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ABSTRACT
Despite the gained prominence made by reinforcement learning
(RL) in various domains, ensuring safety in real-world applications
remains a significant challenge. Offline safe RL, which learns safe
policies from pre-collected data, has emerged to address these con-
cerns. However, existing approaches assume a single constraint
mode and lack adaptability to diverse safety constraints. In real-
world scenarios, we often find ourselves working with datasets
gathered from various tasks, with the aim of developing a general-
ized policy capable of handling unknown tasks during testing. To
deal with such offline safe meta RL problem, we introduce a novel
framework called COSTA, which is designed to facilitate the learn-
ing of a safe generalized policy that can adapt and be transferred
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to unknown tasks during testing. COSTA addresses two key chal-
lenges in offline safe meta RL: First, it develops a cost-aware task
inference module using contrastive learning to distinguish tasks
based on safety constraints, mitigating the MDP ambiguity prob-
lem. Second, COSTA introduces a novel metric, Safe In-Distribution
Score (SIDS), to assess the in-distribution degree of trajectories, out
of the consideration of both reward maximization and cost con-
straint satisfaction. Trajectories collected with a safe exploration
policy are filtered using SIDS for robust online task adaptation.
Experimental results in a tailored benchmark suite within the Mu-
joco environments demonstrate that COSTA consistently balances
safety and reward maximization, outperforming multiple baselines.
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1 INTRODUCTION
Learning optimal policies in simulators via reinforcement learn-
ing (RL) has gained significant traction in various fields [26, 28]
and exhibits tremendous potential across diverse real-world ap-
plications, e.g., sequential recommendation systems [21, 33] and
robotic control [7, 10]. Nevertheless, safety concerns are usually
raised in the real world where various constraints exist. For ex-
ample, autonomous vehicles should pay extra attention to traffic
regulations to avoid accidents such as high-speed collisions [11, 27].
In such cases, solely maximizing long-term returns might lead to
illegal actions that induce damage to safety. Meanwhile, the need
for trial-and-error of RL during training is unbearable in the real
world, especially when exploratory behavior is costly or unsafe [30].
Consequently, offline safe RL (a.k.a. offline constrained RL) [16, 29],
which learns a safe policy within a pre-collected dataset without ad-
ditional interactions with the environment, has garnered significant
attention in recent years.

Recent works on offline safe RLmostly model the environment as
a Constrained Markov Decision Process (CMDP) [1] and solve the
constraint optimization problem while maintaining a conservative
policy to mitigate the distribution shift issue inherent in offline RL.
Le et al. [12] estimate safety constraints via off-policy evaluation,
yet it assumes a sufficient state-action coverage of the dataset and
is limited to discrete action space. To evaluate constraint values
accurately, Constraints Penalized Q-learning (CPQ) [29] learns an
extra cost critic andmakes out-of-distribution (OOD) actions unsafe.
CPQ achieves impressive performance by penalizing unsafe actions
and updating the policy exclusively on safe actions.

The aforementioned approaches train policies that maximize
returns within a singular constraint mode for both training and
testing. In practical situations, however, we may need to develop
a policy that generalizes to various scenarios with different safety
constraints and swiftly adapts to unknown tasks during testing.
Some works on offline meta RL address this challenge by employing
a context encoder to learn distinct task representations from vari-
ous tasks and utilizing latent embeddings as augmentations to the
policy’s input [15, 31]. Navigating the intersection of offline safe RL
and offline meta RL poses new non-trivial challenges. On one hand,
learning a safe policy from an offline dataset requires a substantial
number of trajectories sampled by the safe policy. However, varying
safety constraints across different tasks inherently lead to distinct
state-action distributions for these safe policies, increasing the risk
of the context encoder overfitting to state-action distributions and
overlooking task-specific cost information. This can lead to biased
task inferences, a problem referred to as the MDP ambiguity [4, 14].
On the other hand, reducing safety costs necessitates a shorter
burn-in or adaptation period during testing, making an efficient
exploration policy and robust task inference indispensable.

For the mentioned issues, this paper studies the problem of learn-
ing a safe generalized policy from offline datasets collected across
different tasks, with the capability to adapt and be transferred to
unknown tasks during testing. Specifically, we propose a novel

framework of Cost-aware Offline Safe Meta RL with Robust In-
Distribution Online Task Adaptation (COSTA). To learn a con-
text encoder that distinguishes different tasks based on safety con-
straints rather than state-action distributions, we train a cost-aware
task inference module using contrastive learning with positive
and negative examples generated through supervised cost relabel-
ing. We also observe that in-distribution adaptation trajectories
provide reliable task inferences and improved policy evaluation.
Accordingly, COSTA introduces a novel metric named as Safe In-
Distribution Score (SIDS) to assess the in-distribution degree of
trajectories. SIDS strikes a balance between safety satisfaction and
reward maximization. We collect trajectories using a safe but effi-
cient exploration policy and employ SIDS to filter out OOD trajec-
tories, thereby achieving a robust and swift online task adaptation.
Experiments in our developed benchmarks, tailored to offline safe
meta RL, justify that COSTA consistently balances safety satis-
faction and reward maximization with robust online adaptation,
outperforming all baselines.

Our main contributions are threefold as follows:

• To the best of our knowledge, this is the first time that offline
safe meta RL problems are formally formulated and explored.

• We propose a novel framework for learning a safe general-
ized policy from offline datasets collected across different
tasks, which incorporates a cost-aware context encoder and
robust safe in-distribution online adaptation.

