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ABSTRACT
Pandemics, notably the recent COVID-19 outbreak, have impacted
both public health and global economy. We need a profound under-
standing of disease progression and efficient response strategies to
prepare for potential future outbreaks. In this paper, we emphasize
the potential of Agent-Based Models (ABM) in capturing complex
infection dynamics and understanding the impact of interventions.
We simulate realistic pharmaceutical, behavioral, and digital inter-
ventions and suggest a holistic combination of these interventions
for pandemic response. We study the trends of emergent behavior
on a large-scale population based on real-world socio-demographic
and geo-census data from Kings County in Washington. Our anal-
ysis reveals the pivotal role of the initial 100 days in dictating a
pandemic’s course, emphasizing the importance of quick decision-
making and efficient policy development. Further, we highlight that
investing in behavioral and digital interventions can reduce the bur-
den on pharmaceutical interventions by reducing the total number
of hospitalizations, and by delaying the pandemic’s peak. We also
infer that allocating the same amount of dollars towards extensive
testing with contact tracing and self-quarantine offers greater cost
efficiency compared to spending the entire budget on vaccinations.
Our code: https://github.com/mitmedialab/DeepABM-Pandemic/.
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1 INTRODUCTION
The recent outbreaks of COVID-19 have left an indelible mark on
society at a global scale, highlighting the vulnerability of public
health [41, 48]. Thus, deepening our insights into how pandemics
evolve is imperative, ensuring that our actions are prompt, effec-
tive, and grounded in evidence [7, 65]. Given the unprecedented
nature of these pandemics, it is challenging to simulate their dy-
namics. Agent-based modeling has emerged as a pivotal tool for
replicating the complex dynamics inherent in the pandemic evolu-
tion [2, 5, 38, 60]. Agent-based models (ABMs) are unique in their
ability to provide a granular view of disease propagation by an-
alyzing both micro-level interactions and the broader emergent
phenomena, making them particularly suited for delineating the
effects of potential interventions.

In the past, governments globally adopted varied strategies to
curb the spread of infections, particularly during COVID-19 [17, 32,
57]. Some were effective, while others were not [12, 27]. Interven-
tions such as delayed travel bans proved insufficient, allowing rapid
global infection spread [66], while prolonged severe lockdowns
crippled global economies [73]. Additionally, the deployment of
digital initiatives for contact tracing [13, 20, 58, 69] had a limited
impact due to low adoption and delays in user quarantine post-
exposure [23]. As notified users awaited test results, potential carri-
ers inadvertently continued activities, making this approach largely
ineffective in curbing transmission [22, 42]. Pharmaceutical inter-
ventions, once viewed as the primary defense against the pandemic,
encountered their own set of challenges [70]. The apprehension
over the longevity of vaccine-induced immunity and potential side
effects further hampered the pace of vaccination drives [51, 64].
Moreover, by the time effective vaccines were produced, many na-
tions had already peaked in infections [53]. Thus, reflecting on
these previous strategies to understand what worked and what did
not is crucial for developing efficient future pandemic responses.

However, decision-making in such scenarios is challenging due
to the multifarious intricacies of complex societies characterized
by heterogeneous populations, diverse behavioral patterns, and
differential access to resources [6, 8, 19]. The interplay of various
interventions, their mutual impacts, and the factors influencing
their effectiveness adds further layers of complexity. In this paper,
we address these challenges of modeling real-world simulations
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in complex societies by considering varied populations with in-
teraction networks spanning across household, occupational, and
random graphs. We consider behavioral patterns through app adop-
tion rates, self-quarantine, and compliance probabilities. Further,
we model differential access to resources stratified by age or policy
choices, for instance, prioritizing higher age group individuals for
vaccination and age-based app adoption.

We model the progression of a pandemic over its initial 6 months
(180 days) using real-world socio-demographic (census) data from
Kings County, Washington, evaluated at a scale of 100,000 agents.
Our ABM framework is currently parameterized to King’s County
demographics and calibrated to the epidemic outcomes. It can eas-
ily be re-parameterized for other geographies. All static variables
such as age, household, occupation, and (random) number of daily
interactions are initialized using the real-world census and mobility
data for King’s County. We release our data parameters in the code.

