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ABSTRACT
Bounded rationality in mechanism design aims to ensure incentive-

compatibility for agents who are cognitively limited. These agents

lack the contingent reasoning skills that traditional mechanism

design assumes, and depending on how these cognitive limitations

are modelled this alters the class of incentive-compatible mecha-

nisms. In this work we design mechanisms without any “obvious”

manipulations for several auction settings that aim to either max-

imise revenue or minimise the compensation paid to the agents.

A mechanism without obvious manipulations is said to be not ob-
viously manipulable (NOM), and assumes agents act truthfully as

long as the maximum and minimum utilities from doing so are no

worse than the maximum and minimum utilities from lying, with

the extremes taken over all possible actions of the other agents.

We exploit the definition of NOM by introducing the concept of

golden tickets and wooden spoons, which designate bid profiles en-

suring the mechanism’s incentive-compatibility for each agent. We

then characterise these “Willy Wonka” mechanisms, and by care-

fully choosing the golden tickets and wooden spoons we use this

to design revenue-maximising auctions and frugal procurement

auctions.
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1 INTRODUCTION
In algorithmic mechanism design we are tasked with designing

systems that elicit some information from a set of agents in order

to return an outcome from some feasible set. Each agent holds

some piece of private information reflecting the true state of the

world, and agents are assumed to be selfish, meaning that they may

lie about their piece of information (also known as their type) if

it is beneficial to do so. The mechanisms we design must there-

fore be robust against the selfish actions of the agents and care-

fully consider the agents’ incentives. These incentives are mod-

elled by solution concepts. Strategyproofness, otherwise known as
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dominant-strategy incentive-compatibility, is a solution concept

which stipulates that for each agent it is a dominant strategy to

report her true type to the mechanism over any deviation. This

is desirable from a theoretical standpoint since if a mechanism is

strategyproof then it guarantees that regardless of the joint action

profile of the other players an agent will always maximise her utility

by reporting her type truthfully rather than by lying to the mech-

anism. Strategyproofness is a viable solution concept only when

agents are perfectly rational: in order to conclude that acting truth-

fully is indeed optimal an agent must have a detailed knowledge of

the mechanism and correctly reason about all possible states that

may result from her actions by considering the actions of the other

agents. This may place too high a cognitive burden on the agents

to be useful in practical mechanisms.

Bounded rationality has seen growing interest in the mechanism

design literature and considers agents who are cognitively limited.

Li [8] introduced a strengthening of strategyproofness known as

“obvious strategyproofness” which assumes that agents will only tell

the truth if it is obvious to do so. Roughly a mechanism is obviously
strategyproof (OSP) if the minimum utility that an agent can achieve

from telling the truth is no worse than the maximum utility that she

can achieve from reporting her type dishonestly. Troyan and Mor-

rill take a more optimistic approach towards cognitively-limited

agents, motivated by evidence [6, 10] gathered from mechanisms

in practice for school-choice and two-sided matching that agents

in manipulable (i.e., non-strategyproof) mechanisms might fail to

recognise when it is beneficial to lie, and introduce a weaker version

of incentive compatibility for these agents known as “non-obvious

manipulability” [13]. Under this solution concept it is assumed that

agents will only lie if it is obvious, meaning that the maximum (re-

spectively, minimum) utility resulting from a lie is strictly greater

than the maximum (respectively, minimum) utility resulting from

reporting truthfully to the mechanism; otherwise, agents are as-

sumed to report their types truthfully. The extrema of the agents’

utility functions are taken over all possible joint profiles of the other

agents. When a mechanism has no such “obvious manipulations”

then it is said to be not obviously manipulable (NOM).
This definition is motivated by empirical evidence [6, 10] from

school choice and two-sided matching that people facing manipula-

ble (i.e., non-strategyproof) mechanisms fail to recognise when to

lie. Students participating in the Boston Mechanism, for example,

can guarantee a spot at their second-choice school by misreporting

her preferences, whereas hospitals may end up being allocated a

doctor it finds undesirable when attempting to manipulate the De-

ferred Acceptance algorithm. With NOM thus defined they apply it

to a variety of mechanism design settings both with and without

monetary transfers, including school choice, two-sided matching,

auctions, and bilateral trade.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