• Additionally, we develop an offline safe meta RL bench-
mark suite within the Mujoco environments and verify that
COSTA consistently learns to maximize rewards while satis-
fying safety constraints and outperforms all baselines.

2 RELATEDWORK
Offline Safe RL. Some recent works have focused on offline safe

RL problems, considering the expense of trial-and-error in the real
world. Constrained Batch Policy Learning [12] applies Fitted Q
Iteration into policy optimization and evaluates the safe constraints
via off-policy evaluation. COPO [19] and COptiDICE [13] both uti-
lize stationary distribution correction (DICE) technique to derive a
cost-feasible policy solution set. Xu et al. [29] propose to train an
extra cost critic and disable the policy update on unsafe and OOD
actions, which achieves impressive performance under safety con-
straints. They also explore the combination of offline RL methods
and Lagrangian-based approaches to ensure safety. Sequential mod-
eling approaches have also been applied to safe RL to flexibly handle
different safety thresholds via cost-related tokens [17, 32]. Liu et al.
[16] introduce a comprehensive benchmarking platform tailored to
offline safe RL, allowing evaluation and comparison between dif-
ferent algorithms. However, none of the aforementioned methods
takes meta setting into consideration.

Offline Meta RL. Context-based [15] meta RL framework [2] and
online task adaptation are utilized in most offline meta RL meth-
ods. FOCAL [15] and MACAW [18] apply distance metric learning
to derive representations that distinguish different tasks based on
collected trajectories but neglect the influence of state-action dis-
tribution mismatch due to behavior policy. To tackle such an MDP
ambiguity problem, Li et al. [14] and Dorfman et al. [3] assume
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a known reward function and relabel the transitions to learn ro-
bust task representations. CORRO [31] uses mutual information
maximization to derive the contrastive learning objective and dis-
penses with the assumption via generative modeling and reward
randomization. IDAQ [9] proposes a novel adaptation frame by
generating and distinguishing in-distribution episodes via an un-
certainty quantification. Nevertheless, methods above all fail to
handle small state-action overlap between tasks and can not guar-
antee safety and robustness during the adaptation period.

3 PROBLEM SETTING
We consider the problem of offline safe meta reinforcement learning
in deterministic environments such as MuJoCo [24] under fully
observable Constrained Markov Decision Process (CMDP) [1].

A CMDP can be defined as a tuple ⟨𝑆,𝐴, 𝑟, 𝑐, 𝑃,𝛾, 𝑏⟩, where 𝑆
and 𝐴 represent the state space and the action space, 𝑟 : 𝑆 ×𝐴 ↦→
[−𝑅max, 𝑅max] and 𝑐 : 𝑆 ×𝐴 ↦→ {0, 1} denote the reward and cost
functions. 𝑃 : 𝑆 × 𝐴 × 𝑆 ↦→ [0, 1] is the transition probability
function, 𝛾 ∈ (0, 1) is the discount factor, and 𝑏 represents the
safety constraint limit. A policy 𝜋 : 𝑆 ↦→ Δ(𝐴) maps states to action
distributions. Under the given policy 𝜋 , the cumulative reward
can be expressed as 𝑅(𝜋) = 𝔼𝜏∼𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
]
, where 𝜏 =

(𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . ) denotes a trajectory and 𝜏 ∼ 𝜋 indicates that the
distribution of trajectories is induced by policy 𝜋 . Similarly, the
cumulative cost is given by 𝐶 (𝜋) = 𝔼𝜏∼𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑐 (𝑠𝑡 , 𝑎𝑡 )
]
. The

objective of solving a CMDP is to learn a policy that maximizes
cumulative reward while adhering to safety constraints, which can
be represented as:

max
𝜋

𝑅(𝜋) 𝑠 .𝑡 . 𝐶 (𝜋) ≤ 𝑏. (1)

Similar to previous offline meta RL formulations, we first assume
a task distribution Δ(T ), where each task T is a CMDP, and Δ(·)
is an unknown distribution. The agent cannot learn by interacting
with the environment but only has access to a static dataset D,
which contains data from 𝑇 different tasks sampled from Δ(T ).
For each task 𝑖 , its collected dataset is D𝑖 = {(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑐 𝑗 , 𝑠′𝑗 )}

|D𝑖 |
𝑗=1 ,

generated by the corresponding behavior policy 𝛽𝑖 (𝑎 |𝑠). For sim-
plification, we focus only on tasks that share the same state-action
space, transition, and reward function while having different cost
functions. Additionally, we assume that during the training process,
each task in D is sampled with the same probability. In this sce-
nario, the meta-training procedure is transformed into maximizing
the average objective across all training tasks:

𝜃𝑚𝑒𝑡𝑎 = arg max
𝜃

1
𝑇

𝑇∑︁
𝑖=1

𝔼[L𝑖 (𝜃 )], (2)

where L𝑖 (𝜃 ) is the objective evaluated on transition samples drawn
from task T𝑖 and 𝜃 is the parameter of the learning policies.

In the online deployment phase, the meta-trained policy will
be confronted with a test task, denoted as Ttest ∼ Δ(T ). To better
simulate the real-world application scenarios, we assume that we do
not know the exact task id of Ttest. Therefore, the ultimate objective
of offline safe meta RL is to correctly identify the test task by
interacting with the online environment while striking a balance
between reward maximization and safety constraint satisfaction.

4 METHOD
This section gives a detailed description of our proposed COSTA,
a novel algorithm for offline safe meta reinforcement learning. As
visually depicted in Figure 1, Section 4.1 illustrates the process of
COSTA’s context encoder learning, Section 4.2 presents COSTA’s
procedure for safe online adaptation, while Section 4.3 introduces
COSTA’s overall algorithm.

