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ABSTRACT
We present CEMA: Causal Explanations inMulti-Agent systems;
a framework for creating causal natural language explanations of
an agent’s decisions in dynamic sequential multi-agent systems to
build more trustworthy autonomous agents. Unlike prior work that
assumes a fixed causal structure, CEMA only requires a probabilis-
tic model for forward-simulating the state of the system. Using such
a model, CEMA simulates counterfactual worlds that identify the
salient causes behind the agent’s decisions. We evaluate CEMA on
the task of motion planning for autonomous driving and test it in
diverse simulated scenarios. We show that CEMA correctly and ro-
bustly identifies the causes behind the agent’s decisions, even when
a large number of other agents is present, and show via a user study
that CEMA’s explanations have a positive effect on participants’
trust in autonomous vehicles and are rated as high as high-quality
baseline explanations elicited from other participants. We release
the collected explanations with annotations as the HEADD dataset.
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1 INTRODUCTION
Artificial Intelligence (AI) is subject to heightened social and regu-
latory scrutiny where trust, or a lack thereof, has proven a barrier
to public adoption [22], especially in safety-critical systems such as
autonomous driving (AD) [18]. This is in part attributed to the inher-
ent lack of transparency of current black box deep learning-based
systems [3]. In response, explainable AI (XAI) has gained popularity.
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Figure 1: The autonomous vehicle (𝜀) is heading to the blue
goal. It decided to change lanes after the other vehicle (1)
cut in front of it and began to slow down. A passenger asks:
Why did you change lanes? “To decrease the time to reach
the goal.” [teleological] Why was changing lanes faster? “Be-
cause the other vehicle is slower than us and is decelerating.”
[mechanistic] – Actual explanations by CEMA with explana-
tion types in brackets. Blue/orange lines illustrate forward
simulations using the probabilistic forward model.

Most XAI methods focus on explanations for supervised learning
using tabular or image data [8]. However, these explanations are
often purely numeric, and alone have little utility for non-experts
who lack domain knowledge to understand the system’s internal
representations [13]. To address this, XAI is increasingly drawing
inspiration from philosophy and the social sciences [28] which has
created what we call the subfield of social XAI.

An essential part of social XAI is the ability to generate causal
explanations. There are several methods for this task [37] and some
were proposed for causally explaining sequential decision-making
in single-agent systems [9, 38]. However, complex and dynamic
multi-agent systems, such as the case with AD, involve tightly
coupled interactions among agents where the decisions of any one
agent may be difficult to explain even for humans, and there have
been few works in XAI addressing this problem. An additional
important feature of social XAI is the ability to communicate the
extracted causes in the form of intelligible and easy to understand
natural language explanations (NLE) as part of a conversational
process. A conversation lets users target the pertinent or unclear
actions of the agent, while a social XAI system can adjust the
user’s mental model without excessive cognitive overhead, thereby
contributing to more trustworthy interactions with people [11].

To advance the social explainability of multi-agent systems, we
introduce a new method called CEMA, which stands for Causal
Explanations in Multi-Agent systems. As illustrated in Figure 1,
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CEMA is a social XAImethod that generates intelligible causal NLEs
about an ego agent’s decisions in sequential multi-agent systems
both in terms of the ego’s intrinsic motivations (i.e., teleological
explanation) and the actions of other agents in the ego’s neigh-
borhood (i.e., mechanistic explanation). At the core of CEMA is a
novel causal selection algorithm based on the Counterfactual Effect
Size Model [33], which builds on a large body of research into how
people select causes for explanations. Instead of creating a specific
fixed causal structure, CEMA only relies on a probabilistic model
for forward-simulating the joint state of the system, which makes
it generally applicable where such models are available. By creating
counterfactual simulations of what has occurred, CEMA ranks the
salient causes behind the ego’s actions based on which causes are
most correlated with the ego’s actions across counterfactual worlds.
Causal selection follows a three-step process:

(1) Roll back the current factual state of the system to a previ-
ous point in time, such that the actions of the ego that we
would like to explain have not yet occurred;

(2) Simulate a set of counterfactual worlds from this past time
point using a probabilistic forward model of the system;

(3) Calculate the counterfactual causal effect size by correlating
the ego’s actions with changes in its rewards and actions of
other agents across counterfactuals.

We evaluate CEMA on AD using diverse simulated driving sce-
narios from the literature with expert explanations [1], we show
that CEMA correctly selects causes of the ego’s decisions that are
congruent with the expert explanations, even when a large number
of agents are present. We show that CEMA is robust to changes in
the number of counterfactual simulations and the accuracy of the
predictive forward model. We also perform a user study to measure
the perceived quality and effects of CEMA’s explanations on people.
First, we collect a set of high-quality human-written explanations
as our baseline. We then show that CEMA’s explanations are rated
on average at least as high as this baseline while positively affecting
participants’ trust in AD. In summary, our contributions are:1

• CEMA: a framework to generate intelligible causal explana-
tions of the decisions of an ego agent in dynamic multi-agent
systems based on the Counterfactual Effect Size Model [33];
• Evaluation of CEMA on motion planning for AD, showing
its ability to robustly identify correct causes even when a
large number of agents are present;
• HEADD: a dataset of Human Explanations for Autonomous
Driving Decisions consisting of human-written explanations
with aminimumof 5 unique annotations regarding the causal
content and trustworthiness of the explanations [15];
• User study showing CEMA’s explanations are ranked at
least as high as human explanations and a positive effect of
CEMA’s explanations on trust in AD.

