and crafting various intermediary items such as planks,
sticks, tree-tap, etc. There are other entities, such as traders, with
whom the agent can interact and trade items. The environment also
has an adversarial agent that competes with the agent in getting
resources to craft the pogostick.

3.2 Environment
We formalize the environment 𝐸 as 𝐸 = ⟨𝐺, E,R,S, 𝐴, 𝜏,𝐶⟩, where
each component is defined as follows:

Grid. 𝐺 ⊆ Z2 represents the set of all grid cells in a 2D gridworld.
For an (𝑚 × 𝑛) grid, any cell can be uniquely identified by its
position (𝑖, 𝑗) where (1 ≤ 𝑖 ≤ 𝑚) 𝑎𝑛𝑑 (1 ≤ 𝑗 ≤ 𝑛). For example,
the gridworld shown in Figure 1 consists of 7 rows and 6 columns.

Entities. E = {< 𝑡1, 𝑃𝑒1 >, < 𝑡2, 𝑃𝑒2 >, . . . , < 𝑡𝑛, 𝑃𝑒𝑛 >} is the
set of all the entities in the environment where,

• 𝑡𝑖 is the type of the 𝑖𝑡ℎ entity from the set 𝑇 of all possible
entity types:𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑡 }. For instance, an entity “tree”
might have a type “oak-tree” within 𝑇 .

• 𝑃𝑒𝑖 is the set of properties of the 𝑖𝑡ℎ entity. Each property
set is a subset of the global property set (𝑃𝑒𝑖 ⊆ 𝑃), which
encompasses all possible properties an entity can exhibit:
𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑝 }

• An entity 𝑒 is thus represented as a tuple 𝑒 =< 𝑡, 𝑃𝑒 > where
𝑡 ∈ 𝑇 and 𝑃𝑒 ⊆ 𝑃 .

• Some entities are dynamic, such as other agents or adver-
saries (refer to Figure 1), which can actively take actions in
the environment, influencing state transitions.

• Entities can be located at individual grid cells, in an agent’s
inventory, or nested within other entities (e.g., stored inside
a chest or safe).

For example, as depicted in Figure 1, the gridworld environment
includes entities like oak-tree, representing the tree entity with oak
type. This tree might have properties such as breakable. Similarly,
an axe entity in the environment might have types like wood or
iron and can possess properties like graspable.
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Figure 2: Illustration of the sensor representation of the agent
in the environment. (Left) shows a LiDAR representation.
(Right) shows an image based local view representation.

Recipes. R = {𝑟1, 𝑟2, . . . , 𝑟𝑟 } is a set of transformation rules,
where a rule 𝑟 ∈ R defines how one or more entities can be
transformed into another set of entities. Each rule is defined as
𝑟 : E∗ × 𝐿𝑟 → E∗, where 𝐿𝑟 ⊆ 𝐺 represents the locations in
the grid world, i.e., a recipe can be applied at different places in
the environment. For example, some recipes work only in front of
the crafting table, or in front of other dynamic entities like traders
(traders and crafting table shown in Figure 1). Consider the rule 𝑟 :
({1 platinum 1 stick 2 plank}, 𝐿crafting_table) → {1 platinum axe}.
It indicates that, 1 unit of platinum and stick, and two units of plank
can be crafted into platinum axe at the crafting table.

States. S is the set of all possible states in the environment. For
example, as shown in Figure 1, a possible state of the environment
can be the locations of all the entities in the world.

Primitive Actions. 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑎} is the set of all available
primitive actions. While all actions are available to the agent in ev-
ery state, some actions only result in changes to the state in specific
contexts. For example, break action can be executed anywhere in
the gridworld, but would only have an effect if performed in front
of an entity that has the breakable property (example, a tree).

Transition Dynamics. 𝜏 = S ×𝐴 → S denotes the transition
dynamics and is responsible for determining the progression from
one state to another based on a given action. Formally, the transition
dynamics can be represented as: 𝜏 : S ×𝐴 × (𝐴𝑒1 , 𝐴𝑒2 , . . . , 𝐴𝑒𝑚 ) →
S, where S represents the state space, 𝐴 denotes the action space
of the primary agent, and the tuple (𝐴𝑒1 , 𝐴𝑒2 , . . . , 𝐴𝑒𝑚 ) captures
the sequence of actions taken by each dynamic entity in the envi-
ronment. These dynamic entities can act as adversaries or other
environmental actors, influencing the state transitions.