4.1 Cost-aware Context Learning
In order to enable the policy to make distinct decisions for specific
tasks, we here introduce a context-based policy architecture like the
context-based meta-learning approaches [5, 20]. After introducing
context-based approaches to offline safe meta RL, the offline con-
text of the problem can be formulated as solving a task-augmented
CMDP (TA-CMDP). Specifically, we employ an inference network
𝑞𝜙 (𝑧 |𝑒), parameterized by 𝜙 , to extract task-relevant representa-
tions based on the given context 𝑒 . Subsequently, we incorporate
an attention-based deterministic neural network as our chosen
encoder architecture. In specific, the encoder 𝑞𝜙 = (𝑣𝜙 ,𝑚𝜙 ) con-
sists of two distinct multi-layer perceptrons (MLP), where 𝑣𝜙 and
softmax(𝑚𝜙 ) stand for attention value and attention weight, re-
spectively. Given context 𝑒 = {(𝑠𝑘 , 𝑎𝑘 , 𝑐𝑘 , 𝑠′𝑘 )}

𝑛
𝑘=1, we can calculate

the task information as:

𝑧 =

𝑛∑︁
𝑗=1

softmax({𝑚𝜙 (𝑠𝑘 , 𝑎𝑘 , 𝑐𝑘 , 𝑠′𝑘 )}
𝑛
𝑘=1) 𝑗 · 𝑣𝜙 (𝑠 𝑗 , 𝑎 𝑗 , 𝑐 𝑗 , 𝑠

′
𝑗 ) . (3)

As simple MLP networks cannot guarantee the distinguishment
among different tasks, we here design auxiliary regularizers to
train the context encoder to distinguish between different tasks
based on their task-relevant features. On the one hand, we can
maximize the distance between context embeddings of different
tasks by employing the negative-power variant of the contrastive
loss method derived from distance metric learning (DML) [22]
like the application in offline mete RL setting [15]. In specific, given
a pair of contexts 𝑒𝑖 , 𝑒 𝑗 and their labels 𝑦𝑖 , 𝑦 𝑗 ∈ {1, 2, . . . ,𝑇 }, the
formulation is expressed as follows:

Ldml (𝑒𝑖 , 𝑒 𝑗 ;𝑞) = 𝟙{𝑦𝑖 = 𝑦 𝑗 }| |𝑧𝑖 − 𝑧 𝑗 | |22
+𝜆1𝟙{𝑦𝑖 ≠ 𝑦 𝑗 }

1
| |𝑧𝑖 − 𝑧 𝑗 | |𝑝2 + 𝜖

, (4)

where 𝟙{·} is the indicator function, 𝑧𝑖 = 𝑞𝜙 (𝑒𝑖 ), 𝑧 𝑗 = 𝑞𝜙 (𝑒 𝑗 ), 𝜆1
is a predefined coefficient, 𝜖 is a small constant to avoid division
by zero, and we set 𝑝 = 2 to better conform to local topology and
similarity relationships.

The mentioned optimization object makes sense in the offline
meta setting. Unfortunately, in offline safe meta RL, the unknown
data-collection behavior policies {𝛽𝑖 }𝑇𝑖=1, satisfying safety con-
straints, can vary significantly across different tasks, resulting in
a substantial divergence in state-action distributions between of-
fline datasets. To solve this problem, we here introduce the cost
contrastive loss to explicitly emphasize the distinctions existing
between tasks within (𝑠, 𝑎, 𝑐, 𝑠′) at the cost level by prioritizing the
task-specific features that truly matter, mitigating the risk of erro-
neous inferences resulting from different state-action distributions.

Specifically, we first utilize supervised learning to acquire a cost
model 𝑓𝑖 for each task, where 𝑖 = 1, . . . ,𝑇 . Due to the binary nature

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

745



cost = 0

𝑧𝑧𝑖𝑖
𝑧𝑧𝑗𝑗

𝑧𝑧neg

𝑧𝑧pos

Sample

𝑓𝑓𝑗𝑗

𝑓𝑓𝑖𝑖 cost = 1

𝑒𝑒pos

cost = 1

𝑒𝑒neg

cost = 0

Context 𝑒𝑒𝑖𝑖

Cost
re-labeling

ℒdml

ℒcc

cost = 0

𝑒𝑒𝑗𝑗
𝑞𝑞𝜙𝜙

Latent space

…

Learn
cost model

𝑓𝑓𝑖𝑖

𝑓𝑓𝑗𝑗

Task 𝑖𝑖

Task 𝑗𝑗

cost = ?

𝑒𝑒𝑖𝑖

Reconstruct
cost

ℒdec
Safe In-Distribution

Score (SIDS)

𝑧𝑧

𝑞𝑞𝜙𝜙

Safe
trajectories cost = 0

Real-world
applications

(a) Cost-aware Context Learning (b) Safe In-Distribution Online Adaptation 

(c) Overall Algorithm

Preserved
embeddings

…

Safe 
exploration

Terminate if
total cost 
exceeds 
threshold 

…
𝝉𝝉

𝜏𝜏

Filtered
trajectories cost = 0

Downstream offline RL

Safe online 
deployment

Latent space
X

X

X

X

√

√

√

√

Figure 1: Structure of COSTA. (a) During context encoder learning, COSTA employs contexts from various tasks to conduct
distance metric learning. Simultaneously, it utilizes a cost re-labeling method based on the cost model to generate negative and
positive samples for cost contrastive learning. (b) During online adaptation, COSTA will utilize a small number of context
embeddings saved during the offline training process to perform policy rollouts within the environment. The trajectories
obtained from these rollouts will be truncated based on their cumulative cost. Finally, an in-distribution assessment method
proposed by us will be used to select the optimal trajectories as context for evaluation.