2 BACKGROUND AND RELATEDWORK
Causality is a cornerstone of useful human-centric explanations. A
common approach for causal selection is to first model the system
in the form of a structural causal model (SCM) [31], but this has
some drawbacks for complex and dynamically evolving systems.
1CEMA available at: https://github.com/uoe-agents/cema
HEADD available at: https://datashare.ed.ac.uk/handle/10283/8714

First, it is challenging to model all causal factors in the system, such
as the state, action, or reward influences, while keeping the SCM
interpretable and useful for end users. Second, the SCMmay grow to
intractable sizes depending on the desired coverage of causal factors
and the complexity of the system. Third, due to the temporal and
non-stationary nature of dynamic systems, an SCM may frequently
need to be recomputed to adapt to changes. Thus, existing work
has applied SCMs only in simpler single-agent systems where, e.g.,
the agent is trained with a specific algorithm [27, 29].

In addition, AI models have grown complex enough that gen-
erating explanations by “opening the black box”, i.e., relying on
an understanding of the intrinsic causal properties of the trained
model, is often infeasible [40]. Instead, we can rely on the counter-
factual model of causation, which is a well-understood formulation
of causation in philosophical literature [19, 24]. Counterfactual
cases uncover causes in relation to the factual case by highlighting
events whose absence resulted in the counterfactual case rather
than the factual case. Implementing the counterfactual model of
causation for complex multi-agent systems is challenging in prac-
tice. We rely on Quillien and Lucas [33]’s Counterfactual Effect
Size Model which is an empirically validated model to operational-
ize causal selection based on two assumptions about how humans
themselves might select causes for explanations. First, people cogni-
tively simulate counterfactual worlds by sampling from a distribu-
tion over possible alternative worlds that are grounded in, i.e., not
too different from the factual world. Second, people approximate
causal effect sizes by correlating variables (i.e., potential causes) in
the world with the presence of an outcome across counterfactual
simulations. This means that if we have a probabilistic model for
forward-simulating a multi-agent system then we can rank and
select the most important causes behind the ego agent’s actions by
simulating counterfactuals.

Furthermore, how a cause is used for the explanation determines
its explanatory mode. We consider Aristotle’s system as it stood the
test of time and is still frequently used in the modern discourse of
philosophy of explanations [26]. Aristotle argued for four modes:
mechanistic, teleological, material, and formal [16]. The mechanis-
tic mode gives an explanation describing the mechanisms of the
cause of a change, while the teleological mode explains to what
end or goal a change has occurred. For example in Figure 1, “other
vehicle slowing down” is a mechanistic cause while “reaching goal
faster” is a teleological cause behind the decision of the blue au-
tonomous vehicle to change lanes. The material and formal modes
stay constant in the systems we study, so we do not consider them.

An increasing body of literature studies the generation of expla-
nations for sequential decision-making. However, most methods
focus on deterministic planning in well-defined domains [9]. Prior
work in explainable reinforcement learning does address single and
multi-agent settings in dynamic systems [32], but causal methods
are sparser. Madumal et al. [27] is the first to take a causal approach
by building an SCM for the action-influence of agents in model-free
RL, while Nashed et al. [29] generates explanation by mapping the
algorithmic process of solving a Markov Decision Process into an
SCM. Others use surrogate interpretable representations of agents’
policies with, e.g., decision trees [36] and programs [39]. We are
not aware of methods for social XAI in multi-agent systems.
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We use AD for evaluation, where probabilistic models for for-
ward simulating the system are widely available [5]. Goal recogni-
tion methods predict other agents’ future states [6, 7], while motion
planning generates optimal behavior for agents [1, 17]. Social XAI
also received some attention in AD. For example, Zhang et al. [42]
found that explanations in terms of purely high-level tactical causes
(e.g., lane change, turn) had little effect on drivers’ trust, therefore,
more fine-grained insights are required, e.g., in terms of relative
position or acceleration. However, prior methods for social XAI in
AD do not consider the sequential nature of decision-making [30],
rely on a complex neural model which is impossible to certify for
safety [23], or only provide high-level explanations [14].

3 CEMA: CAUSAL EXPLANATIONS IN
MULTI-AGENT SYSTEMS

We assume that CEMA functions in goal-based sequential multi-
agent systems with partial observability, and follow the system
definition of Albrecht et al. [1]. Let I be the set of indexed agents
in the environment. At timestep 𝑡 ∈ N, each agent 𝑖 ∈ I is in
local state 𝑠𝑖𝑡 ∈ S𝑖 and receives a local observation 𝑜𝑖𝑡 ∈ O𝑖 that
probabilistically depends on 𝑠𝑖𝑡 through 𝑝 (𝑜𝑖𝑡 | 𝑠𝑖𝑡 ). In addition, agent
𝑖 selects an action 𝑎𝑖𝑡 ∈ A𝑖 in reaction to observations through
𝑝 (𝑎𝑖𝑡 | 𝑜𝑖1:𝑡 ), where the notation𝑜