Cost function. 𝐶 : S × 𝐴 → R+, denotes the function that
assigns a fixed, non-negative cost to each state and action pair.
Specifically, for each action 𝑎 ∈ 𝐴, in a state 𝑠 ∈ S, 𝐶 (𝑠, 𝑎) provides
the associated cost of performing the action in a specific state. For
example, the cost associated with moving one step in the grid can
be 1, or breaking a tree can have a cost of 5, and depending on the
context, it may cost less, for example, breaking when holding a tool.

3.3 Agent
We define an agent A = ⟨𝑆𝑒𝑛,𝐴𝑐𝑡,K,Π⟩ as an entity in the envi-
ronment equipped with sensors 𝑆𝑒𝑛 to generate observations 𝑂

types
air,crafting_table,diamond,platinum - physobj
tree,diamond,platinum - breakable

predicates
(holding ?v0 - physobj)
(floating ?v0 - physobj)
(facing ?v0 - physobj)

fluents
world(?physobj)
inventory(?object)

action approach

params (?physobj01 ?physobj02)

preconditions
(and
(>= ( world ?physobj02) 1)
(facing ?physobj01))

effects
(and
(facing ?physobj02)
(not (facing ?physobj01))

Table 1: PDDL representation of the symbolic domain.

of the world, actuators 𝐴𝑐𝑡 that can affect the world, a knowledge
repository K that contains knowledge (learned or provided), and
a function Π : 𝑂 → 𝐴 that maps observations to actions. Agent
observations can be high-dimensional sub-symbolic vector repre-
sentations or can be symbolic representations. For example, if the
agent has a LiDAR-like sensor (as shown in Figure 2 (left)), then the
sensors will produce distances to the objects in the world; similarly,
an image-based local view would represent the grid with one hot
vector encoding on the entity types (shown in Figure 2 (right));
similarly the mapping can be from a state to a high level symbolic
state described using PDDL [1](as shown in Table 1).

The agent, using actuators 𝐴𝑐𝑡 can act in the environment. The
actions can be primitive actions or parameterized actions that im-
plement the primitive-level actions as a sequence. For example, an
agent can have an action as approach <entity>, which is imple-
mented by a planner and uses primitive actions (move forward, etc.)
to execute the action. The agent’s knowledge repository, K , can be
initially empty and accumulate knowledge over time. Knowledge
can be in the form of parameterized policies or a description of the
world symbolically through first-order logic. An agent’s behavior
function Π can be implemented based on two popular paradigms
for decision-making agents, namely, Planning and Reinforcement
Learning, as well as hybrid approaches combining the two. We fur-
ther formalize the symbolic planning and reinforcement learning
frameworks to further describe different agents.

3.3.1 Symbolic Planning. In specifying a planning problem, we
define L as a first-order language containing atoms 𝑝 (𝑡1, ..., 𝑡𝑛) and
their negations ¬𝑝 (𝑡1, ..., 𝑡𝑛), where each atom 𝑡𝑖 may be constant
or variable. We define a planning domain in L as D = ⟨S̃,O, 𝜏𝛼 ⟩,
where S̃ represents the set of symbolic states, O the set of finite ac-
tion operators, and 𝜏𝛼 as the transition function that describes how
the state changes as a result of an action operator being executed
in the environment [19]. We then define a planning problem as
P = (D, 𝑠0, 𝑆𝑔), where 𝑠0 is the initial state and 𝑆𝑔 is the set of goal
states. The agent begins in a start state 𝑠0 and establishes a plan 𝜋

for reaching one of the goal state contained in 𝑆𝑔 . Hence, the plan
𝜋 = [𝑜1, 𝑜2, ..., 𝑜 |𝜋 | ] is a solution to the planning problem P, where
each 𝑜𝑖 ∈ O is an action operator that has a set of preconditions

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

690



and effects. The preconditions describe the states before executing
the operator in the environment, and the effects describe the state
of the environment after the agent has executed the operator.