of the cost function, each model inherently operates as a binary
classification model, which substantially simplifies the learning
process when compared to conventional reward models. We first
sample the target task Ttgt ∈ T and its corresponding context
𝑒 = {(𝑠𝑘 , 𝑎𝑘 , 𝑐𝑘 , 𝑠′𝑘 )}

𝑛
𝑘=1 from the buffer. Afterward, we construct

negative and positive samples, respectively:
• To ensure that the context encoder can distinguish between
different tasks under the same state-action distribution, we
generate negative samples by replacing only the cost value in
the context 𝑒− = {(𝑠𝑘 , 𝑎𝑘 , 𝑐𝑘 , 𝑠′𝑘 )}

𝑛
𝑘=1. Specifically, we sample

a different task Tneg ∈ T and employ the trained cost model
to re-label the cost as 𝑐−

𝑘
= 𝑓Tneg (𝑠𝑘 , 𝑎𝑘 , 𝑠′𝑘 ). This finishes the

generation of negative samples 𝑒neg = {(𝑠𝑘 , 𝑎𝑘 , 𝑐−𝑘 , 𝑠
′
𝑘
)}𝑛

𝑘=1.
• We then generate positive samples so that the context en-
coder can identify the target task based on the cost value
even under different state-action distributions. we sample an-
other task Tpos ∈ T and its context 𝑒+ = {(𝑠𝑘 , 𝑎𝑘 , 𝑐𝑘 , 𝑠′𝑘 )}

𝑛
𝑘=1

from the offline dataset. We then re-label 𝑐𝑘 using the cost
model 𝑓Ttgt , resulting in 𝑐

+
𝑘
= 𝑓Ttgt (𝑠𝑘 , 𝑎𝑘 , 𝑠′𝑘 ). Consequently,

we obtain positive samples 𝑒pos = {(𝑠𝑘 , 𝑎𝑘 , 𝑐+𝑘 , 𝑠
′
𝑘
)}𝑛

𝑘=1.
Combining the generated samples and incorporating them into the
contrastive loss of DML, we arrive at the following expression:

Lcc (𝑒, 𝑒pos, 𝑒neg;𝑞) = | |𝑧 − 𝑧pos | |22 + 𝜆2
1

| |𝑧 − 𝑧neg | |𝑝2 + 𝜖
, (5)

where 𝑧 = 𝑞𝜙 (𝑒), 𝑧pos = 𝑞𝜙 (𝑒pos), 𝑧neg = 𝑞𝜙 (𝑒neg), 𝜆2 is a prede-
fined coefficient, 𝜖 is a small constant to avoid division by zero.

In addition to the contrastive loss discussed above, we further
introduce an auxiliary decoder reconstruction loss to ensure that
context embeddings contain sufficient information for predicting

the cost associated with a transition. The loss function is defined
as follows:

Ldec (𝑒;𝑞, 𝑝) = − 1
𝑛

𝑛∑︁
𝑖=1

(𝑐𝑖 log(𝑝𝜓 (𝑠𝑖 , 𝑎𝑖 , 𝑠′𝑖 , 𝑧))

+(1 − 𝑐𝑖 ) log(1 − 𝑝𝜓 (𝑠𝑖 , 𝑎𝑖 , 𝑠′𝑖 , 𝑧))), (6)

where 𝑧 = 𝑞𝜙 (𝑒), and 𝑝𝜓 represents a binary neural network pa-
rameterized by𝜓 , which takes (𝑠, 𝑎, 𝑠′, 𝑧) as input. Overall, the total
loss function for training the context encoder is as follows:

Lenc = Ldml + 𝛼ccLcc + 𝛼decLdec, (7)

where 𝛼cc and 𝛼dec are hyper-parameters that control the balance
between the three objectives. It is worth noting that the presence
of substantial errors within the cost models leads to a notable re-
duction in the quality of negative samples. We will adjust 𝛼cc based
on the model training error in the experiments.

4.2 Safe In-Distribution Online Adaptation
The introduction of cost-aware context learning enables COSTA
to mitigate the impact of the behavior policy distributions on task
identification. However, the contexts out of distribution may lead
to biased task inference during online task adaptation, and uti-
lizing safe in-distribution trajectories as contexts for testing will
greatly improve the robustness. Traditional online adaptation meth-
ods like Thompson sampling [23] are inefficient in generating in-
distribution trajectories, especially in safe meta scenarios, where
different tasks might correspond to different distributions of trajec-
tories due to significantly different safety constraints. Accordingly,
we randomly sample𝑚 contexts from the offline buffer for each
task and derive 𝑇 ×𝑚 context embeddings {𝑧𝑖1:𝑚}𝑇

𝑖=1 as additional
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preserved information after finishing the offline training. The meta-
trained policy is capable of generating in-distribution trajectories
belonging to task 𝑖 ∈ T by taking the embedding 𝑧𝑖

𝑘
as input,

∀𝑘 = 1, ...,𝑚. It is worth noting that 𝑚 ≤ 10 is sufficient in the
typical scenarios. For larger numbers in complex settings, we leave
it for future work.