For our analysis, we simulate three types of interventions: phar-
maceutical, behavioral, and digital, and highlight the effectiveness
and potential pitfalls of each approach in controlling future pan-
demics. We not only assess these individual interventions but also
integrate a collective interplay of these interventions, suggesting
they are complementary to each other, not alternate. Pharmaceuti-
cal interventions include vaccination drives and testing to detect
cases. Behavioral interventions include self-quarantine upon testing
positive and individual responsiveness and adherence to recom-
mended actions. The lockdowns many countries implemented can
be viewed as a prolonged strict self-quarantine. Digital interven-
tions explore tools such as contact tracing apps designed to monitor
and curtail spread through tracking interactions. Our extensive
analysis suggests relying solely on rapid vaccine development for
outbreak control isn’t viable. Enhanced preparedness demands an
integration of pharmaceutical approaches with contact tracing and
behavioral strategies, ensuring a holistic, prompt response.

The following are the major contributions of our paper: (1) We
introduce a general pipeline using ABMs that simulates a real-world
synergy of interventions at scale, encompassing pharmaceutical,
behavioral, and digital strategies. This framework offers extensive
detail to capture the complexities observed in the real-world adop-
tion of these interventions. (2) Our user-friendly and flexible frame-
work is designed with a customizable configuration file, enabling
non-technical people like epidemiologists and policy-makers to
study the effect of intricate interventions on pandemics. (3) We pro-
vide a comprehensive cost analysis of pandemic containment under
each intervention strategy. (4) We perform extensive experiments
on real-world data from Kings County, Washington for COVID-19.
Our findings deepen the understanding of pandemic trends and
offer valuable policy recommendations for effective pandemic re-
sponse. (5) Some of our interesting insights are: (a) The first 100
days of the pandemic are a pivotal threshold in determining the
course of a pandemic’s trajectory. (b) Pairing delayed vaccination
with digital and behavioral interventions proves more impactful
than solely pushing for early vaccination, as it not only reduces
overall infections and hospitalizations but also delays their peak. (c)
With a fixed $0.5M budget, investing in testing with self-quarantine
and digital contact tracing is more effective than funding early
vaccinations alone.

2 RELATEDWORK
Agent-based models (ABMs) are discrete simulators that allow en-
tities (agents) with designated characteristics to interact within a
given computational environment, replicating complex systems
[16, 25, 34, 50, 59, 74]. Recently, ABMs have been widely employed
in epidemiology to understand disease progression and the efficacy
of interventions by providing relevant information to investigate
and predict the behavior of the pandemic [2, 5, 38, 46, 60]. Several
studies have utilized ABMs to evaluate the effectiveness of different
interventions, such as social distancing, quarantine, lockdown, and
vaccination [21, 35, 60]. ABMs have also been used in prior works
for addressing policy-related queries like evaluating the importance
of test turnaround time versus its sensitivity [40], and the benefits
of postponing the vaccine’s second dose to focus on the distribution
of the first dose [60].

However, the utility of ABMs for practical decision-making de-
pends upon several factors. These include their accuracy in repli-
cating the population behavior [29, 55]. Furthermore, ABMs are
conventionally slow. A single forward simulation over a large ABM
can take several days [11, 15]. ABM simulations are difficult to scale
to large populations [15], and are tough to calibrate with real-world
data [55]. Most prior work either studies the effect of only one
intervention at a time or simulates very few agents [24]. Real-world
deployment of intervention strategies intricately linked to each
other should be scalable to large populations and need to be studied
with a combined effect of each of these interventions [21, 35, 38].

Only after overcoming these challenges in ABMs can their in-
sights truly guide strategic pandemic interventions. Our model
provides a comprehensive system that simulates interventions with
real-world challenges of deployment or adoption, representing them
through quantifiable parameters. We adopt a vectorized approach
[21] which enables a fast, parallelized simulation, allowing analysis
of emergent behavior on a large-scale population for millions of
agents in a few seconds. We not only assess the individual interven-
tions but also integrate a holistic interplay of these interventions.