𝑖
𝑎:𝑏 denotes a tuple for the sequence

(𝑜𝑖𝑎, . . . , 𝑜𝑖𝑏 ). The joint state of all agents is denoted 𝑠𝑡 ∈ S where
S = ×𝑖S𝑖 and similarly for 𝑜𝑡 ∈ O and 𝑎𝑡 ∈ A. Further, we assume
that agent 𝑖 is aiming to reach a goal𝐺𝑖 ⊂ S𝑖 defined as any partial
local state description, such as destination coordinates. The goal
𝐺𝑖 may not be observable to other agents. If a state sequence 𝑠1:𝑡
achieves 𝐺𝑖 for agent 𝑖 , it receives reward 𝑅𝑖 (𝑠1:𝑡 ) ∈ R𝑑 which is a
𝑑-dimensional vector of reward values where each element in 𝑅𝑖
is indexed by a label from a set R of reward components, such as
the time taken to reach the destination. We define the problem of
explaining the actions of a particular ego agent 𝜀 ∈ I as creating
the explanatory function 𝑓 : (O𝜀 )∗ × (A𝜀 )∗ → H that maps a
sequence of local observations and actions to an explanation from
a set of possible explanations H . For example, one could define
H ⊂ A∗, so that an explanation is a partial sequence of actions. We
use 𝑠𝑎:𝑏 to indicate that the sequence may contain counterfactual
states. We write 𝑠𝑥 :𝑦 ≺ 𝑠𝑎:𝑏 if 𝑠𝑥 :𝑦 is a subsequence of 𝑠𝑎:𝑏 .

We also assume the existence of a probabilistic model that can be
used to stochastically forward simulate the system. These are read-
ily available in existing multi-agent literature, for example, in the
form of planners or trained reinforcement learning policies [2, 21].
Such probabilistic models define a conditional probability distribu-
tion over subsequent joint states of the system given previous obser-
vations and actions. We denote this model with 𝑝 (𝑆𝑡+1:𝑛 | 𝑜𝜀1:𝑡 , 𝑎

𝜀
1:𝑡 ),

where 𝑛 is the last timestep. In the case when the local state is
fully observable to the ego agent (such as in our evaluation), this
model can be replaced with 𝑝 (𝑆𝑡+1:𝑛 | 𝑠𝜀1:𝑡 , 𝑎

𝜀
1:𝑡 ), dropping 𝑎

𝜀
1:𝑡 for

notational simplicity. Note, that the goals of other agents remain
unobservable even under this assumption.

3.1 Social XAI Framework
The process of CEMA (Figure 2) begins with the user asking a ques-
tion about an ego agent 𝜀 and an action they would like explained.

Counterfactual 
Worlds

Causal 
Attributions

Probabilistic 
Model

Sample

Calculate

Observations

Rollback

Query Filter

Explanatory 
Features

Select 
& Rank

EnvironmentHuman-Agent Interface

Counterfactual Causal Selection

Cnt.factual Worlds

Cnt.factual Causal 
Effect Size

Probabilistic Model Simulate

Calculate

Observations

Rollback

Query Filter

FeaturesRank

EnvironmentHuman-Agent Interface

Counterfactual Causal Selection

Figure 2: First, irrelevant observations are filtered out based
on the query. Second, CEMA rolls back the filtered obser-
vations to a previous timestep so that the queried action is
erased. From then, CEMA simulates counterfactual worlds to
calculate the counterfactual causal effect size for the queried
actions, which are used to rank the features of the system.

The question is parsed by an external human-agent interface into a
machine-readable query, denoted 𝑞, encoding a description of the
state sequence 𝑠𝑢:𝑣 that corresponds to the ego’s queried action.
Here,𝑢 is the start timestep and 𝑣 is the final timestep of the queried
action. Irrelevant states may be then filtered out from the observed
states 𝑠1:𝑡 based on 𝑠𝑢:𝑣 . For example, if 𝑠𝑢:𝑣 refers to an action in the
past (𝑣 < 𝑡 ), then we can ignore states after timestep 𝑣 . The queried
action 𝑠𝑢:𝑣 need not be a subsequence of 𝑠1:𝑡 , instead it can also be a
hypothetical sequence that appears, e.g., in a counterfactual world.
This allows the user to ask contrastive questions, for example of the
form “Why did you not do Y instead of X?” The filtered observations
and the query are then passed to the counterfactual causal selection
module discussed in detail in Section 3.2.

As the focus of CEMA is to generate intelligible explanations for
end users, in this framework explanations are composed from a set
of features F which describe semantically meaningful properties of
a state and/or action sequence. For discreet S andA with inherent
interpretations, the set of features might simply equal S ∪ A. For
continuous spaces, such as in AD, F might include a discretized
summary of actions, such as average acceleration or distance to
the leading vehicle. The set of reward components R ⊂ F are
also considered features. For example in autonomous driving, these
might be time to destination or presence of collisions. CEMA does
not assume anything about the actual meaning or properties of
features except that there is some feature function𝜙 : S∗×A∗ → F
converting a state and action sequence to features. Given the above,
for CEMA we define the set of all explanations asH = (F × R)∗,
so that the output of the counterfactual causal selection process is a
subset of features F with corresponding ranking by counterfactual
causal effect size. Finally, the explanation is converted into an NLE
and returned to the user via the human-agent interface.

