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ABSTRACT
The visual world provides an abundance of information, but many

input pixels received by agents often contain distracting stimuli.

Autonomous agents need the ability to distinguish useful informa-

tion from task-irrelevant perceptions, enabling them to generalize

to unseen environments with new distractions. Existing works ap-

proach this problem using data augmentation or large auxiliary

networks with additional loss functions. We introduce MaDi, a
novel algorithm that learns to mask distractions by the reward

signal only. In MaDi, the conventional actor-critic structure of deep

reinforcement learning agents is complemented by a small third sib-

ling, the Masker. This lightweight neural network generates a mask

to determine what the actor and critic receive, such that they can

focus on learning the task. We run experiments on the DeepMind

Control Generalization Benchmark, the Distracting Control Suite,

and a real UR5 Robotic Arm. Our algorithm improves the agent’s

focus with useful masks, while its efficient Masker network only

adds 0.2% more parameters to the original structure, in contrast to

previous work. MaDi consistently achieves generalization results

better than or competitive to state-of-the-art methods.
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1 INTRODUCTION
Deep reinforcement learning (RL) has achieved remarkable success

in a variety of complex tasks such as game playing [32, 37], robotics

[2, 10, 17], nuclear fusion [7], and autonomous navigation [31, 60].

However, one of the major challenges faced by RL agents is their

limited ability to generalize to unseen environments, particularly in

the presence of distracting visual noise, such as a video playing in

the background [22, 39]. These distractions can lead to significant

degradation in the performance of deep RL agents, thereby hinder-

ing their applicability in the real world. To address this, we propose

a novel algorithm, Masking Distractions, which learns to filter out

task-irrelevant visuals, enhancing generalization capabilities.

The key idea behind MaDi is to supplement the conventional

actor-critic architecture with a third lightweight component, the

Masker (see Figure 1). This small neural network generates a mask

that dims the irrelevant pixels, allowing the actor and critic to

focus on learning the task at hand without getting too distracted.

Unlike previous approaches that have attempted to address this

issue [4, 21, 22], our method increases generalization performance

while introducing minimal overhead in terms of model parameters,

thus preserving the efficiency of the original architecture.

Furthermore, no additional loss function is necessary for the

Masker to optimize its parameters. To ensure that the Masker main-

tains visibility of the task-relevant pixels, it is trained on the critic’s

loss function. The Masker and critic networks are aligned in their

objective, as pixels that are essential to determine the value of an

observation should not be hidden. Figure 1 shows an example of

a mask, visualizing the output produced by the Masker network

corresponding to the current input frame. The Masker is able to

learn such precise segmentations without any additional labels,

bounding boxes, or other annotations. The reward alone is enough.

To evaluate the effectiveness of MaDi, we conduct experiments

on multiple environments from three benchmarks: the DeepMind

Control Generalization Benchmark [22], the Distracting Control

Suite [39], and a real UR5 Robotic Arm for which we design a novel

generalization experiment with visual distractions. Our results
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Figure 1: In theMaDi architecture, theMasker produces a soft mask (values between 0 and 1) for each frame, which subsequently
gets multiplied element-wise with the observation. The encoder is a shared ConvNet updated only by the critic loss, which is
also the objective function for the Masker. We show rounded percentages for the number of parameters used in the walker-walk
environment. The actor and critic contain most of it (∼ 98% together) as they consist of multiple fully-connected layers.

demonstrate that MaDi significantly improves the agent’s abil-

ity to focus on relevant visual information by generating help-

ful masks, leading to enhanced generalization performance. Fur-

thermore, MaDi achieves state-of-the-art performance on many

environments, surpassing well-known methods in vision-based

reinforcement learning [4, 18, 21, 22, 28, 50].

Our main contributions are:

• We introduce a novel algorithm, MaDi, which supplements

the standard actor-critic architecture of deep RL agents with

a lightweight Masker. This network learns to focus on the

task-relevant pixels solely from the reward signal.

• We present a comprehensive set of experiments on the Deep-

Mind Control Generalization Benchmark and the Distracting

Control Suite. MaDi consistently achieves state-of-the-art or

competitive generalization performance.

• We test MaDi on a physical robot, demonstrating that our

algorithm increases the performance of the UR5 Robotic Arm

in a challenging VisualReacher task, even when distracting

videos are playing in the background.

The paper is structured as follows: Section 2 reviews related work,

Section 3 formalizes our mathematical framework. Our algorithm

MaDi is detailed in Section 4. We present simulation results in

Section 5 and robotic experiments in Section 6. Section 7 concludes.

2 RELATEDWORK
The problem of generalization in deep reinforcement learning has

been an active area of research, with several approaches proposed

to tackle the challenge of visual distractions. In this section, we

review the most relevant literature, highlighting the differences

between our proposed MaDi method and existing approaches.