3 METHOD
Figure 1 shows the pipeline for different interventions along with
the progression of disease stages. We build on existing open-source
agent-based modeling frameworks [21, 35], optimizing large-scale
simulations through matrix computations, leading to enhanced
computational efficiency. Our model addresses the potential vari-
ances in the adoption of interventions by employing a stochastic
approach, sampling from Gaussian distributions based on a certain
compliance level to predict outcomes. We model these interven-
tions with an unprecedented level of detail with aspects that have
not been explored in such granular detail in prior research. This
comprehensive approach facilitates the examination of the individ-
ual impact of each parameter, and also provides insights into the
synergistic effects of these interventions on the pandemic response.

In our model, individual agents (and their states) are modeled as
tensors. Agents navigate through eleven potential disease stages:
susceptible, asymptomatic, presymptomatic (mild or severe), symp-
tomatic (mild or severe), hospitalized, in intensive care, recovered,
immunized, or deceased. Infections can propagate during any inter-
action between susceptible and infected agents. These interactions
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Table 1: Description of Testing parameters

Parameter Explanation

test_start_date Date on which testing begins
test_true_positive Prob. of a true positive result
test_false_positive Prob. of a false positive result
test_results_dates Potential dates of receiving test results
test_results_dates_probs Dictionary of probabilities associated

with each test result date
test_validity_days Duration for test results validity
test_cost Average cost of production of a test

span three networks: household, occupation, and random encoun-
ters, which are represented as sparse adjacency matrices. Each such
interaction is a stochastic process with a certain risk of disease trans-
mission. The foundational assumptions about disease progression,
transmission dynamics, and network interactions align with prior
agent-based models [21, 60]. We will now delve into an in-depth
examination of each intervention, detailing various parameters and
compliance factors reflective of real-world scenarios.

3.1 Testing
Agents who are exposed to infection and develop symptoms un-
dergo testing. Every diagnostic test is defined by three primary
parameters: specificity, turnaround time, and duration of test va-
lidity. The turnaround time accounts for any inherent delays in
receiving test results, presented as a dictionary detailing possible
result dates and their associated probabilities. The test validity indi-
cates the duration for which the test results are considered relevant.
After this period, agents are expected to be retested. Factoring in
real-world delays related to the deployment of testing kits, tests can
be deployed in the model after some start date, marking the start of
distribution of that particular testing method to the public. Table 1
shows the different parameters supporting the testing mechanism.

In our simulations, we employ two types of tests: (i) RT-PCR
test, with a specificity of 0.99 and a turnaround time of 1 to 3
steps (1 to 3 days) uniformly distributed [21, 39], and (ii) rapid
point-of-care test, which offers slightly reduced specificity of 0.85
with a turnaround time of 0 steps (same day). To cater to varying
diagnostic requirements, these parameters can be adjusted, offering
flexibility in modeling different test types. By default, our model
uses the more reliable RT-PCR test for simulations unless specified
otherwise.

3.2 Self-quarantine(SQ)
Upon testing positive or receiving exposure notification, an agent
undergoes a 14-day self-quarantine adhering to compliance. How-
ever, an agent might not consistently adhere to the complete quaran-
tine. To simulate such imperfections, a daily dropout probability of
1% is incorporated to account for potential non-compliance. During
the quarantine period, the agent’s interaction network effectively
becomes isolated, leading to no interactions with other agents. After
successfully completing the quarantine period, the agent’s capacity
to transmit the infection is nullified, effectively resetting their infec-
tiousness to zero. Table 2 provides a detailed overview of different
parameters for modeling self-quarantine.

Table 2: Description of Self-quarantine parameters

Parameter Explanation

quar_enter_prob Prob. with which an agent enters self-
quarantine after testing positive

quar_break_prob Daily quarantine dropout probability due
to non-compliance

quar_days Number of self-quarantine days

Table 3: Description of Vaccine-related parameters

Parameter Explanation

vacc_start_date Date on which vaccine drive begins
vacc_daily_prod No. of vaccine doses produced daily
vacc_shelf_life Duration before a vaccine dose expires
vacc_dose_delay Days after which the vaccine dose starts

showing effect
vacc_dose1_priority Indicator if the first dose is prioritized over

second in distribution
vacc_dose1_eff Efficacy of the first vaccine dose
vacc_dose2_gap Duration between the first and second