Although we could sequentially generate trajectories with di-
verse distributions by augmenting the embeddings into the input of
the meta-trained policy, we still need to select those that better align
with the test task’s in-distribution trajectories. For instance, we can
derive a safe and well-performed policy under task 𝑖 ∈ T by taking
𝑧𝑖
𝑘
as input, ∀𝑘 = 1, ...,𝑚, but it will fail to guarantee the safety

under the different test task 𝑗 ∈ T . To address this issue, we first
introduce a measurement for assessing the in-distribution degree
of trajectories and then propose a trajectory truncation method to
ensure safety during exploration.

Given a trajectory 𝜏 , assuming its reward return is 𝑅(𝜏) and its
cost return is 𝐶 (𝜏), then its Safe In-Distribution Score (SIDS) is
defined as follows:

SIDS(𝜏) =


𝑅(𝜏) 𝐶 (𝜏) ≤ 𝑏 + 𝜖1, 𝑅(𝜏) ≥ 𝛿

−𝐶 (𝜏) 𝐶 (𝜏) > 𝑏 + 𝜖1, 𝑅(𝜏) ≥ 𝛿
−𝐾 𝑅(𝜏) < 𝛿

, (8)

where 𝑏 is the cost threshold defined in CMDP, 𝜖1, 𝛿 , and 𝐾 are ad-
justable hyperparameters, with the constraint that 𝐾 > max𝜏 𝐶 (𝜏).

Equation (8) divides the overall SIDS value space into three
exclusive regions, wherein trajectories conforming to task safety
constraints and yielding superior reward returns are associated
with elevated SIDS values. From another perspective, it implies
that a trajectory is more likely to be in-distribution if it attains a
higher cumulative reward before its cumulative cost violates safety
constraints. Therefore, during the exploration process of online
adaptation, once the cumulative cost of the trajectory induced by
the policy exceeds 𝑏 + 𝜖2, where 𝜖2 ≥ 𝜖1, we terminate the episode
and truncate the trajectory immediately to ensure safe exploration.

To effectively evaluate such collected truncated trajectories with
different lengths, we extend SIDS to SIDStrunc by replacing 𝜏 with
𝜏1:𝑡tc , where 𝑡tc is the variable satisfying the following conditions:

𝑡tc = min{arg min
𝑡
𝐶 (𝜏1:𝑡 ) ≥ 𝑏 + 𝜖2, |𝜏 |}. (9)

The detailed expression of SIDStrunc is provided in our full paper
given in the next part. Among all truncated trajectories with a
safety guarantee, we select the top 𝑙 trajectories with the highest
SIDStrunc to derive the final context embedding 𝑧∗ for deployment.

4.3 Overall Algorithm
With the learned context encoder and a safety-guaranteed online
adaptation procedure, we can apply COSTA to any downstream
offline meta reinforcement learning method to learn a safe and
efficient policy. In practice, we implement COSTA on CPQ [29], a
typical offline safe RL paradigm, by incorporating the cost-aware
context learning and safe in-distribution online adaptation into it.
CPQ learns an extra cost critic 𝑄𝑐 to evaluate the cumulative cost
value, and we concatenate the context embedding of the training

task to its input to derive the optimization objective:

min
𝑄𝑐

𝐸𝑠,𝑎,𝑠′∼D,𝑧∼𝑞𝜙 (𝑧 |𝑒 ) [(𝑄𝑐 (𝑠, 𝑎, 𝑧) − B𝜋𝑄𝑐 (𝑠, 𝑎, 𝑧))2]

−𝛼cpq𝐸𝑠∼D,𝑎∼𝑣,𝑧∼𝑞𝜙 (𝑧 |𝑒 ) [𝑄𝑐 (𝑠, 𝑎, 𝑧)], (10)

where B𝜋 represents the Bellman operator, 𝑣 is a learned distribu-
tion to mimic OOD(Out-of-Distribution) action distribution, 𝑧 is
the context embedding of given context 𝑒 , and 𝛼cpq is an adjustable
weight used to control the conservatism of the cost critic, 𝑞𝜙 is our
context encoder. By optimizing Equation 10, the cost critic𝑄𝑐 learns
to estimate the cost value accurately and penalize OOD actions to
achieve conservatism.

Additionally, as the cost critic is distorted, we update the policy
𝜋 by only maximizing reward critic values 𝑄𝑟 . Considering the
safety and conservatism issues, CPQ defines Constrained Penalized
Bellman Operator B𝜋

𝑝 to make sure that the reward values of non-
safe or OOD transitions are set to be zero:

B𝜋
𝑝𝑄𝑟 (𝑠, 𝑎, 𝑧) = 𝑟 + 𝛾𝔼𝑎′∼𝜋 [𝟙(𝑄𝑐 (𝑠′, 𝑎′, 𝑧) ≤ 𝑏)𝑄𝑟 (𝑠′, 𝑎′, 𝑧)] . (11)

Based on Equation 11, the optimization objective of the reward
critic and policy can be expressed as follows:

min
𝑄𝑟

𝔼𝑠,𝑎,𝑠′∼D,𝑧∼𝑞𝜙 (𝑧 |𝑒 ) [(𝑄𝑟 (𝑠, 𝑎, 𝑧) − B𝜋
𝑝𝑄𝑟 (𝑠, 𝑎, 𝑧))2] . (12)

max
𝜋∈Δ|𝑆 |

𝔼𝑠∼D,𝑎∼𝜋 ( · |𝑠 ),𝑧∼𝑞𝜙 (𝑧 |𝑒 ) [𝟙(𝑄𝑐 (𝑠, 𝑎, 𝑧) ≤ 𝑏)𝑄𝑟 (𝑠, 𝑎, 𝑧)] . (13)

After learning the CPQ policy and the context encoder in an
offline manner, we can apply the online adaptation procedure to
safely deploy COSTA in the online tasks.