Generalization in RL. In reinforcement learning, generalization

refers to an agent’s ability to perform well on unseen environments

or tasks [27]. This can be challenging, as RL is prone to overfit

to the training environment [6, 12, 20, 57]. Several works have

focused on improving generalization capabilities by employing

techniques such as domain adaptation [49], domain randomization

[2, 42], meta-learning [9, 46], contrastive learning [1, 29], imitation

learning [11], bisimulation metrics [13, 56], and data augmentation

[22, 28, 34, 47, 50, 53]. Even using a ResNet [23] pretrained on

ImageNet [36] as an encoder can improve generalization [54].

Visual Learning in RL. Learning tasks from visual input, i.e.,

image-based or vision-based deep RL, is typically more demanding

than learning from direct features in a vector. DQN [32] was the

first to learn Atari games at human-level performance directly from

pixels. However, it has been shown that these algorithms can be

quite brittle to changes in the environment, as altering a few pixel

values can significantly decrease DQN’s performance [33, 58]. Using

data augmentation proved to be the key in visual RL. DrQ [50] and

RAD [28] use light augmentations such as random shifts or crops

of the observation to increase the algorithm’s robustness.

Distractions in RL. Several approaches have been proposed to

deal with the presence of task-irrelevant noise and distractions in

reinforcement learning environments. Automatic Noise Filtering

(ANF) [16] works on noisy environments that provide states as

feature vectors, such as the MuJoCo Gym suite [5, 43]. We focus

our work on RL agents that need to learn from image-based obser-

vations, like the pixel-wrapped DeepMind Control Suite [41]. Two

benchmarks that we use are extensions of this suite.

Several works [4, 21, 22, 53, 54] have tried to tackle the DeepMind

Control Generalization Benchmark [22] and the Distracting Control

Suite [39]. Many of thesemethods use stronger
2
data augmentations

than the light shifting and cropping of DrQ and RAD. Usually, they

apply one of two favored augmentation techniques: a randomly

initialized convolution layer (conv augmentation) or overlaying

the observation with random images from a large dataset, such as

Places365 [59] (overlay augmentation).

Masking in Visual RL. There exist a few works that aim to im-

prove the generalization ability of RL agents by masking parts of

the input. Yu et al. [51] randomly mask parts of the inputs and

use an auxiliary loss to reconstruct these pixels. SGQN [4] and

the recent InfoGating [44] apply more targeted masking similar to

MaDi. InfoGating has only experimented on offline RL, and it uses

a large U-Net [35] to determine the appropriate masks, while MaDi

uses a much smaller 3-layer convolutional neural network.

Baselines. We select the following set of six baselines, as these

focus on online RL and do not use any pretrained models:

• Soft Actor-Critic [18, SAC] is an off-policy actor-critic algo-

rithm that optimizes the trade-off between exploration and

2
By stronger, we mean augmentations that alter an image significantly more.
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exploitation by automatically tuning a temperature parame-

ter for entropy regularization.

• Data-regularized Q-learning [50, DrQ] focuses on making

Q-learning more stable and sample efficient by shifting the

observations by a few pixels in a random direction.

• RL with Augmented Data [28, RAD] improves the data effi-

ciency in visual RL by randomly cropping the images.

• Soft Data Augmentation [22, SODA] applies data augmenta-

tion in an auxiliary task that tries to minimize the distance of

augmented and non-augmented images in its feature space.

• Stabilized Value Estimation under Augmentation [21, SVEA]
stabilizes learning by using augmentation solely in the critic.

It combines clean and augmented data in every batch used

for a critic update. The actor only sees clean data.

• Saliency Guided Q-Networks [4, SGQN] is perhaps closest to
our work, as it also uses masks to benefit learning. Its masks

are not applied at the start of the architecture, but are learned

by a third component after the encoder. This auxiliary model

minimizes the difference between its masks and other masks

generated by a saliency metric. By computing the gradient of

the Q-function with respect to the input pixels, this saliency

metric determines which pixels are important for the agent.

A hyperparameter sgqn_quantile (often set to 95% − 98%)
determines how many pixels are masked.

There are multiple significant differences between SGQN and MaDi.

First of all, SGQN is sensitive to its quantile hyperparameter. MaDi

is free from this hyperparameter tuning, as it automatically finds

the right fraction of pixels to mask. Furthermore, SGQN needs to

compute gradients with respect to the inputs and weights, while

MaDi only requires gradients of the weights. The additional compo-

nents of SGQN are heavier, adding about 1.6M parameters (an extra

25%) to the base architecture, MaDi roughly 10K (0.2%), reducing

the memory requirements. MaDi does not introduce any additional

auxiliary loss function, as it learns directly from the critic’s objec-

tive. In essence, SGQN does not apply a mask to every input image,

but uses them to learn better representations. MaDi tries to learn

the most helpful masks such that the actor and critic receive only

task-relevant information and are able to focus on the RL problem.