doses of the vaccine
vacc_dose2_eff Efficacy of the second vaccine dose
vacc_dose2_drop Probability of an individual not returning

for the second dose
vacc_price Cost for development of a single vaccine

3.3 Vaccination(VACC)
We simulate a two-dose vaccination regimen with an extensive level
of granularity. A dose of the vaccine provides a certain probability
of becoming immune to infections, depending on whether it is a
first or second dose. Vaccines are administered in an age-prioritized
fashion, with the oldest individuals receiving their vaccines first,
and first-dose candidates given precedence over the second dose.
We simulate a probabilistic immunity conferred post-vaccination,
where immunity is not immediate but materializes after a stipulated
delay post-inoculation. Table 3 illustrates the parameters driving
our vaccination models, such as the vaccine’s start date, daily pro-
duction rate, shelf life, and efficacy percentages for both doses.
Moreover, it also highlights potential dropouts - those who, after
receiving the first dose might choose not to return for the second,
capturing a real-world nuance in the vaccination process.

For all the experiments, we assume a 90% efficacy for the first
dose and a 95% efficacy for the second dose administered 21 days
later. Further, we also do a sensitivity analysis on lower efficacy
rates for the first dose of vaccines, including 30%, 50%, and 70%. (in
Supplementary). All simulations, unless indicated otherwise, pre-
sume vaccination commencement at t=10 with a daily vaccination
rate of 0.3% on a population of 100K based on U.S. vaccination rates
and patterns observed internationally [21].

3.4 Contact Tracing (CT)
We adopt a hybrid contact tracing approach where first exposure
notifications are dispatched to contacts of infected app users fol-
lowed by manual follow-up for non-compliant users and agents
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Figure 1: Implementation of different interventions - Testing, Self-quarantine, Vaccination, and Contact Tracing. (1) Infection
spreads through the interaction of infected with susceptible agents, and the states of the agents are then updated based on
disease progression. (2) Upon experiencing symptoms, exposed agents get themselves tested (3a) If tested positive, agents
undergo self-quarantine with compliance. A quarantined agent then engages in no further interactions until the quarantine
period ends. The interaction graph of quarantine agents is thus an isolated point (3b) Agents that have not tested positive or
are not quarantined get vaccinated. Vaccination reduces the susceptibility of an agent to infection risk (3c) In case of contact
tracing: interactions of the positively tested agents (that own app in case of DCT) from the previous interaction graphs of past
days are tracked; (4c) exposure notifications are sent to the possibly exposed tracked agents (that own the app in case of DCT);
(5c) notified agents then opt for self-quarantine. (Last) After simulating for N days, the aggregate statistics of the agent states
are computed. Agent states here are: susceptible (S), exposed (E), infected (I), recovered (R), mortal (M), and vaccinated (V)

not owning the app. Below, we delve into the specifics of digital
and manual tracing methods.

Digital Contact Tracing (DCT): At the start of the simulations,
agents own a Digital Contact App (DCA) with a fixed adoption rate
based on age-stratified data. This app records interactions of an
agent across all three networks: household, occupation, and random,
within a 7-day window. Note that interactions are logged only if
both agents have the app. When an agent with an app tests positive,
they can opt to notify exposed contacts via the DCA. Recipients
then undergo self-quarantine based on their compliance probability.
In our experiments, we simulate DCT assuming an average 40%
app adoption rate and 80% compliance rate for self-quarantine.

Manual Contact Tracing (MCT): Manual tracing is similar to
its digital counterpart, with a few key differences as illustrated in
Figure 2. Unlike DCT, MCT doesn’t require smartphone ownership
and is unlikely to remember random or casual encounters (like
those in public transport or stores). Only contacts within the house-
hold and occupational networks are traced through MCT. Manual

tracers interview an infected agent to identify and track the poten-
tial contacts over the past N (=7) days. However, only a portion
of the true interactions are identified based on the likelihood of
recalling them (70%). From these, a subset responds based on a set
probability. Successfully contacted agents then self-quarantine with
a compliance probability of 90%.

In a targeted two-step process of contact tracing, MCT and DCT
leverage coupled capabilities of human intervention with digital
tools. Performing manual contact tracing of targeted potential in-
fected agents who either did not own the app or ignored the digital
notifications can significantly improve the scale/outreach of the
tracing efforts to contain the infection spread. Table 4 details the
parameters used to model contact tracing.