3.3.2 Reinforcement Learning. We formalize an RL problem as a
Markov Decision Process (MDP) M = ⟨S𝛽 , 𝐴𝛽 , 𝜏𝛽 , 𝑅,𝛾⟩. At time-
step 𝑡 , the agent is given a state representation 𝑆𝑡 ∈ S𝛽 . Exploring
the environment by taking action 𝐴𝑡 ∈ 𝐴𝛽 , the agent is assigned a
reward 𝑅𝑡+1 ∈ R ⊂ R based on the state 𝑆𝑡+1 it lands in by choosing
an action 𝐴𝑡 in a state 𝑆𝑡 . The goal of the agent is to learn a policy
that maximizes the expected return value 𝐺𝑡 =

∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘+1
for every state at time 𝑡 . The importance of immediate and future
rewards is determined by the discount factor 𝛾 ∈ [0, 1).

3.4 Novelty
We simulate the open-world using a base environment and a set
of environment transformations that act on one (or more) of its
constituent elements. The transformations may introduce novelties
for some agents, depending on their knowledge, perception, and
representations. More formally, we can define the transformation
of the environment as a function 𝜈 : 𝐸 → 𝐸′. The function 𝜈 may
transform the environment as:

• Layout changes: The transformation can affect the layout
or the grid size 𝐺 such that 𝐺 ≠ 𝐺 ′in 𝐸′. In other words, in
the transformed environment 𝐸′, the layout of the grid𝐺 ′ is
not the same as the original layout 𝐺 .

• Entity alterations: New or existing entities may be intro-
duced or modified. This can be represented as a transforma-
tion in the set of entities E such that E ≠ E′in 𝐸′.

• Recipe modifications: The set of transformation rules R
can undergo changes, leading to R ≠ R′ in 𝐸′.

• Action alterations: The set of available actions 𝐴 can expe-
rience modifications, resulting in 𝐴 ≠ 𝐴′ in 𝐸′.

• Transition dynamics change: If for some state 𝑠 ∈ S
and 𝑎 ∈ 𝐴, we have 𝜏 (𝑠, 𝑎) ≠ 𝜏 ′ (𝑠, 𝑎) where 𝜏 and 𝜏 ′ are
the transition dynamics of 𝐸 and 𝐸′ respectively, then the
transition dynamics have changed.

• Cost function alterations: The cost function 𝐶 can be
modified, leading to 𝐶 ≠ 𝐶′ in 𝐸′. This implies differences
in costs for certain actions in specific states between the
original and transformed environments.

Importantly, these transformations are composable, enabling the
creation of arbitrarily complex environments. By taking into ac-
count an agent’s knowledge, perceptions and representations, we
can apply transformations and their compositions to create novel-
ties for that agent. For instance, an agent that assumes a specific
environment layout for navigation would encounter novelty under
a transformation that flips the environment layout, whereas an
agent that operates with LiDAR sensors may not.

4 NOVELGYM: ARCHITECTURE &
IMPLEMENTATION

The NovelGym ecosystem serves as a platform for developing and
evaluating AI agents, with a focus on open-world novelty-aware
agents. Comprising a game engine and several aiding modules, the
system diagram of the ecosystem can be visualized as shown in

Figure 3. As seen in the figure, NovelGym has twomain components.
The first component, environment (highlighted in blue), represents
the modules that implement the environment and the game engine.
The second component, agent (highlighted in purple), showcases
the modules that can be used to implement agent architectures. A
novelty injector (shown in red) transforms the environment based
on the given specifications. We now describe each component of
the system while laying out the important features that enable
open-world novelty-aware agent training and evaluations.

4.1 Environment
Our environment implementation is based on PettingZoo [23]
and OpenAI Gym [5]. The environment component of NovelGym
houses a core engine that is responsible for the implementation
of entities (entity module shown in Figure 3) and actions (action
module shown in Figure 3). The design of separate modules for
all the features of the environment ensures easy task creation and
novelty implementation. The core engine maintains the state of the
world through the state module. The configuration of the world
can be specified using the specification module. Our environment
implementation supports multi-agent systems. Thus, each mov-
able entity (agent) takes turns in executing actions. The world map
keeps track of the location of entities in the grid world and the
coordinates of the rooms. We now describe each module.

4.1.1 Specification module. The specification module reads the
YAML configuration file and initializes the world. It also loads the
action and entity modules and initializes them with the parameters
and properties as specified in the configuration file.