3 PRELIMINARIES
Problem formulation. We consider the problem of learning a

policy for a Markov decision process (MDP) with the presence of

visual distractions, similar to the formulation by Hansen et al. [21].

Our approach, MaDi, aims to learn a policy that generalizes well

across MDPs with varying state spaces.

We formulate the interaction between the environment and pol-

icy as an MDP M = ⟨S,A,P, 𝑟 , 𝛾⟩, where S is the state space,

A is the action space, P : S × A → S is the state transition

function, 𝑟 : S × A → R is the reward function, and 𝛾 is the

discount factor. To address the challenges of partial observabil-

ity [25], we define a state s𝑡 as a sequence of 𝑘 consecutive frames

(o𝑡 , o𝑡−1, . . . , o𝑡−(𝑘−1) ), o𝑖 ∈ O, where O is the high-dimensional

image space. In the particular benchmarks we employ for evalu-

ation, O = R84×84×3 for the simulation environments and O =

R160×90×3 for the robotic environment, as we receive RGB colored

images as input with 84 × 84 and 160 × 90 pixels respectively.

Our goal is to learn a stochastic policy 𝜋 : S → Δ(A), where
Δ(A) denotes the space of probability distributions over the action

space A. This policy aims to maximize the discounted return 𝑅𝑡 =

EΓ∼𝜋,P
[ ∑𝑇

𝑡=0 𝛾
𝑡𝑟 (s𝑡 , a𝑡 )

]
along a trajectory Γ = (s0, s1, . . . , s𝑇 ).

The policy 𝜋 is parameterized by a collection of learnable param-

eters 𝜃 . We aim to learn parameters 𝜃 such that 𝜋𝜃 generalizes

well across MDPs with perturbed observation spaces, denoted as

M = ⟨S,A,P, 𝑟 , 𝛾⟩, where states s𝑡 ∈ S are constructed from ob-

servations o𝑡 ∈ O. The original observation space O is a subset of

the perturbed observation space O, which may contain distractions.

Distractions. We define a distraction to be any input feature that

is irrelevant to the task of the MDP, meaning that an optimal policy

𝜋∗ and value function 𝑄∗ remain invariant under alterations of the

feature value. In our case, input features are pixels 𝑝𝑖 ∈ R3, where
a state 𝒔 consists of 𝑛 pixels: 𝒔 = (𝑝1, 𝑝2, . . . , 𝑝𝑛).

Suppose we encounter a state 𝒔, and we wish to determine

whether pixel 𝑝𝑖 is a distraction in that particular state. Let S𝑖 (𝒔)
be the set of states where only pixel 𝑝𝑖 is changed in comparison

to 𝒔. Then pixel 𝑝𝑖 is considered a distraction in state 𝒔 if 𝜋∗ and
𝑄∗ remain invariant across the entire set S𝑖 (𝒔). More formally:

Definition 3.1. A pixel 𝑝𝑖 is a distraction in state 𝒔 if, for an
optimal policy 𝜋∗ and value function𝑄∗ it holds that, for an arbitrary
but fixed action 𝒂, we have ∀ 𝒔 ∈ S𝑖 (𝒔) :

𝜋∗ (𝒂 |𝒔) = 𝜌∗ where probability 𝜌∗ ∈ R is constant,

𝑄∗ (𝒔, 𝒂) = 𝑞∗ where value 𝑞∗ ∈ R is constant.

In other words: pixel 𝑝𝑖 can take on any value, but the optimal

policy will not change. In that particular state 𝒔, the pixel 𝑝𝑖 is

irrelevant to the task and thus a distraction. From this definition

we can derive that the partial derivative of 𝜋∗ and 𝑄∗ with respect

to the input feature 𝑝𝑖 is zero.

Corollary 3.2. If 𝑝𝑖 is a distraction in state 𝒔, then for an arbitrary
action 𝒂 we have that

𝜕

𝜕𝑝𝑖
𝜋∗ (𝒂 |𝒔) = 0 and

𝜕

𝜕𝑝𝑖
𝑄∗ (𝒔, 𝒂) = 0.

This follows from Definition 3.1 since 𝜋∗ and 𝑄∗ remain constant

for varying 𝑝𝑖 . Optimal policies perfectly ignore distractions, while

suboptimal policies (i.e., neural networks during training) may be

hindered by distractions. As distractions have no effect on the opti-

mal policy, they can be safely masked when using 𝜋∗. This suggests
that when striving to approximate 𝜋∗, it may be advantageous to

mask distractions as well, a concept at the core of MaDi.