3.2 Counterfactual Causal Selection
The counterfactual causal selection process has three main steps.
First, it rolls back time before the start timestep 𝑢 of the queried ac-
tion, erasing the queried action (Algorithm 1). Second, this rollback
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Algorithm 1 Counterfactual dataset simulation
Input: Parsed query 𝑞; observed joint state sequence 𝑠1:𝑡 .
Output: Counterfactual dataset D = {(𝑠 (𝑘 )

𝜏+1:𝑛, 𝑦
(𝑘 ) , 𝑟 (𝑘 ) )}𝐾

𝑘=1.
1: D ← ∅.
2: 𝜏 ← Determine from 𝑠1:𝑡 assuring that 𝑞.𝑠𝑢:𝑣 is erased.
3: for 𝐾 iterations do
4: Get 𝑠𝜏+1:𝑛 ∼ 𝑝 (𝑆𝜏+1:𝑛 | 𝑠1:𝜏 ) via forward simulation.
5: Determine reward for ego 𝑟 ← 𝑅𝜀 (𝑠𝜏+1:𝑛).
6: Presence of query 𝑦 ← 1 if 𝑞.𝑠𝑢:𝑣 ≺ 𝑠𝜏+1:𝑛 else 0.
7: D ← D ∪ {(𝑠𝜏+1:𝑛, 𝑦, 𝑟 )}.
8: end for

Algorithm 2 Calculate counterfactual causal effect size
Input: Counterfactual dataset D.
Output: Mechanistic (F𝑚) or teleological (R𝑡 ) explanation.
Mechanistic explanation
1: F𝑚 ← [].
2: for interval end-point 𝑝 𝑗 ∈ 𝑃 do
3: D𝑗 ← Slice 𝑠 (𝑘 )

𝜏+1:𝑛 ∈ D from 𝑝 𝑗−1 to 𝑝 𝑗 giving 𝑠
(𝑘 )
𝑝 𝑗−1:𝑝 𝑗 .

4: X,Y ← convertD𝑗 to features𝜙 (𝑠 (𝑘 )𝑝 𝑗−1:𝑝 𝑗 ) and targets𝑦
(𝑘 ) .

5: M ← Fit an interpretable classifier to X predicting Y.
6: 𝑤, 𝐼 ← Feature importance attributions𝑤 ofM indexed in

descending order by 𝐼 .
7: Append F𝑚

𝑗
= {(F𝑖 ,𝑤𝑖 ) | 𝑖 ∈ 𝐼 } to F𝑚 .

8: end for
Teleological explanation
9: X ← Filter D by 𝑦 (𝑘 ) = 1 for match with query.
10: Y ← D \ X, all samples not matching the query.
11: 𝑤, 𝐼 ← EX [𝑟 ] − EY [𝑟 ] indexed by 𝐼 in absolute desc. order.
12: R𝑡 ← {(R𝑖 ,𝑤𝑖 ) | 𝑖 ∈ 𝐼 }.

allows CEMA to simulate counterfactual alternatives to the queried
action (Algorithm 1). Third, the counterfactual simulations inform
us about which features of the system are most important for the
queried action to occur and we use this information to calculate the
counterfactual causal effect size for both the teleological and the
mechanistic explanatory mode presented in Section 2 (Algorithm 2).

Algorithm 1 starts by rolling back the joint state sequence 𝑠1:𝑡
to a timestep 𝜏 , such that 𝜏 ≤ 𝑢, resulting in a truncated sequence
𝑠1:𝜏 that assures that the queried action 𝑠𝑢:𝑣 is erased from 𝑠1:𝑡 . The
value of 𝜏 can be a fixed distance from 𝑢 or it can be determined to,
for example, correspond to the start of a distinct qualitative change
in the ego’s behavior prior to 𝑢. The algorithm then performs 𝐾
number of forward simulations of the system from time 𝜏 according
to the probabilistic model 𝑝 (𝑆𝜏+1:𝑛 | 𝑠1:𝜏 ). For each simulation, we
obtain a sequence of future joint states of the system denoted 𝑠𝜏+1:𝑛 ,
determine the reward 𝑟 ∈ R𝑑 for the ego, and whether the queried
action 𝑠𝑢:𝑣 of the ego was present in the simulation (𝑦 ∈ {0, 1}).
This process gives a dataset of simulations denoted D.

Algorithm 2 has two parts, one for each mode of explanation.
Mechanistic explanations are formulated in terms of the actions

of other agents in the neighborhood of the ego vehicle. Actions
of the other agents can have different causal effects on the ego at
different times, so we first increase the granularity of explanations

by cutting sequences into |𝑃 | slices defined by their end-points 𝑃 =

(𝑝1, . . . , 𝑝 |𝑃 | ) with 𝑝0 = 𝜏 + 1 assumed implicitly. Each slice is then
converted to a set of features using the feature function𝜙 . Following
Quillien and Lucas [33], features that co-occur more frequently with
the queried action across counterfactuals should be ranked higher
as a salient cause by humans. Therefore, for each slice 𝑝 𝑗 ∈ 𝑃 of a
counterfactual simulation, Algorithm 2measures the counterfactual
causal effect size of features on the presence of the queried action
𝑦 by correlating features with the presence of the action across
the simulated counterfactuals. For this, an interpretable classifier
M (e.g., logistic regression) is used to predict the presence of the
queried action 𝑦 from the features. The counterfactual causal effect
sizes are given by importance attributions for features fromM,
giving a mechanistic selection and ranking of features F𝑚

𝑗
∈ H .