5 EXPERIMENTS
In this section, we conduct experiments in six different MuJoCo
environments, aiming to address the following questions: (1) What
happens when a single-task offline safe RL algorithm simultane-
ously learns safety constraints for multiple tasks, and can COSTA
accurately identify different safe tasks in both offline training and
online adaptation (Section 5.2) ? (2) Can COSTA surpass other base-
line algorithms in terms of safety performance across various meta
environments (Section 5.3) ? (3) What contributions do the different
components of COSTA make to its performance (Section 5.4) ?

For the evaluation, we compare COSTA with multiple baselines.
All experimental results are averaged over five random seeds and
are accompanied by standard deviation information. Due to the
page limit, for more experiments and additional information, please
refer to the complete version of this paper at the following link:
http://www.lamda.nju.edu.cn/lilh/file/costa.pdf.

5.1 Baselines and Environments
To completely evaluate the performance of COSTA, we introduce
the following offline safe meta RL methods. First of all, we consider
Vanilla, which simply applies CPQ to learn a single non-context-
based policy from all tasks to investigate the impact of COSTA’s
overall framework. Then, to validate the impact of cost-aware con-
text learning, we compare COSTA with FOCAL [15], which uses
only distance metric learning loss between offline data to train
the context encoder. While CORRO [31] additionally designs a
bi-level context encoder and generates samples to obtain robust
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Figure 2: Motivated example in AntDir. (a) An agent starts from the left part and has different safety constraints (zones) in
different tasks. (b) The projections of trajectories of different methods during both offline training and online adaptation in 2
tasks. (c) A comparative analysis of the overall performance of meta-policies obtained through various algorithms.

task representations. Besides, PEARL [20] learns a probabilistic
fully-connected context encoder to capture the task identifications
for meta RL. Next, we study the online adaptation process by com-
paring COSTA with IDAQ [9], which introduces in-distribution tra-
jectory filtering and uses only in-distribution trajectories generated
by Thompson sampling as context, and we re-implement its return-
based trajectory filtering as SIDS-based trajectory ranking just like
COSTA. We additionally implement FOCAL_oracle, which has
access to the test task index to study if COSTA can achieve compa-
rable performance with the baseline having extra task information
and data. It’s worth noting that, to ensure the fairness of the exper-
iments, all of the above methods are re-implemented based on the
offline safe RL method CPQ.

We consider multiple benchmarks based on MuJoCo robots and
tasks from the safety benchmark Safety-Gymnasium [8] and other
works [6]. In AntDir, the Ant robot receives rewards while moving
in a specified direction, and different winding routes serve as safety
zones for different tasks, simulating various road configurations
found in real-world environments. CheetahVel encourages the
Half-Cheetah robot to move as fast as possible, but exceeding spe-
cific speed limits for different tasks incurs costs. In AntWalk or
CheetahWalk, the Ant and Half-Cheetah robots are no longer
required to move in a specific direction. They receive rewards for
moving in any direction away from the origin, and different tasks
have roadways in various quadrants as safety zones. In AntCircle,
the Ant robot is directed to traverse a circular trajectory. However,
under different tasks, safety zones are defined by areas enclosed by
two parallel lines characterized by differing angular orientations.
Similar to AntDir, AntGoal incentivizes the Ant robot to navigate
towards a predefined target point, which may involve encountering
various obstacles along the path. Such moves will not obstruct the
Ant robot but incur associated costs.

5.2 Motivated example: Learning to identify
tasks with efficient online adaptation

At first glance, we design a three-task safe RL environment AntDir
(Figure 2(a)), where an agent starts from the left staring-point and

receives rewards when moving towards the right, under different
safety constraints for different tasks. Specifically, for task0, it is con-
sidered safe when the agent’s y-coordinate is within the range of -3
to 3. However, for task1 and task2, their safe regions are defined by
the complex and winding boundaries formed by the brown and blue
lines in the diagram. Such constraints pose significant challenges
to the agent’s safety performance learning. Furthermore, in this en-
vironment, the shared safe regions among different tasks are small
and not continuous. Therefore, to enable the agent to learn safe
and high-performance policies for all three tasks simultaneously,
accurate task recognition is essential.

As depicted in Figure 2(b), the results of offline training reveal
that Vanilla struggled to acquire a policy capable of simultaneously
meeting multiple task constraints. This underscores the challenge
of directly applying purely offline safe RL algorithms in scenarios
involving multiple tasks. As for offline meta RL algorithms (i.e., FO-
CAL and CORRO) or off-policy meta RL algorithm PEARL modified
with the offline safe algorithm CPQ, they demonstrate the ability
to accurately identify tasks during offline training. However, they
all fall short of correctly identifying all tasks during online adapta-
tion, whether utilizing algorithms based on Thompson sampling
or further enhancing them with in-distribution trajectory filtering
techniques such as IDAQ. This highlights the need for special de-
signs aimed at enhancing the robustness of the context encoder in
task recognition for safe scenarios. The successful and unbiased
task inference achieved by COSTA provides compelling evidence
of the effectiveness of the combination of the cost-aware encoder
and in-distribution online adaptation.

Figure 2(c) presents a comparison of the average final perfor-
mance of context-based algorithms across all tasks, with cost nor-
malized according to the constraint limit. COSTA does not only
achieve impressive results during offline training but also stands out
as the only algorithm capable of attaining online adaptation results
comparable to those from offline training. In contrast, the baselines
all exhibit a substantial decrease in reward and an increase in cost
during online adaptation. These findings strongly underscore the
effectiveness of COSTA.
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Table 1: Final average reward and normalized cost return ± standard error in all test environments. The cost threshold is 1.
The ↑ symbol denotes that the higher the reward, the better. The ↓ symbol denotes that the lower the cost (up to threshold 1),
the better. Each value is averaged over all tasks, 10 evaluation episodes, and 5 random seeds. Black: Safe agents. Gray: Unsafe
agents. Blue: Safe agent with the highest reward.