Soft Actor-Critic. In this work, we build upon the model-free

off-policy reinforcement learning algorithm Soft Actor-Critic (SAC;

[18]). SAC aims to estimate the optimal state-action value function

𝑄∗ with its parameterized critic 𝑄𝜃𝑄 . The actor is represented by a

stochastic policy 𝜋𝜃𝜋 , which aims to maximize the value outputted

by the critic while simultaneously maintaining high entropy. The

optional shared encoder 𝑓𝜃 𝑓 is often used for SAC in image-based

environments. The critic and shared encoder have target networks

that start with the same parameters 𝜃 tgt = 𝜃 . These are gradually

updated throughout training by an exponential moving average:

𝜃 tgt ←− (1 − 𝜏)𝜃 tgt + 𝜏𝜃 . We will often omit the implied parameter

𝜃𝑁 in our notation of any network 𝑁 .
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Algorithm 1 MaDi based on SAC

randomly initialize all networks: 𝜋 , 𝑄 , 𝑓 ,𝑀

copy parameters to target networks: 𝑄 tgt
, 𝑓 tgt

1: for timestep 𝑡 = 1...𝑇 do
act:

2: a𝑡 ∼ 𝜋 (·|𝑓 (s𝑡⊙𝑀 (𝒔𝑡 ))) Sample action

3: s′𝑡 , 𝑟𝑡 ∼ P(·|s𝑡 , a𝑡 ) Perform action in env

4: B ← B ∪ (s𝑡 , a𝑡 , 𝑟𝑡 , s′𝑡 ) Add to replay buffer

update:
5: {s𝑏 , a𝑏 , 𝑟𝑏 , s′𝑏 } ∼ B Sample batch 𝑏 ⊂ B
6: 𝜃𝜋 ← 𝜃𝜋 − 𝜂∇𝜃𝜋L𝜋 (s𝑏 ) Update 𝜋

7: s𝑏 ← concat(s𝑏 , 𝛿 (s𝑏 )) Apply augmentation

8: for network 𝑁 in [𝑄 , 𝑓 ,𝑀] do
9: 𝜃𝑁 ← 𝜃𝑁 − 𝜂∇𝜃𝑁L𝑄

(
s𝑏 , a𝑏 , 𝑟𝑏 , s′𝑏

)
Update 𝑄 , 𝑓 ,𝑀

10: for network 𝑁 in [𝑄 , 𝑓 ] do
11: 𝜃

tgt

𝑁
← (1 − 𝜏)𝜃 tgt

𝑁
+ 𝜏𝜃𝑁 Update 𝑄 tgt

, 𝑓 tgt

4 MADI
MaDi aims to mask distractions that hinder the agent from learning

and performing well. We supplement the conventional actor-critic

architecture of deep reinforcement learning agents by integrat-

ing a third, lightweight component, the Masker network 𝑀 . The

Masker adjusts the input by dimming irrelevant pixels, allowing

the actor and critic networks to focus on learning the task at hand.

The Masker and encoder compute internal representations using

the Hadamard product and one forward call each: 𝑓 (𝒔𝑡 ⊙ 𝑀 (𝒔𝑡 )).
Algorithm 1 indicates the few adjustments necessary to standard

SAC (or SVEA, when using the augmentation on line 7). Note that

MaDi does not need a target network for the Masker, reducing the

additional number of parameters required.

4.1 The MaDi architecture
As shown in Figure 1, the Masker network is placed at the front

of the agent’s architecture. It produces a scalar multiplier for each

pixel in the input image to determine the degree to which the pixel

ought to be darkened. We refer to the output of this network as

a soft mask.
3
These soft masks are applied element-wise to the

observation frames, effectively reducing distractions (see Figure 2).

The Masker network is composed of three convolutional layers

with ReLU non-linearities in between. The last layer outputs one

channel with a Sigmoid activation function to squeeze values into

the interval [0, 1]. The Masker receives three input channels, repre-

senting the RGB values of one frame 𝒐𝑡 . In Section 3, we defined

a full state 𝒔𝑡 to be a stack of 𝑘 frames, which is indeed what the

actor and critic receive as input. The Masker is the only network

that processes each frame separately. However, we still require only

one forward pass through the Masker network for each input 𝒔𝑡
of 𝑘 frames, as we efficiently reshape the channels into the batch

dimension. See Appendix A for further implementation details.