78

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In revenuemaximisation, we are interested in designing incentive-

compatible mechanisms that also provide guarantees on the profits

that can be extracted from the bidders. To analyse the performance

of a mechanism in a prior-free setting we can compare the revenue

that the mechanism extracts from the bidders against a variety of

benchmarks. For example, the “optimal omniscient benchmark” is

a measure of how much profit the optimal mechanism extracts

from the bidders when it knows the bids in advance, while the

“optimal fixed-price benchmark” measures the revenue that can be

extracted when each bidder is offered the same “take-it-or-leave-it”

price. Other benchmarks reflect, for example, the revenue extracted

by an auction that sets a single price and must sell at least some

number of copies 𝑚 of the item, or the revenue extracted by an

auction that must offer a monotone price vector with respect to the

ordering of the bidders according to their valuation. [7] introduced

the notion of “competitive” auctions, adapted from the analysis of

online algorithms, in the setting of prior-free auctions for digital

goods. An auction is said to be competitive to some benchmark

if on every bid profile the revenue extracted by the mechanism is

within a constant factor of that specified by the benchmark. They

focus on dominant strategy incentive compatibility and show that

no truthful auction in this setting is competitive to even the optimal

fixed-price benchmark, much less the optimal omniscient bench-

mark. To this end, in this paper we study the extent to which we

can design competitive auctions for digital goods and a variety of

other settings by relaxing the strategyproofness requirement to

non-obvious manipulability.

Related Work. Troyan and Morrill [13] introduce non-obvious

manipulability for direct-revelation mechanisms and provide a char-

acterisation, similarly to [8], for such mechanisms as those whose

profitable deviations may be recognised by a cognitively limited

agent that is unable to engage in contingent reasoning. They apply

this to the settings of school choice, two-sided matching, auctions,

and bilateral trade and use their framework to classify mechanisms

in these settings as either obviously manipulable or not obviously

manipulable.

NOM has since been studied in a range of different contexts. Aziz

and Lam [5] look at obvious manipulations in the context of voting

and study the conditions necessary for certain voting rules to be

NOM. They also look at computational issues related to computing

obvious manipulations when they exist, reducing the problem to

that of determining whether there exists a way for a set of voters to

vote, given a set of votes that have already been submitted, in order

to elect a given candidate, yielding a polynmomial-time algorithm

for the 𝑘-approval voting rule. Arribillaga and Bonifacio [4] also

study the non-obvious manipulability of voting rules and restrict

attention to “tops-only” rules, which only consider each agent’s

top preference when selecting an outcome. They first characterise

the rules without obvious manipulations in this general setting,

then restrict attention to two subclasses of these rules known as

median voter schemes and voting-by-committees to provide a more

fine-grained classification of the set of tops-only rule which are

NOM.

Ortega and Segal-Halevi [9] apply non-obvious manipulability to

indirect mechanisms, specifically cake-cutting, and show that, un-

like strategyproofness, NOM is compatible with a notion of fairness

known as proportionality. Psomas and Verma [11] also apply NOM

to the setting of fair division and study deterministic mechanisms

for allocating indivisible goods to agents with additive valuations.

They focus on envy-freeness up to one good (EF1) and show that

while NOM mechanisms exist for maximising social welfare, the

same is not true for maximising egalitarian or Nash welfare. They

also reduce the problem of designing NOM and EF1 mechanisms to

that of designing EF1 algorithms, where the reductions preserve

the efficiency guarantees.