4 RESULTS
We study the impact of different interventions discussed above on
disease progression and pandemic evolution in a population with
100,000 agents over a period of 180-time steps. In particular, we
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Table 4: Description of Contact Tracing parameters

Parameter Explanation

app_adoption_rate Prob. of agents owning the app at the start of the simulation in DCT
max_contact_days Number of days for which history of previous interactions are traced (unique for DCT and MCT)
test_inform_prob Prob. to notify the contacts via DCA/MCT after testing positive (unique for DCT and MCT)
mct_recall_prob Probab. that an individual recalls their contacts accurately during MCT
mct_reachable_prob Probability that an individual is reachable for manual contact tracing
sq_comply_prob Compliance prob. for quarantine upon succesful contact tracing (unique for DCT and MCT)

Figure 2: Comparison of Digital vs. Manual Contact Tracing:
Digital tracing requires app ownership for both interacting
agents but can effectively track unknown or random interac-
tions, while manual tracing captures household and occupa-
tional contacts but may miss random interactions

simulate Self-Quarantine (SQ), Vaccination (VACC), and Contact
Tracing (CT) interventions and evaluate their outcomes. We ran
experiments using real-world socio-demographic and geo-census
data from Kings County in Washington state. All the results cor-
respond to the mean and standard deviation aggregated over 10
independent runs of the simulation.

We present our results in five sections. Section 4.1 examines
the individual effect of different interventions on the evolution of
the pandemic outcomes. Section 4.2 focuses on the age-stratified
analysis for these individual interventions. Section 4.3 delves into
the overall cost analysis of individual interventions, highlighting
their financial implications. Section 4.4 provides insights into the
interplay of pharmaceutical, behavioral, and digital interventions,
allowing us to study their cumulative effect on the pandemic’s
trajectory. Section 4.5 shows the geographical progression of in-
fections in Kings County, WA, where we simulate a combination
of all the interventions together and compare the spread with the
unmitigated no-intervention (NI) case.

4.1 Analysis of individual impact of different
interventions

To provide a baseline for the impact of the pandemic, we first inves-
tigate an unmitigated scenario in which there are no interventions

(NI). We compare this baseline unmitigated scenario with interven-
tions such as self-quarantine (SQ), vaccination (VACC), and contact
tracing (CT). Figure 3 details the comparative analysis of the indi-
vidual effect of each of these interventions in terms of the number
of severely affected individuals who require hospitalization, rate of
infection, and cumulative infections. For our analysis, we assume
the number of beds per 1k people in Kings County in early 2020 to
be 1.57 [43]. On average, 65% of hospital beds are already occupied
[1]. So the number of available hospital beds per 100,000 people is
1.57*0.35/1000*100,000 ≈ 55.

Our analysis shows that the uncontrolled pandemic (NI) peaks
at t=65, with the number of hospitalizations of 175, far exceeding
the available capacity of 55 by 218% as depicted in Figure 3(a). This
indicates the immense strain on the healthcare system in the no-
intervention case, pushing it to the brink of collapse. Figure 3(b)
highlights a peak daily infection rate of 281 per 100,000 agents in
NI, with a staggering 81% of the population infected by the end as
visualized in 3(c).

In the SQ scenario, while themaximum rate of infections dropped
by 45% compared to the NI case, hospitalizations still peaked at
115, overshooting the capacity by 109%. This suggests that self-
quarantine alone without the support of additional containment
strategies is not a viable option. The VACC strategy resulted in hos-
pitalizations still peaking at 57% above the estimated capacity, with
daily infection rates nearing those in the NI scenario. For both SQ
and VACC strategies, around 70% of the population was infected by
the end of the pandemic. Interestingly, despite VACC’s high infec-
tion rate, we observe fewer individuals needed hospitalization due
to enhanced immunity gained by the agents through vaccination.

In the case of contact tracing (CT), a huge reduction in hospital-
izations from the NI case is observed, bringing the peak very close
(within 16%) to the available capacity. Additionally, CT delayed
the peak by 14 days, giving the healthcare system more time to
be prepared with the necessary resources. The maximum rate of
infections dropped by a massive 72%, with only 54% of the total
population infected by the end of the pandemic. Therefore, our
experiments indicate that CT with testing is the most effective
standalone intervention for pandemic containment.