3
We also tried hard (i.e., binary) masks, but they proved more challenging to train.

4.2 How does the Masker learn?
One may expect that learning to output useful masks requires us to

define a separate loss function, but this is not the case. The Masker

can simply be updated via the critic’s objective function
4
to update

its parameters, as shown on line 9 of Algorithm 1. This means the

masks are trained without any additional segmentation labels or

saliency metrics. Our hypothesis on the surprising ability of MaDi

to determine the task-relevant pixels solely from a scalar reward

signal, pertains to the following:

• For relevant pixels, if the Masker network masks away es-

sential pixels needed to determine an accurate Q-value, then

the critic loss will presumably be high, and the Masker will

thus be encouraged to leave these pixels visible.

• For irrelevant pixels, we believe (and empirically show in

Section 5.3) that strong and varying data augmentation helps.

It gives an irrelevant pixel in a particular state 𝒔 a varying
pixel-value each time state 𝒔 is sampled from the replay

buffer, while the pixel’s contribution to the𝑄∗-value remains

the same (none, because it is irrelevant). The Masker is thus

incentivized to mask this pixel, such that the actor and critic

networks always see the same pixel-value for state 𝒔, no
matter which augmentation is used.

The Masker is updated together with the critic, which happens

once for every environment step in case of synchronous runs. The

robotic experiments use an asynchronous version of each algorithm.

In that case, the Masker still gets as many updates as the critic, but

it is no longer equal to the number of environment steps.

5 SIMULATION EXPERIMENTS
We present the experiments done on generalization benchmarks

based on the DeepMind Control Suite [41] in this section, while our

robotic experiments are shown in Section 6. We describe our exper-

imental setup and provide the results obtained from our method,

MaDi, compared with state-of-the-art approaches. Our experiments

are designed to demonstrate the effectiveness of MaDi in masking

distractions and improving generalization in vision-based RL.

5.1 Experimental Setup
Benchmarks. We evaluate the performance of MaDi on the Deep-

Mind Control Generalization Benchmark [22, DMControl-GB] and

the Distracting Control Suite [39, DistractingCS]. These bench-

marks consist of a range of environments with varying levels of

complexity and noise, providing a comprehensive assessment of an

agent’s ability to generalize to unseen, distracting environments.

• DMControl-GB has two setups with task-irrelevant pixels

in the background: video_easy and video_hard. For the easy
setup, there are just 10 videos to randomly sample from, and

the surface from the training environment is still shown. In

the hard counterpart, the surface is no longer visible, and

one of 100 videos is selected. Note that all the frames in these

videos are unseen — they do not overlap with the images in

the augmentation dataset we use.

4
Future work could study whether the Masker network can also learn from the actor

loss. In many SAC-based implementations with a shared ConvNet, the encoder is only

updated by the critic loss, and it made sense to use these gradients for the Masker.
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(a) training_env (walker) (b) video_hard (ball_in_cup) (c) distracting_cs (cartpole)

Figure 2: Examples of original observations (left) and their masked versions (right) generated by MaDi in training (a) and
testing (b, c) environments. Masks from other benchmark and domain combinations are shown in Appendix C.

clean
(no added distractions)

  video_easy
  (Table 1)

  distracting_cs
  (Appendix B.6)

Training for
500K steps on:

  video_hard
  (Figure 4)

Testing every
10K steps on:

Figure 3: The training and testing setup.

• DistractingCS goes a step further, also adjusting the cam-

era’s orientation and the agent’s color during an episode,

while displaying a randomly selected video in the back-

ground. The surface remains visible, such that the agent

can orient itself during a changing camera angle. The in-

tensity of the DistractingCS determines the difficulty. With

higher intensity, the environment (1) samples from a larger

set of videos, (2) changes the agent’s color faster and to more

extreme limits, and (3) adjusts the camera’s orientation faster

and to more severe angles. We use the default intensity level

of 0.1. See the Supplementary Material for example videos.

Environments. Within these two benchmarks, we run all algo-

rithms on six distinct environments, listed in Table 1. From the

cartpole and walker domains we select two tasks, which differ by

their starting positions and reward functions. See Appendix F for a

detailed description of each task.

Models & Training. For a fair comparison, we use the same base

actor-critic architecture for all the methods considered in this study,

includingMaDi. All algorithms are trained for 500K timesteps on the

clean training environment without distractions. We use the default

hyperparameters for all baselines, as specified by the DMControl-

GB [22]. See Appendix A for an overview of the hyperparameters.