COSTA FOCAL FOCAL_oracle IDAQ CORRO PEARL Vanilla
Task

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓

Training 1071±33.75 0.40±0.05 1097±28.30 0.39±0.10 / / / / 1064±17.65 0.56±0.45 1048±52.57 0.66±0.29 1529±83.85 2.59±0.15
AntDir

Adaptation 1071±35.70 0.40±0.06 1010±140.38 4.00±1.90 1103±28.08 0.44±0.05 757±67.16 4.51±0.70 870±197.22 5.04±0.35 771±32.35 5.50±0.14 / /

Training 354±31.70 0.89±0.12 254±189.34 0.65±0.37 / / / / 329±56.61 1.74±0.89 169±177.03 1.70±1.41 136±195.84 1.73±1.35
CheetahVel

Adaptation 348±40.69 0.84±0.21 137±28.64 0.17±0.12 245±170.51 0.40±0.18 190±27.18 0.14±0.06 319±101.15 2.75±1.05 138±188.25 1.60±1.69 / /

Training 495±17.98 0.12±0.17 506±5.02 0.06±0.04 / / / / 496±8.32 0.10±0.11 528±12.03 7.07±0.73 523±16.61 7.93±0.26
AntWalk

Adaptation 490±15.62 0.09±0.12 537±17.07 5.42±0.11 502±7.48 0.11±0.07 415±50.91 3.64±3.28 511±34.32 6.54±2.30 525±9.89 5.46±2.95 / /

Training 260±72.97 0.00±0.00 234±103.93 1.19±2.38 / / / / 263±175.02 6.64±6.43 216±126.89 0.40±0.80 502±108.14 14.20±0.02
CheetahWalk

Adaptation 248±66.97 0.00±0.00 296±120.04 8.51±6.95 225±117.70 0.72±1.44 298±105.74 2.84±5.68 244±159.75 13.06±2.30 162±42.27 11.37±5.68 / /

Training 1181±219.65 0.55±0.36 1019±351.95 1.01±0.66 / / / / 1232±418.41 1.05±0.70 982±287.94 0.67±0.24 1869±812.58 3.21±0.53
AntCircle

Adaptation 1147±118.63 0.58±0.35 727±278.45 2.78±1.11 923±396.39 0.92±0.90 730±107.51 2.02±1.1 1001±518.32 2.24±1.39 1217±484.25 2.44±0.86 / /

Training 819±14.80 0.64±0.10 826±15.54 0.57±0.17 / / / / 824±8.55 0.69±0.14 810±6.48 0.58±0.23 892±12.01 1.14±0.13
AntGoal

Adaptation 827±20.86 0.75±0.21 851±18.92 2.28±1.02 824±19.33 0.60±0.17 852±13.26 2.33±1.15 810±40.78 2.9±0.67 853±24.28 1.57±0.74 / /

Training 697 0.43 656 0.65 / / / / 701 1.80 626 1.85 909 5.13
Average

Adaptation 689 0.45 593 3.86 637 0.53 583 2.58 599 5.42 611 4.66 / /

5.3 Overall Performance Comparison
To validate the generality of COSTA’s outstanding performance,
we conduct extensive experiments in six distinct environments.

From the offline training results shown in Table 1, it is evident
that Vanilla, which does not incorporate task embeddings, fails
to obtain a policy that ensures safety across all tasks in all envi-
ronments. This further emphasizes the inadequacy of traditional
offline safe algorithms in addressing the meta offline safe problem.
Meanwhile, none of the context-based baselines, including FOCAL,
CORRO, and PEARL, manage to learn safe policies in all environ-
ments. Among them, FOCAL performs relatively well, ensuring
safety in 5 out of 6 tasks, with the failed task slightly exceeding
safety limits, which underscores the significance of distance met-
ric learning in ensuring that task representations are as distinct
as possible. Only our method, COSTA, stands out by achieving
success in all environments. Upon observing the final averaged
results, COSTA not only emerges as the safest approach but also
outperforms another safe method, FOCAL, in terms of rewards.

During the online adaptation phase, COSTA consistently main-
tains safety across all environments. In contrast, all other Thompson
sampling-based methods fail to do so. Interestingly, we find that
most baselines can ensure safety across all tasks in CheetaVel. This
is because there exist some trajectories that will not violate con-
straints on any task. However, the reward returns they achieved
are significantly lower than that of COSTA. Meanwhile, COSTA
outperforms FOCAL_oracle in a broader range of environments,
even without prior knowledge of the test task and the need to store
the entire offline training buffer. COSTA only requires the preser-
vation of a small set of context embeddings, which is more aligned
with practical application scenarios. Additionally, the experimen-
tal results show that in some environments, IDAQ fails to achieve
satisfying results, even inferior to FOCAL. This phenomenon em-
anates from IDAQ’s inherent limitation in ensuring the availability
of in-distribution trajectories.