4.1.2 Entity module. The entity module is responsible for the enti-
ties in the environment. Based on the specification, the entities are
initialized and may be modified by writing custom entity modules2.
Entity properties can also be specified directly in a configuration
YAML file. For example, objects may be configured to be breakable
by hand, by tools, or non-breakable.

4.1.3 Action module. The action module is responsible for the
action implementations in the environment. Our environment sup-
ports primitive actions as well as higher-level action operators
(as described in Section 3.3.1). The action module executes the ac-
tions in the environment and ensures that the state of the world is
updated by updating the environment.

4.1.4 World map/state module. The world map/state module gen-
erates the representation of gridworld given the current state. It has
a state tracker implemented inside it that keeps track of the entities
(including agents). The state tracker also runs scheduled tasks at the
end of each timestep. These scheduled tasks may include updating
the state for durative actions. For example, the action of break-tree
introduces one sapling in the world after three timesteps. In this
case, the state tracker will ensure that the world is updated with a
sapling after three timesteps of action execution.

4.1.5 Novelty module. The novelties are implemented as exten-
sions or modifications of the environment. The novelty module
helps in modifying the entity, action, and state modules depending
on the novelty configuration.
2A detailed tutorial on how to use and customize the environment can be found here.
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Figure 3: System design of the NovelGym ecosystem. Blue highlights the environment modules, and purple highlights the
agent modules.

4.2 Agent training architecture
The agent training architecture comprises three main components
to aid the development of hybrid learning agent architectures.

4.2.1 Single agent wrapper. While our environment supports multi-
agent systems, we focus on a single primary agent that solves the
task. Other agents in the environment are movable entities that can
take actions in the environment. The single-agent wrapper converts
the PettingZoo [23] multi-agent environment into a single-agent
one by taking over the action execution of all other agents while
exposing the control to the primary agent. The single agent wrapper
includes an observation conversion module that converts the state
of the world into a desired representation, e.g., a local view of
the map, or a lidar representation of the world (see Figure 2). The
customization allows the testing of different state representations.
For object-centric observation spaces, the conversion module can
be configured to automatically expand the observation and action
spaces in cases of additional entities and actions in novelties.

4.2.2 Neurosymbolic wrapper. The neurosymbolic wrapper is re-
sponsible for combining the symbolic planning agents and rein-
forcement learning agents. The wrapper maintains a knowledge
base that can be in the form of PDDL. With a pre-defined PDDL
template, the wrapper automatically generates PDDL files by re-
ferring to the information from the pre-novelty configuration file
and individual object and action modules. The generated PDDL
can be sent to a planner (implemented in the planner component
through MetricFF [10]) to generate plans. The plan executor en-
sures that each operator in the plan is executed in the environment.
The wrapper also has a novelty recovery component that can be
used to implement routines for novelty recovery.

4.2.3 Reward-shaping wrapper. In complex tasks with a large state
space and action spaces, reward shaping is a commonly used tech-
nique. With the help of the integrated planner, a filtered list of
actions in the PDDL plan gets selected, from which the wrapper
generates sub-goals. The user may define the filter criteria and the
plan-subgoal correspondences. Through comparison of the state

before and after each transition, the wrapper checks whether the
subgoal is met and rewards the agent for reaching the sub-goals.
The reward-shaping wrapper can help implement sophisticated
routines for novelty handling by combining planning and learning.

4.2.4 External RL agent. Our architecture also implements a mod-
ular reinforcement learning framework (Tianshou [25]). The avail-
ability of this module helps in implementing RL algorithms for
training agents. The connectivity of the module with our agent
architectures enables sophisticated agent designs and helps users
in experimenting with various learning algorithms.

5 EVALUATIONS
Evaluating open-world agents necessitates novel protocols. We
must also adjust evaluation metrics, considering agent performance
both pre- and post-novelty injection. We define two scenarios, pre-
novelty and similarly, post-novelty scenario. In the pre-novelty sce-
nario, the environment conditions are known to the agent, and
the agent’s knowledge and/or a pre-trained policy is enough to
solve the task successfully. However, when a novelty is injected, the
agent’s knowledge may become incomplete to solve the task either
successfully (and/or) optimally. We call this scenario the post-novelty
scenario. To illustrate, let us consider the introduction of a novel
entity axe in the environment (shown in the red box in Figure 1). In
the subsequent sub-sections, we will detail the proposed evaluation
protocol, followed by the proposed evaluation metrics.