Augmentation. As discussed in Section 2, all of our baselines

(except SAC) use some form of data augmentation. MaDi is built

on top of SVEA [21], which performs best with the overlay aug-
mentation for distracting video backgrounds. Therefore, we choose

Table 1: Generalization performance of MaDi and various
baseline algorithms on six different environments trained for
500𝐾 steps. We show undiscounted return on video_easywith
mean and standard error over five seeds. MaDi outperforms
or comes close to the state-of-the-art in all environments.

video_easy SAC DrQ RAD SODA SVEA SGQN MaDi

ball_in_cup 602 714 561 750 757 761 807
catch ±91 ±131 ±147 ±98 ±138 ±171 ±144

cartpole 924 932 801 961 967 965 982
balance ±19 ±33 ±95 ±10 ±2 ±5 ±4

cartpole 782 613 658 215 786 798 848
swingup ±21 ±74 ±17 ±125 ±15 ±13 ±6

finger 227 543 479 429 645 592 679
spin ±26 ±50 ±65 ±100 ±39 ±11 ±17

walker 507 954 961 147 977 672 967

stand ±113 ±10 ±1 ±17 ±3 ±153 ±3

walker 334 821 726 479 936 882 895

walk ±37 ±38 ±42 ±168 ±14 ±26 ±24

avg 563 763 698 497 845 778 863

to apply overlay for MaDi as well. This strong augmentation com-

bines an observation frame from the training environment, o𝑡 , with
a random image 𝒙 from a large dataset as follows:

𝛿𝒙 (o𝑡 ) = 𝛼 · o𝑡 + (1 − 𝛼) · 𝒙
where 𝛿 denotes the augmentation function. In the experiments we

use the default overlay factor of 𝛼 = 0.5 and sample images from

the same dataset as used in SVEA, namely Places365 [59].

Evaluation. To assess generalization, we evaluate the trained

agents zero-shot on a set of unseen environments with differ-

ent levels of distractions. Specifically, we test on video_easy and
video_hard from DMControl-GB, and on the Distracting Control

Suite. Every 10K steps we evaluate the current policy for 20 episodes

on the test environments; see Figure 3. We report the average

undiscounted return over five random seeds during the last 10% of

training, a metric often used to reduce variance [15, 16]. We run

statistical tests to verify significance, shown in Appendix B.

5.2 Generalization Results
In Table 1 we show the results of MaDi and its baselines when

generalizing to the video_easy setup of the DMControl-GB bench-

mark. MaDi is able to achieve the best or competitive performance

in all environments. The learning curves of Figure 4 show that

MaDi also generalizes well to the more challenging video_hard
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Figure 4: Learning curves of MaDi and six baselines on video_hard. Agents are trained on clean data for 500𝐾 steps and tested on
video_hard every 10𝐾 steps. MaDi often reaches the top of the class, while some baselines can overfit to the training environment
and decrease in generalizability. The curves show the mean over five seeds with standard error shaded alongside.

environments. Furthermore, the curves show that MaDi has a high

sample efficiency, often reaching adequate performance in just 100K

environment steps, by its ability to focus on the task-relevant pixels.

We present tables with results on the DistractingCS benchmark

and the original training environments in Appendix B. MaDi also

shows competitive performance in these additional settings. Note

that the environments ball_in_cup-catch and finger-spin have
sparse rewards, but even in this setting MaDi performs well and

generates useful masks. See Appendix C for examples of masks.

5.3 Ablation on Augmentation
In Section 4.2 we described the expectation that MaDi would per-

form better with augmentations, as that can help it to recognize

which pixels are irrelevant. To verify whether this intuition holds,

we run five seeds of MaDi without the overlay augmentation on

all six environments. We call this variant MaDi-SAC, as it now

builds on top of SAC [18] instead of SVEA. The results are shown

in Table 2. The generalization performance of the algorithms that

use augmentation is much better than those without. MaDi indeed

benefits from data augmentation to become more robust against

previously unseen distractions.

Table 2: Ablation study showing the effect of the overlay
augmentation. SVEA and MaDi both use it, while SAC and
MaDi-SAC do not. All algorithms are trained for 500𝐾 steps.
We show mean undiscounted return and standard error over
five seeds evaluated on video_hard. The results reveal that
MaDi benefits from data augmentation.

video_hard SAC MaDi-SAC SVEA MaDi

ball_in_cup 176 190 327 758

catch ±38 ±52 ±59 ±135

cartpole 314 237 579 827

balance ±12 ±6 ±26 ±25

cartpole 140 132 453 619

swingup ±10 ±9 ±26 ±24

finger 21 121 154 358

spin ±4 ±36 ±31 ±25

walker 233 320 847 920

stand ±28 ±88 ±18 ±14

walker 168 95 526 504

walk ±19 ±24 ±55 ±33

avg 175 183 481 664
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Figure 5: Generalization performance of MaDi and SVEA on
video_hard when trained with a ViT encoder for 300𝐾 steps.
We show the mean and standard error over five seeds.

5.4 Does MaDi work with Vision Transformers?
In image-based RL, the use of Vision Transformers [8, ViT] has
recently gained in popularity [21, 40]. We set up a small experi-

ment to verify whether MaDi still works in this setting. The shared

encoder (see Figure 1), which is originally an 11-layer ConvNet,

is now replaced by a ViT of 4 blocks with 8 attention heads each.