Teleological explanations are formulated in terms of the intrinsic
reward components of the ego agent. For this explanatory mode,
the counterfactual simulations inform us how the rewards of the
ego, as measured by the reward vector 𝑟 ∈ R𝑑 , change depending
on the presence 𝑦 of the queried action of the ego. For binary 𝑦, this
means that Algorithm 2 splits D into two disjoint sets: one where
the queried action was observed (𝑦 = 1) and one where it was not
(𝑦 = 0). Following the average treatment effect for randomized
controlled trials [4] we take the difference between the expected
reward vectors of each set, then order the elements of the difference
decreasingly by absolute value, giving a teleological ordering of
reward components R𝑡 ∈ H by the causal effect of 𝑦.

4 APPLICATION TO MOTION PLANNING
We give a full demonstration of CEMA’s capabilities by applying it
to the problem of motion planning for AD which is a challenging
reasoning task due to the tightly coupled interactions of many
agents in a dynamically evolving system [35]. Specifically, we use
CEMA to automatically explain the decisions of the Interpretable
Goal-based Prediction and Planning (IGP2) system for AD [1]. We
give a summary of IGP2 to the extent necessary for the following
sections, but for full details please refer to the original paper.

The local state 𝑠𝑖 of a vehicle 𝑖 contains its pose (position and
heading), velocity, and acceleration A sequence of temporally adja-
cent local states is called a trajectory. Local observation 𝑜𝑖 contain
the local states of nearby traffic participants. Actions𝑎𝑖 set low-level
controls such as acceleration and steering, while goals𝐺𝑖 are spatial
destinations. Reward components R are longitudinal and lateral
acceleration, presence of collisions, time to reach a destination, and
goal completion. IGP2 uses a hierarchy of systems rather than an
end-to-end architecture. It defines a set of action sequence templates
called maneuvers with dynamically generated trajectories for vehi-
cles to follow, including lane-follow, lane-change-{left,right},
turn-{left,right}, give-way, and stop. Common sequences of
maneuvers are then further chained into high-level macro actions:
Continue, Change-{Left,Right}, Exit, and Stop.

IGP2 uses macro actions to predict for each non-ego vehicle 𝑖 a
joint distribution over possible goals and future trajectories given
the observed joint local states 𝑠1:𝑡 . Monte Carlo Tree Search (MCTS)
is then used to forward simulate the world and obtain driving
trajectories for the ego vehicle. In every MCTS simulation, the
previously predicted joint goal and trajectory distribution is used to
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Table 1: Binary features F to describe the fundamental mo-
tions and high-level actions of vehicles (including ego). For
continuous values, the mean value is calculated along the
length of the trajectory and thresholded with small value 𝛿 .

Feature Calculation Explanation

Acceleration 𝑎𝑖 > 𝛿𝑎 Accelerate
𝑎𝑖 < −𝛿𝑎 Decelerate
𝑎𝑖 ∈ [−𝛿𝑎, 𝛿𝑎] Maintain velocity

Relative 𝑣𝑖 − 𝑣𝜀 > 𝛿𝑣 Faster than ego
speed 𝑣𝑖 − 𝑣𝜀 < −𝛿𝑣 Slower than ego

𝑣𝑖 − 𝑣𝜀 ∈ [−𝛿𝑣, 𝛿𝑣] Same speed as ego
Stop 𝑣𝑖 ∈ [0, 𝛿𝑠 ] Does it stop
Maneuver One-hot encode Longest maneuver
Macro Action One-hot encode Longest macro action

randomly sample a goal and corresponding trajectory for each non-
ego vehicle. MCTS generates a trajectory for the ego in a simulation
by sequentially choosing macro actions based on backpropagated
preference values (i.e., Q-values) until the ego reaches its goal.

4.1 Implementing CEMA
We define our set of features F in Table 1, which were chosen to
describe both fundamental motions and high-level maneuvers of all
vehicles including the ego. Features average along the length of the
trajectory and may encounter the issue that at one timestep they
have a positive causal effect, while at a later timestep, they have a
negative causal effect, resulting in aggregate zero causal effect. The
slicing operation in Algorithm 2 assures that this issue is avoided.

To focus on causal selection and avoid the ambiguities of natural
language, we hand-code each query 𝑞 to contain a description of
the queried subsequence 𝑠𝑢:𝑣 given as a subset of features from F .
For natural language generation, we use a deterministic realization
engine called SimpleNLG [12], which generates a grammatically
correct English sentence from a content specification, e.g., subject
and verb. This a better fit than neural generation algorithms, due
to a lack of annotated data and hallucinations in neural models.

Since IGP2 can assign to some (reachable) goals and trajectories
near-zero probabilities, we use additive smoothing – detailed in
Appendix A.3 – with parameter 𝛼 to make sure every goal and tra-
jectory can be sampled for the non-ego vehicles. We then generate
two datasets with Algorithm 1. For teleological explanations, we
set 𝜏 = 𝑢, rolling back time just before the queried action of the
ego. This is because teleological explanations are determined by
the MCTS reward components which only depend on the ego’s
present and future actions. For mechanistic explanations, we set
𝜏 to the start time of the last action prior to 𝑢, erasing both the
queried action of the ego and the action that came before it. For
slicing the trajectories in Algorithm 2, we set 𝑃 ← (𝑢, 𝑛) which
slices the trajectory 𝑠𝜏+1:𝑛 into a past 𝑠𝜏+1:𝑢 and present-future 𝑠𝑢:𝑛
subsequence in reference to the start of the ego’s queried action.

We use feature weights from logistic regression with K-fold
cross-validation to determine feature importance values. We found

logistic regression to work best as it is simple, inherently inter-
pretable, and all features are binary so their scale does not affect
the importance values.