Notably, irrespective of the specific intervention, the peak consis-
tently occurs within the first 100 days for each individual strategy.

4.2 Age stratification of infections for different
interventions

Figure 4 depicts the age-stratified cumulative infections in Kings
County, Washington. While implementing CT, we simulate the
app distribution with an average overall app adoption rate of 40%
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Figure 3: Comparative analysis of the individual impact of different interventions on pandemic progression; No Interventions
(NI), Self-Quarantine (SQ), Vaccination (VACC), and Contact Tracing (CT). (a) Peak hospitalizations showcase the strain on
healthcare under each scenario, with notable stress in the NI and SQ cases. The dotted line represents the hospital bed availability
for Kings County, Washington (b) Daily new infection rates highlight the efficacy of interventions, with CT significantly
lowering the infection rate. (c) Cumulative infections over time reveal the pervasive nature of the pandemic in the absence of
effective measures and a substantial reduction in total infections under VACC, SQ, and CT.

Figure 4: Age-stratified cumulative infections in Kings County, Washington, illustrating the impact of contact tracing (CT),
self-quarantine (SQ), and vaccination (VACC) intervention scenarios on different age groups.

in an age-stratified manner, where the age groups 20-59 have a
higher probability of owning the app. Consequently, we observed
a large drop of 26% in cumulative infections for agents in these age
groups of 20-59. However, a significant drop (approximately 40%)
in cumulative infections in the age group 0-19, was also observed
even with relatively low app adoption rates. This is due to effective
manual contact tracing implementation within households.

For the VACC intervention case, we prioritize agents in higher
age groups for vaccinations. Hence, we observe a reduction of 82%
and 92% infections for the age groups 70-79 and 80-89, respectively,
compared to the NI case. These drops are substantially high com-
pared to the average drop in infections over all age groups of 14%.

4.3 Cost analysis of individual interventions
In this section, we evaluate the economic implications of vari-
ous interventions in controlling the pandemic. The cost of the
no-intervention (NI) case is $0. For the self-quarantine (SQ) and
contact tracing (CT) interventions, we account for the cost of tests
taken by agents experiencing COVID-19 symptoms. The average
cost per test for each case is assumed to be $5 [26]. We assume
this is the average cost per testing kit incurred by the government.

Figure 5: Comparison of costs for different intervention
strategies. The figure shows contact tracing (CT) is the most
cost-effective over both self-quarantine (SQ) and vaccination
(VACC); excluding $0 cost for no-intervention (NI)

Similarly, for vaccination (VACC), each dose is priced at an average
of $20 [37].

Figure 5 shows the respective costs of each intervention strategy,
with their individual impacts elaborated in Section 4.1. 4.1. Com-
puting the total expenditure, VACC stands at $1.02M, SQ at $0.54M,
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Figure 6: Comparative analysis of hospitalizations under a
fixed budget of $0.42M for contact tracing (CT) versus vac-
cination (VACC). The figure shows CT leads to a significant
reduction in hospitalizations compared to VACC along with
a pronounced delay in the peak, underlining the superior
cost-effectiveness and strategic value of contact tracing in
the pandemic’s early stages.

and CT at a minimum of $0.42M Beyond the reduction in infections
and hospitalizations explored in Section 4.1, it’s evident that CT
surpasses by being 23% and 59% more cost-effective than SQ and
VACC, respectively.

Further, for a fixed budget of $0.42M, our analysis shows that
deploying contact tracing with self-quarantine (CT) outperforms
an exclusive focus on vaccination. In this context, the CT strategy
remains consistent with the previous simulations, with only the
daily vaccination production adjusted to fit the budget. As Figure 6
demonstrates, allocating the budget to testing with contact tracing
(CT) results in a significant 63% decline in peak hospitalizations
against the no-intervention (NI) baseline. Conversely, directing the
entire same budget towards vaccinations alone (VACC) yields just
a 32% reduction in peak hospitalizations compared to NI. Notably,
while the VACC and NI peaks coincide, the CT approach introduces
a 13-day delay in the surge of hospitalizations. This 20% temporal
divergence is pivotal, offering healthcare systems a crucial extended
window for preparation.