We maintain the same architecture for the Masker network. More

implementation details on the ViT encoder are in Appendix A.1.

We train the ViT-based versions of SVEA and MaDi for 300K

timesteps on the clean environments of walker-walk and cartpole-
swingup, and test on video_hard at every 10K steps. The results

presented in Figure 5 show that not only does MaDi work well with

a ViT encoder, but it even boosts the generalization performance.

6 ROBOTIC EXPERIMENTS
In this section, we describe our experiments on a robotic arm visual

reacher task, showing that MaDi can learn to generalize when

facing distracting backgrounds, even in real-world environments.

6.1 Experimental Setup
Robotic Arm. The UR5 industrial robot arm consists of six joints

that can rotate to move the tip to a desired position. It uses the

conventional TCP/IP protocol to transmit the state of the arm to the

host computer and receive actuation packets in return at an interval

of 8 milliseconds. A state packet includes the angles, velocities,

target accelerations, and currents of all six joints. We configured

the UR5 to use the velocity control mode. Since the UR5 does not

come with a camera, we attached a Logitech RGB camera to the

tip of the arm to facilitate vision-based tasks. We use SenseAct,
a computational framework for robotic learning experiments to

communicate with the robot [30]. This setup enables robust and

reproducible learning across different locations and conditions.

Training environment. We train on the UR5-VisualReacher task

[48, 52] for real-world robot experiments. Figure 6 depicts the ex-

perimental setup. This task involves using a camera to guide a UR5

robotic arm to reach a red target on a monitor. We ensure that the

arm stays within a safe bounding box to avoid collisions. The avail-

able actions are represented by the desired angular velocities for

five
5
joints, ranging from −0.7 to 0.7 radians per second. The full

5
We do not move the sixth joint because its sole purpose is to control a gripper.

(a) Training environment (b) Testing environment

Figure 6: TheUR5-VisualReacher(-VideoBackgrounds) bench-
mark used in our experiments. The agent is rewarded for
getting its camera as close as possible to the red circle ran-
domly located on the screen. For visual demonstrations of
the robot’s performance with each algorithm, please refer to
the videos in the Supplementary Material.

observation that the learning agent receives includes three consec-

utive RGB images from the Logitech camera of dimensions 160× 90
pixels, joint angles, joint angular velocities, and the previous action

taken. The reward function is defined as follows [52]:

𝑟𝑡 =
𝑐

ℎ𝑤
𝑀𝑡 ⊙𝑊

where 𝑐 is a scaling coefficient, ℎ and𝑤 are the height and width of

the image in pixels,𝑀𝑡 is a binary mask
6
of shape ℎ×𝑤 that detects

for each pixel whether it is currently red, and𝑊 is a weighting

matrix of shapeℎ×𝑤 with values decreasing from 1 at its center to 0

near the edges. These are multiplied element-wise by the Hadamard

product ⊙. The reward incentivizes the robot to move its camera

closer to the target and keep the target at the center of the frame.We

set the coefficient 𝑐 = 800 for all experiments and clip the rewards

to be between 0 and 4. An episode lasts 150 timesteps of 40ms each,

for 6 seconds in total. The agent sends an action at every timestep,

which is repeated by the SenceAct system five times at every 8 ms.

Testing environment. We test the generalization performance

on a similar task, but now with videos playing in the background

on the screen. We define this new generalization benchmark as

UR5-VisualReacher-VideoBackgrounds (see Figure 6b), selecting

five videos from the DMControl-GB [22] to use as backgrounds. We

test on this benchmark after every 4500 timesteps in the training

environment. This evaluation is always done for 10 episodes, twice

on each video. See Appendix F for examples of frames.

Baselines. We compare the performance of SAC [18], RAD [28],

SVEA [21], and MaDi. The base architecture is the same for all

algorithms, but it differs somewhat from the simulation experiments

of Section 5. See Appendix A for more details.

6.2 Results
In Figure 7, we present the results on the testing environment with

video backgrounds. Without being trained on these distracting

visuals, MaDi is able to generalize well in this challenging task.

The algorithms are trained asynchronously in this robotic envi-

ronment, which means that MaDi will make fewer updates as it uses

the additional Masker network. However, as Figure 7 shows, this

6
Note that this is a preprogrammed mask based on RGB thresholds, not made by MaDi.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

739



0 20 40 60 80 100
Timesteps (K)

20

40

60

80

100

120

Re
wa

rd

UR5-VisualReacher-VideoBackgrounds

SAC RAD SVEA MaDi

Figure 7: Performance of MaDi and three baselines on the
UR5-VisualReacher task with random videos playing in the
background. Agents are trained on the clean environment
for 100𝐾 steps. We display the mean and standard error over
five seeds. MaDi already generalizes best after 50𝐾 timesteps.