5 COMPUTATIONAL EVALUATION
We evaluate CEMA on the four scenarios (S1–S4) used by Albrecht
et al. [1]. The scenarios are shown in Figure 3 with expert explana-
tions of the ego’s behavior by Albrecht et al. [1] In line with our
focus on social XAI, we test CEMA on many user queries regard-
ing different ego agents and behaviors, and the generated outputs
of CEMA are presented through five simulated conversations (Ta-
ble 2), highlighting CEMA’s ability to correctly identify the causes
behind each queried action. For all queries, we simulate 𝐾 = 100
counterfactual worlds with a smoothing weight 𝛼 = 0.1. Further
details about the experimental setup are given in Appendix B. We
focus on S1 for presentation, but all results are confirmed across all
scenarios and all presented in Appendix C. We show that:

(1) CEMA correctly finds and ranks the relevant causes of the
ego’s actions that are congruent with expert explanations;

(2) It correctly identifies the relevant causes even in the presence
of a large number of agents;

(3) The causal selection process is robust to changes in the sam-
pling size 𝐾 and the accuracy of the probabilistic model.

5.1 Correctness of Causal Selection
As shown in Table 2, CEMA correctly selects causes which are
congruent with the expert explanations of Albrecht et al. [1].

In conversation S1-A, the causes behind the factual lane change
of the ego are queried. The top plot in Figure 4 shows that CEMA
correctly finds that a decrease in time-to-goal is the most significant
teleological cause. As the bottom plot in Figure 4 shows, CEMA
correctly identifies that the non-ego slowing down is a mechanistic
cause of the ego’s lane change. CEMA also determines that this
slowing down is due to the non-ego vehicle decelerating in order
to turn right. The middle plot of Figure 4 confirms that the initially
faster non-ego vehicle cutting in front of the ego is also a mecha-
nistic cause of the ego’s lane change. This shows the importance
of slicing the trajectories into segments as CEMA produces more
fine-grained causes that focus on action in a particular time interval.

In conversations S1-B to S4, we also see that CEMA correctly
identifies causes for contrastive questions – for example, “Why
aren’t you going straight?” – in which the user asks about an alter-
native action (i.e., foil) that the ego could have done as opposed to
the factual observed actions (i.e., fact). Leveraging the counterfac-
tual simulations, CEMA contrasts the simulations containing the
foil to simulations containing the fact and derives the appropriate
teleological causes. CEMA delivers consistent explanations even
when queries target the same action but are phrased differently.
For example, “Why will you change lanes?” is a direct question,
while “Why aren’t you going straight?” is contrastive, yet they both
refer to the same changing lane action of the ego and CEMA finds
consistent causes for both queries. In S4, CEMA correctly finds that
the stopping of non-ego 3 is the most relevant cause behind the
ego’s early merging behavior and it also finds other intuitive causes.
For example, the vehicle at the front of the waiting line of cars is
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(S1) The non-ego in front of the
ego changes lanes and begins to
slow down. This is indicative of its
intention to turn right at the junc-
tion. To avoid being slowed down,
the ego decides to change lanes as
it is heading straight.

(S2) The ego is turning right but
must give way. It observes the ve-
hicle on the left stopping. This is
only rational if it is trying to turn
left and is giving way for the on-
coming vehicle. The ego can use
this to enter the road earlier.

(S3) The ego observes the non-ego
changing lanes to the right. This is
only rational if the non-ego is leav-
ing the roundabout at the next exit.
The ego can therefore enter the
roundabout faster without waiting
to give way.

(S4) Non-ego 3 is slowing down to
stop. Once non-ego 4 drives past as
indicated by its maintained high
speed, the stopping of non-ego 3
stays rational only if it is to allow
the ego to merge without waiting
for non-ego 4 to pass.

Figure 3: The four scenarios used for evaluation based on Albrecht et al. [1]. Colored circles are goals. Solid lines are predicted
trajectories of non-egos with thickness corresponding to predicted probability. Black dotted lines are observations.

stopped. Would this vehicle move, the waiting line of cars would
begin moving and non-ego 3 could not allow the ego to merge.

CEMA can also correctly find the relevant causes even when a
large number of agents are present. For this, we greatly increase the
number of agents in all scenarios and rerun CEMA. For example,
we extend S1, adding two extra lanes to the east-west road and
increasing the number of agents to 20. This gave 180 features, most
of which had no causal influence on the ego, but CEMA could still
identify the most important causes as in the original scenario.

5.2 Robustness of Causal Selection
We demonstrate robustness to changes in (a) the sampling size 𝐾 ,
and (b) in the accuracy of the probabilistic simulation model, to
show that correct explanations are generated even when sampling
is limited by resources and that our systemworks with prediction al-
gorithms of varying performance. For size robustness, we randomly
sample a dataset of 𝐾 ∈ {5, 10, . . . , 100} sequences 50 times and
calculate the causal attributions for each dataset. For robustness, we
interpolate between the true predicted and uniformly distributed
behaviors by increasing the smoothing strength 𝛼 on a log scale.

The top plot in Figure 5 shows the evolution of causal attributions
as we increase 𝐾 in S1. We see that CEMA becomes increasingly
confident in its attributions as 𝐾 increases, while confidence inter-
vals remain tight. Even with few samples, CEMA identifies causes
correctly. The bottom plot of Figure 5 shows how causal attributions
change as 𝛼 increases which corresponds to increasing uncertainty
in behavior predictions. We see that feature importance values are
little affected by changes in the sample distributions as they fluctu-
ate around the same values. Similar patterns are observed across
scenarios, which demonstrates that CEMA is robust to changes in
both the sampling size and the accuracy of external predictions.