5.1 Evaluation Protocol
The evaluation protocol is divided into four phases:

Initial training phase. In this phase, we train the agent in a
controlled environment that is free from novelties. In other words,
the agent’s knowledge base is complete to solve the task. For a
reinforcement learning agent, knowledge can be a shaped reward
function, a predefined hierarchical task decomposition [14], or a
Linear Temporal Logic (LTL) guided automaton as a reward func-
tion [11], etc. For a planning agent, knowledge can be a description
of the task through PDDL [1](illustrative example in Table 1).
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Figure 4: Illustration of performance metrics for open-world
agents.

Novelty injection. In this phase, we introduce the novelty into
the environment. The introduction of the novelty may hamper
the performance of the agent. We can monitor the impact of the
performance of the agent immediately upon the introduction of the
novelty. Monitoring the impact can help in testing the robustness
of the agent in the face of novelties.

Adaptation Phase. In this phase, we allow the agent to interact
with the novel environment to solve the task efficiently. This phase
is crucial in gauging how quickly and effectively the agent re-
calibrates its approach in response to the introduced novelty.

Post-Adaptation evaluation. After a period of adaptation (pre-
defined time or convergence criteria), we can assess the perfor-
mance of the agent in the novel environment.

5.2 Evaluation Metrics
Wepropose five evaluationmetrics to evaluate agents in open-world
environments, illustrated in Figure 4. The graph is plotted with re-
spect to the success rates versus time. The success rate measures
the agent’s performance in successfully solving the task. The suc-
cess rate can be measured at every epoch3 Success rate (𝑆): Given 𝑛
episodes, where 𝑠 of them are successful, the success rate is defined
as 𝑆 = 𝑠

𝑛 . We formally define the evaluation metrics:
(1) Pre-novelty asymptotic performance (𝑆pre-novelty): This

metric measures the final performance of the agent after the
convergence criterion is met in the pre-novelty task (shown
in brown in the pre-novelty part of Figure 4).

(2) Novelty impact (𝐼novelty): This metric quantifies the im-
mediate effect of introducing novelty on the agent’s perfor-
mance. It is calculated as the difference between the agent’s
performance before the novelty is introduced and its immedi-
ate performance after the novelty is encountered (illustrated
in yellow in Figure 4):

𝐼novelty = 𝑆pre-novelty − 𝑆immediate post-novelty

If the agent cannot solve the task without further adaptation,
its performance can theoretically drop to zero. Alternatively,
in certain scenarios, even without immediate adaptation, the
agent might still display non-zero performance.

(3) Time to adapt (𝑇adapt): The time taken by the agent to
reach the convergence criteria post novelty adaptation is

3An epoch is the number of episodes/timesteps of training after which we evaluate the
agent. In episodic tasks, the agent is provided a quota of timesteps to finish an episode.

the time to adapt (illustrated in green in Figure 4). The time
taken can be measured in terms of time steps, number of
actions taken, or CPU time.

(4) Asymptotic adaptation performance (𝑆post-novelty): This
metric measures the post-novelty adaptation performance
by the agent. This is the success rate in the post-novelty
scenario when the convergence criterion is met.

(5) Post-Adaptation Efficiency (Δ𝑡 ): This metric quantifies the
agent’s policy efficiency after adjusting to novelty relative to
its performance before the novelty. Specifically, it captures
the potential for beneficial novelties that enable the agent to
find task shortcuts. The metric is defined as:

Δ𝑡 = 𝑡pre-novelty − 𝑡post-novelty

where 𝑡pre-novelty is the average time the agent takes to solve
the task before encountering the novelty, and 𝑡post-novelty is
the average time post-novelty adaptation.

6 EXPERIMENTS
6.1 Task

Pogostick task. The task is a Minecraft-inspired crafting task
as illustrated in the running example (Section 3.1). The goal of the
agent is to craft a pogostick while collecting resources and crafting
various intermediary items. We simplified the task to make the task
more tractable for a reinforcement learning agent. In the simplified
task, the end goal of the agent remains to craft a pogostick while
standing in front of the crafting table. The agent starts with a few
items already in its inventory, such as a tree tap and iron pickaxe,
and the steps required in order to achieve its goal are: (1) approach a
block of platinum and (2) break it with the iron pickaxe; (3) approach
a block of diamond and (4) break it with the iron pickaxe, (5) craft
a plank, then (6) craft a stick, (7) select the tree tap and (8) collect
rubber from an oak log while in front of the oak log, (9) approach
the trader and (10) trade platinum for titanium, (11) approach the
crafting table and (12) craft a block of diamond, and finally (13)
craft a pogostick in front of the crafting table.