Table 3: The average reward per timestep on the UR5-
VisualReacher task during the last 10% of steps in an episode.
MaDi receives higher rewards in the final position of an
episode in both training and testing environments, showing
that it finds the red target with higher accuracy.

Reward per step SAC RAD SVEA MaDi

Training env. 1.38 ±0.09 1.32 ±0.11 1.18 ±0.37 1.95 ±0.09
Testing env. 0.32 ±0.04 0.24 ±0.07 0.47 ±0.14 0.74 ±0.07

only incurs a small delay in learning while gaining superior gener-

alization capability through the increased focus on task-relevant

pixels. A similar pattern is present on the original training environ-

ment, as shown in Figure 10 of Appendix B.1.

In these experiments, both MaDi and SVEA use the overlay
augmentation. See Appendix D.1 for results showing the effect of

the conv augmentation in this environment. MaDi also outperforms

the baselines with the conv augmentation but scores slightly lower,

despite the arguably clearer masks it generates in that setting.

In Appendix B.2, we present an additional experiment with a

sparse reward function. In this UR5-VisualReacher-SparseRewards

task, the agent is only rewarded with a +1 whenever its camera is

close enough to the red target (according to a predefined threshold),

and receives zero reward otherwise. Even in this challenging setting,

MaDi is able to surpass the baselines in generalization performance.

6.3 Analysis
In Figure 8 we show that MaDi can learn to recognize the task-

relevant features even in this real-world robotic task. It generalizes

to the unseen testing environment and produces helpful masks.

There seem to be fewer pixels dimmed in this environment com-

pared to the other benchmarks, which may be because it can be

useful for the agent to know where the entire screen is positioned.

Figure 8: Observation and the corresponding mask generated
by MaDi in the UR5-VisualReacher-VideoBackgrounds task.
The mask is subtle, but clearly leaves the red dot’s pixels in-
tact while dimming other areas of the frame. See Appendix C
for more examples of masks.

MaDi performs well in both the training and test environments,

but there is quite a large discrepancy between the total rewards

received. For all algorithms, the reward in the testing environment

is substantially lower than in the training environment. Taking a

qualitative look at the behavior of the robotic arm, it seems this

is mostly because the robotic arm moves slower toward the target

in the testing environment than in the training environment. The

agents encounter unseen observations that significantly deviate

from the training environment, likely driving them to select differ-

ent actions that do not match well in sequence, causing the arm to

slow down. The SAC and RAD agents rarely complete the task at

all when videos are playing in the background. Even though the

movement towards the goal is slower in the testing environment

for all algorithms, MaDi does often reach a (near) optimal state

at the end of its trajectory, similar to training. See Table 3 for an

overview of rewards in the last 10% of steps. MaDi shows a higher

accuracy in finding the red target near the end of an episode.

7 CONCLUSION
In the domain of vision-based deep reinforcement learning, we

formalize the problem setting of distracting task-irrelevant features.

We propose a novel method, MaDi, which learns directly from the

reward signal to mask distractions with a lightweight Masker net-

work, without requiring any additional segmentation labels or loss

functions. Our experiments show that MaDi is competitive with

state-of-the-art algorithms on the DeepMind Control Generaliza-

tion Benchmark and the Distracting Control Suite, while only using

0.2% additional parameters. The masks generated by MaDi enhance

the agent’s focus by dimming visual distractions. Even in the sparse

reward setting, the Masker network is able to learn where the task-

relevant pixels are in each state. Furthermore, we test MaDi on a

real UR5 Robotic Arm, showing that it can outperform the baselines

not only in simulation environments but also on our newly defined

UR5-VisualReacher-VideoBackgrounds generalization benchmark.

Limitations & Future Work. The algorithms in this work build

on the model-free off-policy deep RL algorithm SAC, while other

options remain open for investigation. In future work, we seek to

apply MaDi to other reinforcement learning algorithms such as

PPO [38] or DQN [32] and improve the clarity of its masks. We

have experimented with MaDi on one robotic arm, it would be

interesting to see whether the Masker network can also produce

useful masks on a diverse set of robots. Lastly, in future research, we

aim to explore the possibility of using MaDi for transfer learning.
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Our research aims to contribute to the development of reinforce-

ment learning algorithms to facilitate their application in practical

scenarios that positively impact society. We believe our work with

MaDi has the potential to contribute to, for instance, enhancing a

household robot’s ability to focus on relevant visual information

amidst a clutter of distractions. Furthermore, we aim to minimize

the computational footprint of our algorithms by adding a negligi-

ble amount of parameters to the original structure, supporting the

development of sustainable and energy-efficient AI.
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