6 USER STUDY
So far, we have focused on the technical details of CEMA. Ultimately,
however, the primary target of CEMA is non-expert end users, so
we must evaluate the quality of CEMA’s explanations and their

various effects on humans with actual participants via a user study.
We aim to answer the following research questions:

(1) How do people perceive the quality of CEMA’s explanations
as compared to a human baseline?

(2) What are the effects of CEMA’s explanations on people’s
trust in autonomous vehicles?

We used Prolific to recruit participants from the USA whose
first language is English. As most people have not had first-hand
experience with autonomous vehicles (AV), we engaged them via
animated videos of the scenarios. We design two surveys and sum-
marize our methodology below with full details in Appendix D.

In the first survey (N=54; Male=25, Female=29), participants were
asked to describe and explain in their ownwords the behavior of the
AV in all four scenarios. This gave 408 explanations across scenar-
ios, of which we excluded 26 vacuous responses (e.g., “I don’t know",
“None", etc.), and annotated the remaining explanations with a differ-
ent set of participants regarding their causal content, overall quality
and complexity, and trustworthiness. We release an extended ver-
sion of this annotated dataset of natural language explanations,
called the Human Explanations for Autonomous Driving Decisions
(HEADD) dataset, containing 14 scenarios with several agents and
environmental elements, including occlusions, pedestrians, and
1308 explanations. We collected explanations as we are not aware
of any reproducible and publicly available methods for AD that
would allow for a meaningful comparison to CEMA’s explanations.2
Comparing against a human baseline is also a better fit for CEMA as
its explanations are intended to have low cognitive overhead and be
easy to understand. In contrast, more complex expert explanations
would likely be less effective for end users [11].

In the second survey (N=200; M=99, F=101), we designed two
tasks, one for each research question. First, to measure the quality
of explanations, we asked participants to rate a random sample
of 10 explanations from a set of 30 explanations (5 from CEMA
and 25 from HEADD with the highest quality ratings) for each
scenario on a 5-point Likert scale. With 50% chance, we highlighted

2We explored ChatGPT as a baseline, but it was inadequate as its responses were very
inconsistent and only sometimes correct (see Appendix D.4 for details).
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Table 2: Actual responses of CEMA to queries (in italic). (S1-
A) The passenger sees on an onboard display, that the ego is
planning to change to the left lane. They find this unexpected
and inquire. (S1-B) The passenger observes the ego changing
lanes and asks for the reasons behind the maneuver while
it is ongoing. (S2) The passenger observed that the ego had
entered the junction without stopping to give way, which
could be dangerous. (S3) The passenger sees that the ego
will turn right at the roundabout without stopping despite
the oncoming vehicle. (S4) Once non-ego 4 has passed, the
ego merges onto the main road which makes the passenger
wonder why the ego did not give way to non-ego 3.

Scenario 1 (S1-A) Scenario 1 (S1-B)

Why will you change lanes?
It will decrease the time to goal.
Why does it decrease the time to
the goal?
Because vehicle 1 will be slower
than us.
Why will it be slower?
It will decelerate and turn right.
What if it hadn’t changed lanes
before?
We would’ve gone straight.

Why aren’t you going straight?
It would increase the time to
the goal.
Why is it slower to go straight?
Because vehicle 1 is slowing
down.
Any other reasons?
It is slower than us.
What will you do after this?
We will go straight and accel-
erate.

Scenario 2 (S2) Scenario 3 (S3)

Why did you not stop to give
way?
It would’ve increased the time
to the goal.
Couldn’t it have caused a colli-
sion?
A collision would not have oc-
curred.
How did you know?
Vehicle 1 was turning left and
stopped.
What if it went straight?
We would’ve given way and
slowed down.

What will you do at the round-
about?
We will turn right and acceler-
ate.
Would not stopping lead to a
collision?
Not stopping doesn’t cause
a collision, but stopping in-
creases the time to reach the
goal.
How do you know we won’t col-
lide with the oncoming car?
It has been changing lanes
right and is turning right.

Scenario 4 (S4)

Why are you not stopping to give way?
Stopping and giving way would increase our time to reach
the goal.
Is it safe to turn left early?
Accelerating and turning left does not cause a collision.
Why not?
Because vehicle 3 stops.
What if vehicle 3 went straight?
We would slow down and give way.

in bold the explanations from CEMA. Second, to measure trust,
we use the 9 trust scales proposed by Hoffman et al. [20] adapted
to the AD domain. We use a between-subjects design: half the
participants are shown the trust scales prior to ranking explanations,
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Figure 4: [Top] Signed differences between expected reward
components correctly identify time-to-goal as the most sig-
nificant teleological cause. [Mid/Bot] Feature importance
attributions for the slice before and during/after the queried
subsequence correctly rank mechanistic causes. Violin plots
show 5-fold cross-validation repeated 7 times.

and the other half after having ranked explanations. We also asked
participants about their driving experience and previous exposure
to AVs using the SAE automation scale [34]. We hypothesize that
H1: the explanations generated by CEMA are scored on average as
highly as the human baseline explanations; H2 participants who
saw explanations from CEMA have on average higher levels of
trust than those who have not. We analyze our data by fitting linear
mixed-effects models for each hypothesis. We report the estimated
means (𝛽) and standard errors (𝜎) for each variable and use the
Wald test [41] to determine whether the effects of a variable are
statistically significant on the outcome.