6.2 Novelties
We implement a total of 12 transformations of the environment
to test algorithms and frameworks for novelty handling in open-
world learning These transformations comprise various aspects of
task-solving and robust testing abilities.

6.2.1 Detrimental. A novelty is considered detrimental to an agent
if it induces a change that hinders the agent from fulfilling the task
for which it was designed. For example, if a tree in the environment
can only be broken using a novel entity axe, and the agent has never
utilized an axe to break trees. In that case, this transformation is
considered detrimental to the agent’s task in the environment.

6.2.2 Beneficial novelties. A novelty in the environment is consid-
ered beneficial for the agent if it induces a change that enhances
the agent’s ability to solve its task efficiently under a suitable per-
formance metric (e.g. total reward, number of timesteps, etc.).

6.2.3 Nuisance novelties. A novelty in the environment is consid-
ered nuisance for the agent if it does not affect the agent’s task or the
agent’s representation of the world. We selected 5 environmental
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Figure 5: Illustration of the (clockwise) pre-novelty environ-
ment, fire novelty, fence novelty and chest novelty.

transformations for evaluations (details in Appendix E)

(1) Axe: In this transformation, the tree is unbreakable unless
an axe is used to break it. (Detrimental)

(2) Chest: A chest is placed in the gridworld, and a new action
approach plastic chest appears in the agent’s action set.
If the agent uses the collect action while standing in front
of the chest, its inventory is filled with all the ingredients
necessary to craft a pogostick. (Beneficial)

(3) Trader: One grid cell must be between the agent and a trader
in order for the agent to be able to execute the trade action
with the trader. (Detrimental)

(4) Fence: All oak logs in the gridworld are surrounded by a
fence on the neighboring cells. The agent must break the
fence first in order to access the oak log. (Detrimental)

(5) Fire: The crafting table is set on fire, and a water bucket is
placed in the environment. The agent must first collect the
water bucket and use it to put out the fire before using the
crafting table for any crafting. (Detrimental)

6.3 Agent architectures
In order to develop agent architectures, we adapted a few exist-
ing architectures for novelty handling. The architectures ranged
from learning approaches to neurosymbolic approaches and were
adapted with sophisticated exploration methods. The modular na-
ture of our proposed ecosystem helps in adapting and developing
these hybrid architectures. Mainly, we had two approaches transfer
learning and hybrid neurosymbolic approach.

Hybrid planning & learning approach: The hybrid plan-
ning and learning method was a direct implementation of [8]. The
method assumes the pre-novelty task domain to be defined using
PDDL. After novelty injection, if the agent cannot solve the task
due to action execution failure, the method instantiates a learning
(RL) problem. The goal of the RL problem is to find a plannable
state. The plannable state is either a state that satisfies the failed
operator’s effects or can help the agent jump ahead in the plan.
The instantiated learning problem can be solved by any off-the-
shelf RL algorithm. We used PPO [20] as the RL agent. We also

adapted the Intrinsic Curiosity Module (ICM) [17] for robust explo-
ration. The modularity of NovelGym played a crucial role in the
easy implementation of such a complicated agent architecture.

Transfer RL Due to the complex nature of the task, it was chal-
lenging to train an RL agent to solve it. We used a dense reward
function to train the RL agent for the pre-novelty task (details in
Appendix D) The RL agent reached comparable performance to
a planning agent after 4M timesteps. With novelty injection, we
expanded the agent’s action and observation space, transferring
pre-novelty task weights. Our architecture’s flexibility facilitated
automatic expansion on-the-fly. The benchmarked agent architec-
tures include:

• RapidLearn+(PPO+ICM): Hybrid planning and learning us-
ing PPO as the RL algorithm integrated with ICM.

• RapidLearn(PPO): Hybrid planning and learning with PPO.
• Transfer RL(PPO)+ICM: Transfer learning with ICM.
• Transfer RL (PPO): Transfer learning using PPO.