In conclusion, for every dollar invested, contact tracing proves
to be the more cost-efficient choice compared to vaccination, par-
ticularly in the crucial first 100 days. A mere 40% app adoption rate
paired with 80% self-quarantine compliance under the CT strategy
offers a better return on investment than the same expenditure on
vaccination alone.

4.4 Coupled effect of pharmaceutical,
behavioral, and digital interventions

In this section, we study the combined effects of vaccine deployment
speed and other pivotal interventions, examining their collective
impact on hospitalizations. We observe that regardless of interven-
tion combinations, the peak consistently emerges within the first
100 days, highlighting the significance of timely informed decisions.
Figure 7(a) illustrates the relationship between the speed of vaccine
deployment at distinct time intervals: 𝑡 = 10, 𝑡 = 30, and 𝑡 = 60
and the subsequent hospitalizations. Compared to starting the vac-
cinations at t=10, a delayed vaccination drive starting at t=30 and
t=60 increases the number of hospitalizations by 61% and 103%,
respectively, with all scenarios peaking around the same time.

However, by integrating other digital and behavioral interven-
tions with vaccination, we observe a transformative mitigation
effect. Figure 7(b) shows that VACC starting at t = 30 + CT leads to
a 55% reduction in hospitalizations compared to only early vaccina-
tion starting at t=10 and further a 72% drop in hospitalizations com-
pared with VACC at t=30. Additionally, this amalgamated approach
grants an extra 14-day buffer prior to the hospitalization peak,
facilitating a strategic advantage for healthcare system prepared-
ness. The cost analysis for Figure 7(b) is provided in supplementary
material.

Further, sole reliance on late vaccination starting at 𝑡 = 60 fails
because of the inherent lag in post-inoculation immunity devel-
opment. However, when this late vaccination is augmented with
proactive contact tracing and self-quarantine measures, the results
are noteworthy: a 61% reduction in hospitalizations accompanied
by an additional 23-day window for effective immunization as in
Figure 7(c).

This underscores the potential of non-pharmaceutical interven-
tions (NPIs) like behavioral and digital, not just as alternate mea-
sures but as pivotal strategies in pandemic control, especially when
vaccination rollout faces delays. Thus, a multifaceted approach com-
bining behavioral, digital, and pharmaceutical measures is pivotal
in effectively managing the pandemic, especially during the first
100 days when clinical interventions face delays.

4.5 Geographical spread
Figure 8 shows heat maps of infection spread over time in King’s
County, Washington State at distinct time intervals: 𝑡 = 50, 𝑡 = 70,
and 𝑡 = 120. We compare the unmitigated (NI) scenario in Figure 8
(Top) against an integrated strategy that combines all interventions
vaccinations, testing, contact tracing, and self-quarantine in Figure
8 (Bottom). We observe that in the case of no intervention, the
infection spreads aggressively, already infecting a substantial 25%
of the population by day 50, 76% by t=70, and 81% by t=120. In stark
contrast, Figure 8 (Bottom) captures the attenuated spread when a
comprehensive set of interventions is deployed. Infections stand at
a mere 5% population infected by day 50, 19% by day 70, and only
36% by t=120.

5 DISCUSSION
In this paper, we highlight the potential of agent-based models
to simulate highly complex environments through multiple inter-
twined interventions. We discussed intricate modeling of pharma-
ceutical, behavioral, and digital interventions and how their holistic
understanding is important when creating pandemic policies.While
we take one step towards bridging the gap between understand-
ing the emerging trends and policy-making, we posit that there
can be additional implicit factors stemming from complex inter-
ventions and their ripple effects that frequently go unnoticed, yet
significantly influence the trajectory of the pandemic. For instance,
financial interventions like severance funds or government aid [36]
provided to the unemployed to stay at home could alter mobility
patterns [4, 10], influencing the pandemic’s course. Additionally,
our cost analysis focuses predominantly on explicit monetary costs.
Some interventions, while not incurring direct costs, may lead to
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Figure 7: Analysis of interplay of digital and behavioral interventions on delayed vaccination. (a) Illustrates the impact of
vaccine deployment speed on hospitalizations. Vaccine rollout delays lead to a consequential rise in hospitalizations with
peak incidence remaining consistent. (b) Demonstrates the synergy of contact tracing and varied vaccine deployment timings,
emphasizing that combining VACC(t = 30) + CT significantly diminishes hospitalizations and prolongs the time to peak
compared to early vaccination alone. (c) Indicates the challenges with vaccine initiation at the pandemic’s zenith, stressing that
even late vaccine rollouts, when coupled with testing, contact tracing, and self-quarantine, can drastically mitigate infections
and allow for a crucial extended immunization period. This highlights the indispensability of integrating behavioral and digital
strategies, especially in the pandemic’s early days when clinical interventions might not yet be in full swing.