For H1, we found that CEMA’s explanations were rated signifi-
cantly higher when its explanations were not highlighted and were
not significantly worse when they were highlighted. On average,
explanation ratings (𝛽0=3.31, 𝜎=0.08) were marginally lower for
human-written explanations (𝛽=−0.16, 𝜎=0.08, 𝑝=0.21), and ratings
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Figure 5: Changes to causal attributions with [Top] differ-
ent sample sizes and [Bot] different smoothing weights
for present-future mechanistic causes in conversation S1-
A. Shaded regions are bootstrapped 95% confidence intervals.

were significantly lower for human explanations when CEMA’s
explanations were not highlighted to participants (𝛽=−0.22, 𝜎=0.08,
𝑝 < 0.05). Variations across scenarios were negligible (𝑆𝐷=0.07).
We also found that people tend to rank CEMA’s explanations higher
when they had exposure to AVs previously (𝛽=0.1, 𝜎=0.06, 𝑝 = 0.09).

For H2, we found that, on average, participants’ trust ratings
(𝛽0=1.53, 𝜎=0.5) were significantly higher after seeing explanations
(𝛽=0.11, 𝜎=0.05, 𝑝 < 0.05), which aligns with expectations from
literature [30]. Participants’ trust also increased significantly when
they rated CEMA’s explanations higher (𝛽=0.35, 𝜎=0.15, 𝑝 ≈ 0) or
when they had previous exposure to AVs (𝛽=0.33,𝜎=0.05, 𝑝 ≈ 0), but
trust remained largely unchanged by human explanations (𝛽=0.12,
𝜎=0.15, 𝑝=0.85). Trust ratings were not significantly affected by
whether CEMA’s explanations were highlighted (𝛽=0.02, 𝜎=0.05,
𝑝 = 0.66) and there were no significant interaction effects between
the average ratings of explanations and highlighting (𝛽=−0.04,
𝜎=0.04, 𝑝 = 0.36). The estimated trust levels varied across the
9 trust scales (𝑆𝐷=0.53) but not the observed tendencies. Our re-
sults suggest that people who had some exposure to AVs or had a
preference for CEMA’s explanations were more likely to trust AVs
in general, regardless of whether they knew which explanations
came from CEMA. Taken together with the result for H1, this sug-
gests that CEMA’s explanations may be more effective at improving
people’s trust in AVs than non-expert human explanations.

7 DISCUSSION AND FUTUREWORK
Our primary goal with CEMA is to advance the field of social XAI
applied to dynamic multi-agent systems. A crucial component of
intelligible explanations is the use of semantically meaningful fea-
tures [11]. Importantly, the challenge of designing useful features is

not unique to CEMAbut is a necessary step for any automated expla-
nation generation system in social XAI. With CEMA, we assumed
that there is a feature function 𝜙 which performs the translation
from the raw representations of state and action spaces to the more
abstract semantic feature space. This translation from state to fea-
ture space is domain-dependent and should be considered a crucial
step during the deployment of social XAI systems. However, CEMA
is feature-agnostic so that counterfactual causal selection does not
depend on 𝜙 or the interpretations of features.

CEMA also does not rely on a fixed causal graph to model dy-
namic multi-agent systems. Instead, it assumes that there is a prob-
abilistic model, such as a stochastic planner, trained joint policy, or
autoregressive model trained on observational data, which can be
used to forward simulate the state of the system. Based on the work
of Quillien and Lucas [33] and the counterfactual model of causa-
tion [19, 24], CEMA can derive causes to an ego agent’s actions in
any system where such a model is obtainable. The assumption here
is that these models cover alternatives that are grounded in fac-
tual observations with a non-zero probability, and any reasonably
expressive algorithm would fulfill these criteria.

The user study suggests that people may prefer explanations
generated by CEMA, however, trust levels are still low. This may be
– as several participants indicated in their feedback – because people
prefer to see agents act more conservatively, without exploiting po-
tentially riskier but more efficient actions. Explanations that justify
efficient but less safe decisions then have to overcome the inherent
wariness of people, which was indeed high among participants,
though it somewhat decreased after seeing explanations.

We designed CEMA to be used in conversations with users, but
we did not focus on natural language processing in this work. For ex-
ample, we assume that queries unambiguously describe the timing
of actions – allowing us to focus on causal selection – but actual nat-
ural language queries are fuzzy and imprecise. By building modern
NLP components, we can strengthen the social and conversational
aspects of CEMA. Future work will involve the integration of lan-
guage parsing [25] and dialogue systems [10] leveraging modern
neural language models to deliver explanations.

Our implementation of CEMA for AD improves on existing
social XAI methods for AD in several aspects. In contrast to Omeiza
et al. [30], we avoid using a surrogate model and generate causal
explanations that take the temporal nature of driving into account.
Compared to Gyevnar et al. [14], CEMA supports multiple modes
of explanations with both high-level and low-level features.

To conclude, our goal is to address some of the transparency-
related social concerns of AI. CEMA fills a gap in social XAI by
enabling causal explanation generation in dynamic sequential multi-
agent systems. As we expect to see autonomous agents proliferate
in everyday environments, social explanations will be crucial for
building user trust and for the acceptance of new technologies.
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