The agent’s subsymbolic observation space is a LIDAR-like sensor
that emits beams for every entity in the environment at incremental
angles of 𝜋

4 to determine the closest entity in the angle of beam
(similar illustration shown in Figure 2 (left)). The size of lidar sensor
observation is 8 × |E|, where E is the set of entities in the environ-
ment. The observation space is augmented by additional sensors
that observe the agent’s contents of inventory and entity selected
by the agent. The agent’s symbolic description was represented us-
ing PDDL, where entities were described with a type hierarchy, and
predicates represented the relations between the types. The actions
were described using preconditions and effects (details in Appendix
G). We also implement an image-based local view representation.
The local view representation is a one-hot vector encoding of all
the entity types in the world in a grid of 𝑛 × 𝑛 around the agent
(details in Appendix C) The agent has primitive actions such as
move-forward, turn-left, etc., and parameterized actions such as
approach<entity>, select <entity>, etc. (details in Appendix B) The
action space size for the pre-novelty task is 28.

7 RESULTS & DISCUSSION
The results of our experiments are detailed in Table 2. Listed in the
table are the mean and standard deviation of the metrics across all
seeds. Notably, the metric 𝑆pre-novelty consistently scored perfectly.
To achieve this, the RL agents underwent training of 4 million
timesteps. Upon introducing novelty, there was a sharp perfor-
mance decline across all agents for every novelty type, with the
exception being the “chest” novelty. The chest novelty, being bene-
ficial to the agent in the given environment, does not interfere with
the task. Hence, the agent’s success rate remains unaffected. The
hybrid agent, given its design, does not adapt to novelties unless an
execution failure is detected. Therefore, for the hybrid agent, this
is not a novelty. The Δ𝑡 metric (lower the better), which measures
adaptation efficiency, highlights the superior performance of the
transfer RL agents in adapting to “chest" novelty. This performance
can be attributed to the exploratory nature of the RL algorithms.
The 𝐼novelty metric (lower the better) was computed by measur-
ing the performance of each agent before training for adaptation
for the novelty. Its values reveal that learning-based strategies are
more sensitive to novelty introduction. However, hybrid models can

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

694

https://arxiv.org/pdf/2401.03546.pdf
https://arxiv.org/pdf/2401.03546.pdf
https://arxiv.org/pdf/2401.03546.pdf
https://arxiv.org/pdf/2401.03546.pdf
https://arxiv.org/pdf/2401.03546.pdf
https://arxiv.org/pdf/2401.03546.pdf


Novelty Agent 𝑆pre-novelty ↑ 𝐼novelty ↓ 𝑇adapt ↓ 𝑆post-novelty ↑ Δ𝑡 ↓

Axe RapidLearn+(PPO+ICM) 1 ± 0 0.83 ± 0.205 71040 ± 17413 1.0 ± 0.0 122.7 ± 15.61
RapidLearn (PPO) 1 ± 0 0.69 ± 0.207 68160 ± 17934 1.0 ± 0.0 116.9 ± 9.88
Transfer RL (PPO)+ICM 1 ± 0 1.0 ± 0.0 169440 ± 97949 0.97 ± 0.021 61.0 ± 8.95
Transfer RL (PPO) 1 ± 0 1.0 ± 0.0 114240 ± 19651 0.97 ± 0.018 63.1 ± 8.17

Chest RapidLearn+(PPO+ICM) 1 ± 0 – – – –
RapidLearn (PPO) 1 ± 0 – – – –
Transfer RL (PPO)+ICM 1 ± 0 0.0 ± 0.004 24000 ± 0 1.0 ± 0.0 −3.0 ± 0.78
Transfer RL (PPO) 1 ± 0 0.01 ± 0.009 24000 ± 0 0.98 ± 0.011 −3.5 ± 3.13

Trader RapidLearn+(PPO+ICM) 1 ± 0 0.45 ± 0.069 102720 ± 20724 0.95 ± 0.017 126.9 ± 9.97
RapidLearn (PPO) 1 ± 0 0.5 ± 0.07 96480 ± 21191 0.96 ± 0.02 122.8 ± 8.93
Transfer RL (PPO)+ICM 1 ± 0 0.96 ± 0.108 227040 ± 112120 0.99 ± 0.011 93.6 ± 12.05
Transfer RL (PPO) 1 ± 0 0.94 ± 0.128 350880 ± 237039 0.96 ± 0.025 89.3 ± 7.87