5.4 Ablation Studies and Visualization Analysis
In the first part of this part, we aim to investigate the influence of
different components of COSTA on its performance, considering
multiple variants. First, we study the impact of different modules
in cost-aware context learning. Specifically, COSTA-wo-dml uses
only Lcc and Ldec to train the encoder, while COSTA-wo-cc relies
solely on Ldml and Ldec. Next, during online adaptation, we intro-
duce COSTA-ts, which employs Thompson sampling to generate
contexts, whereas COSTA-wo-iid utilizes the average embedding
of all rollout trajectories without the SIDS filtering mechanism.
COSTA-wo-trunc employs the original form of SIDS without trun-
cating unsafe trajectories. These variants can verify the necessity
of our proposed safe in-distribution online adaptation process. Fur-
thermore, we combine the two kinds of variants and deriveCOSTA-
ts-wo-cc, in which only Ldml and Ldec are employed for training
the context encoder, and contexts for testing are generated through
Thompson sampling.

The experimental results in two environments are presented
in Table 2. To begin with, we aim to understand the impact of
Ldml and Lcc in context encoder learning on the results of offline
training. From the results, we can find that both of these losses are
indispensable during the learning process of our context encoder.
The absence of either one could potentially affect the robustness
of the context encoder in recognizing tasks. Furthermore, it can
be observed that these two objectives have varying effects on the
algorithm in different environments. In AntDir, the absence of
Ldml leads to errors in task recognition during training, resulting
in more severe safety violations. On the other hand, the absence of
Lcc results in unsafe actions in CheetahWalk.

Moving forward, upon observing the results of online adapta-
tion, it becomes evident that the absence of Ldml or Lcc can lead
to a significant decline in performance and violations in safety con-
straints, even though the offline training results surpass those of
COSTA, e.g., COSTA-wo-cc in CheetahWalk. To explain the phe-
nomenon, we believe that, in the absence of Lcc, the distribution
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Table 2: Final average reward and normalized cost return ± standard error of ablations in two test environments.

COSTA COSTA-ts COSTA-wo-iid COSTA-wo-dml COSTA-wo-cc
Task

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓

Training 1071±33.75 0.40±0.05 / / / / 1092±38.85 1.89±0.60 1088±36.56 0.45±0.06
AntDir

Adaptation 1071±35.70 0.40±0.06 1043±160.16 1.43±1.04 547±61.39 4.50±0.21 1161±84.74 1.36±0.65 1055±55.53 0.38±0.08

Training 260±72.97 0.00±0.00 / / / / 273±86.59 0.00±0.00 197±136.41 2.83±3.84
CheetahWalk

Adaptation 248±66.97 0.00±0.00 220±77.46 5.60±6.86 138±72.97 2.52±5.05 225±56.70 0.00±0.00 205±112.25 5.21±6.42

shift caused by offline RL and trajectory truncation may have more
pronounced and adverse effects on context encoder, thus resulting
in a higher probability of incorrect task identification. This further
demonstrates the effectiveness of the combination of Ldml and Lcc.

(a) COSTA (b) FOCAL

(c) CORRO (d) PEARL

Figure 3: The 2D projection of the learned task representation
space in AntDir using t-SNE. Here, all contexts from different
tasks are collected using a same behavioral policy.

In the study of components within online adaptation, it turns
out that COSTA often struggles with correctly identifying all tasks
when utilizing traditional Thompson sampling-based methods for
task recognition, which is reflected in the results of COSTA-ts.
Consequently, there tends to be a certain degree of safety constraint
violations. Moreover, in the absence of in-distribution trajectory
ranking based on SIDS, a considerable decline in performance is
observed, as COSTA-wo-iid implies. The phenomenon validates
the necessity of our robust online task adaptation in solving offline
safe meta RL problems.

Finally, to better assess the ability of the learned context encoder
to differentiate tasks based on cost functions rather than state-action
distributions for a robust and safe policy, we visualize the task repre-
sentations by projecting context embeddings into a 2D space using

t-SNE [25]. Specifically, we utilize a same behavioral policy for
each task to collect 100 trajectories in AntDir. Then, we treat each
trajectory as a context and produce its low-dimensional embedding
via the context encoder. As shown in Figure 3, in comparison to
other baselines, only COSTA is capable of correctly distinguish-
ing tasks to some extent when the only difference lies in the cost.
Although there is still some overlap among the learned task repre-
sentations, unlike the other baselines that learn representations for
task identification like FOCAL, CORRO, and PERAL, which thor-
oughly mix tasks together and cannot distinguish them at all. This
clearly demonstrates a certain degree of success in decoupling the
context encoder from the behavioral policies in COSTA’s context
encoder learning, indicating that the design of COSTA could indeed
obtain a highly differentiated task identification.

6 FINAL REMARKS
This paper introduces a novel offline safe meta RL algorithm called
COSTA to enable safer and more widely applicable RL in real-world
applications. To learn a generalized safe policy from offline datasets,
COSTA learns robust task representations by incorporating distance
metric learning and cost contrastive loss into the training of the
context encoder. During the online adaptation process, we gen-
erate truncated in-distribution trajectories with safety guarantee
and introduce two measurements, SIDS and SIDStrunc, to filter out
trajectories. Extensive experimental results demonstrate that our
method outperforms other approaches by providing better safety
guarantees, higher rewards, and fewer safety constraint violations
during the exploration process. It also exhibits a degree of gener-
alization and transferability. However, there is also some future
research that could be conducted. Firstly, we discuss the offline safe
meta RL problem under the small-scale scenarios, the extension to
complex environments with more tasks and multiple constraints
is not thoroughly studied. Secondly, COSTA requires extra infor-
mation preserved during offline training to perform robust online
adaptation, more accurate and fast recognition is subject to further
research. Finally, investigating the offline meta-safe problem in
the multi-agent reinforcement learning setting is a promising and
valuable direction for future work.
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