Figure 8: Geographical progression of infections in Kings’s
County, Washington, at different time intervals. (Top) In
case of no intervention, the infection spreads to 25% of the
population by t=50, 76% by t=70, and 81% by t=120. (Bottom) In
the case of combined digital, behavioral, and pharmaceutical
interventions, infection spreads slowly to only 5% of the
population by t=50, 19% by t=70, and only 36% by t=120.

broader economic implications [47, 61, 67]. For instance, exten-
sive lockdowns, a common strategy during COVID-19, triggered
a severe global economic downturn. This collapse was character-
ized by soaring unemployment rates [3, 9], halted international
trade [33, 44, 68], and suspended supply chains [30, 45, 49, 54].
These influencing factors further raise pivotal questions for policy-
making: Does the amount of unemployment aid play a larger role
in pandemic control than the speed of its provision? Are short-
term lockdowns (<31 days) the solution [14, 52, 71], or is there an
optimal percentage of people returning to offices (RTO) [28, 72]

that can help control the pandemic and also not harm the economy
at a global scale? Answering these questions can provide insights
into the efficacy and promptness of policy interventions. Therefore,
modeling these latent factors is a vital future direction in aiming for
a comprehensive understanding of a pandemic’s broader impacts.

Further, effectively using ABMs for real-world decisions requires
meticulously recreating population details, demanding ample data.
However, most of this data is siloed across diverse institutions and
individuals [62] and may also be private [57]. Future endeavors
can also explore private[18, 31] and collaborative machine-learning
approaches[56, 63] for learning and calibrating these models.

6 CONCLUSION
In this paper, we emphasize the capabilities of agent-based models
in understanding the complex dynamics of pandemics and sim-
ulating the potential impact of different policy interventions. By
simulating interventions with their real-world deployment chal-
lenges, we analyze emergent behaviors on populations at scale. Our
approach goes beyond merely evaluating standalone interventions
by capturing the comprehensive interplay of combined strategies.
From our experiments, several critical findings emerged. The initial
100 days of a pandemic largely shape its course and underline the
need for swift and informed decisions from the beginning. While
vaccines play a pivotal role in reducing individual susceptibility,
achieving community-wide immunity is a gradual process due to
the time-consuming nature of mass vaccination rollouts. Our re-
search emphatically highlights the indispensability of sustained
interventions alongside vaccinations. Notably, we observed contact
tracing’s efficacy for not only reducing the cumulative infections
from 81% (in the absence of intervention) to 54% but also delaying
the infection peak by 14 days. Our analysis further shows that the
same amount of dollars spent on extensive testing with contact
tracing and self-quarantine proves to be more cost-effective than
spending on vaccinations alone. Future global health crises thus
necessitate a balanced, multi-pronged response.
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7 ETHICS STATEMENT
Our research emphasizes the responsibility to consider the soci-
etal implications of pandemic response strategies. By employing
Agent-Based Models (ABM) to simulate various interventions, we
aim to provide decision-makers with evidence-based insights while
stressing the need for swift and informed action, particularly in
the critical initial phase of a pandemic. Furthermore, our findings
advocate for a balanced approach to pandemic response, highlight-
ing the complementary roles of pharmaceutical, behavioral, and
digital interventions. This study accentuates the need for ongoing
dialogue and collaboration among researchers, policymakers, and
communities to address complex challenges in shaping effective
and equitable responses to global health crises responsibly.
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