Fence RapidLearn+(PPO+ICM) 1 ± 0 0.38 ± 0.102 69120 ± 15657 0.96 ± 0.02 161.6 ± 7.6
RapidLearn (PPO) 1 ± 0 0.41 ± 0.052 66400 ± 20999 0.95 ± 0.008 168.7 ± 6.15
Transfer RL (PPO)+ICM 1 ± 0 1.0 ± 0.0 854400 ± 52974 0.93 ± 0.02 73.4 ± 4.7
Transfer RL (PPO) 1 ± 0 1.0 ± 0.0 701760 ± 100589 0.92 ± 0.024 90.9 ± 9.49

Fire RapidLearn+(PPO+ICM) 1 ± 0 1.0 ± 0.0 263520 ± 81979 0.95 ± 0.02 133.2 ± 21.38
RapidLearn (PPO) 1 ± 0 1.0 ± 0.0 252000 ± 49663 0.95 ± 0.016 142.5 ± 13.71
Transfer RL (PPO)+ICM 1 ± 0 1.0 ± 0.0 372960 ± 198096 0.94 ± 0.016 105.3 ± 9.85
Transfer RL (PPO) 1 ± 0 1.0 ± 0.0 127200 ± 37932 0.96 ± 0.029 103.3 ± 13.22

Table 2: Evaluations of the agents across five novelty scenarios. ↑ indicates higher value is better, ↓ indicated lower value is
better and – indicates that the evaluated novelty is not a novelty for the corresponding agent.

sometimes exhibit marginally superior immediate adaptation upon
the introduction of novelty. This might be due to their targeted
novelty adaptation approach. We can observe from the results that
fire novelty resulted in the sharpest decline in the performance of
all the agents. This shows that the adaptation of this novelty based
on the agents we evaluated is relatively harder than others. The
correspondence of the 𝐼novelty metric to the higher values of 𝑇adapt
can be observed in all the novelty and agents cases. For all the
novelties, hybrid agents surpassed transfer learning methods in the
𝑇adapt metric. This superiority may arise from hybrid architectures’
focused learning and their ability to effectively reuse knowledge.
Furthermore, we observed that the inclusion of ICM enhances adap-
tation in some cases. However, in some cases, we can see that the
ICM approach, especially when adapted to the transfer learning
agent, deteriorates the performance (fire novelty). The variance in
chest novelty in the 𝑇adapt is 0 because the agent did not achieve
a low success rate to adapt. Therefore, it was not trained based
on a convergence but rather a fixed set of episodes. 𝑆post-novelty
metric results do not show perfect scores for some agents because
the agents were trained to satisfy convergence criteria. They may
reach perfect scores if trained longer.

Our results highlight essential elements for crafting AI agents
capable of adeptly handling novelties. Specifically, the 𝑇adapt met-
ric reveals that even with advanced hybrid methods, a significant
number of environmental interactions are needed for agents to re-
calibrate to their original performance levels after facing novelty. In
real-world scenarios, especially in robotics, the opportunity for such
extensive interactions is limited. This underscores the importance
of our current domain and architectural approach, positioning it as
a promising avenue for furthering open-world learning research.

8 CONCLUSION & FUTUREWORK
We introduced NovelGym, a flexible platform tailored for the im-
plementation and injection of novelties and easy task creation in
gridworld environments. We highlighted the modularity of our pro-
posed ecosystem, substantiated by the integration of multiple nov-
elties and the implementation of complex agent architectures. To
further support the evaluation of novelty-aware open-world agents,
we proposed an evaluation protocol complemented by evaluation
metrics. Our empirical results offer insights into the performance
dynamics of various agent architectures in the face of multiple
novelties, evaluated against the backdrop of our introduced metrics.
Our benchmarking data also presents the intricacies and challenges
of open-world learning. Building on the strengths of NovelGym, the
platform’s adaptable and robust architecture presents a ground for
many research directions. A possible direction can be the procedural
and automatic generation of novelties, paired with an emphasis on
continual agent learning. As a part of future work, we aim to expand
NovelGym’s capabilities to fully embrace multi-agent dynamics
for deeper collaborative and competitive learning paradigms. We
would also like to extend the environment to support human-in-the-
loop learning, as novelty handling could benefit by demonstrations
through humans and incorporating those into learning.
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