Archbold, de Keijzer, and Ventre [2] study how to design NOM

mechanisms using monetary transfers, providing characterisations

for the class of allocation functions that are implementable in gen-

eral domains, and then by focusing on single-parameter domains

they recover an analogue to the monotonicity condition for alloca-

tion functions that are truthfully implementable. They apply this to

bilateral trade, and while any efficient, individually rational, budget

balanced mechanism was known to be obviously manipulable, this

issue persists even for approximate budget balance. This line of

work is extended in [3] to study the class of allocation functions

implementable with payments as indirect NOM mechanisms. They

prove an analogous result to the revelation principle for single-

parameter agents: for any allocation function implementable by an

indirect mechanism there is an equivalent direct mechanism that

implements it.

Our Contribution. In this paper we study the extent to which

it is possible to design NOM mechanisms that perform well for

revenuemaximisation and frugal procurement. In the former setting

we wish to allocate goods to the agents with the aim of maximising

the social welfare as well as the revenue extracted from the bidders.

In the latter we instead allocate chores and must compensate the

bidders for being selected, and we wish to design an incentive-

compatible mechanism while minimising the sum of payments

made to the bidders.

Startingwith goods auctions inwhich agents are single-parameter

we identify two necessary and sufficient conditions for mechanisms

to be NOM in this context. These conditions state that for each agent

and each valuation there must be some valuation profile of the other

bidders in which she wins the auction for free and in which she

loses. We refer to these bid profiles and “golden ticket” and “wooden

spoon” profiles. For single-parameter settings this characterisation

holds for any allocation and payment functions with non-zero ap-

proximation guarantee to the optimal social welfare.

Main Result 1 (informal). An auction that 𝛼-

approximates social welfare and is 𝛽-competitive against

social welfare for any 𝛼, 𝛽 > 0 is not obviously manipula-

ble if and only if it is a Willy Wonka mechanism.

A slightly weaker result holds when going from binary allocation

settings to more general outcome spaces. Now the golden ticket

profile is any input to the mechanism where an agent receives

her most valued allocation for free, and this is both necessary and

sufficient whenever the allocation function is maximal-in-range.We

show that the wooden spoon profile, again an input resulting in the

agent losing the auction, is also sufficient to satisfy the worst-case

NOM constraints.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

79



We refer tomechanisms satisfying these golden ticket andwooden

spoon properties as “Willy Wonka” mechanisms. Given black box

access to an 𝛼-approximate (or maximal-in-range) allocation func-

tion we then design basic payment rules that result in high revenue

for the auctioneer, which sacrifices the revenue from the lowest

winning bidder in the approximately optimal allocation in order

to satisfy the golden ticket property. Specifically, given an input

bid profile we first compute the approximately optimal allocation

and charge each winning bidder first-price payments, except the

lowest winning bidder whose payment is set to zero. Of course,

if we were to do this on each allocation then we might sacrifice

the revenue from the only winning bidder (depending on the fea-

sible set of allocations) and end up with zero revenue. It suffices

to have only one bid profile where this occurs in order to satisfy

the best-case NOM constraints. Therefore we can choose the bid

profile corresponding to an allocation that maximises the number

of winners as the golden ticket and thus minimise the amount of

revenue we sacrifice. For all remaining bid profiles we will simply

recover the optimal revenue.

Main Result 2 (informal). There is a mechanism that is

not obviously manipulable and 𝛼 (1− 1/𝜏)-competitive to

the optimal revenue, where 𝛼 denotes the approximation

guarantee of the allocation function and 𝜏 the maximum

number of winning bidders in an optimal allocation.

Finally we turn our attention to procurement auctions where

agents incur costs for being included in an allocation and agents

must therefore be compensated. Now we aim to minimise the social

cost, and we want to design the payments to implement the socially

optimal allocation as a NOM mechanism. We want our payment

rules to be frugal, meaning they should not overpay the agents to

achieve incentive-compatibility. To this end we further explore the

performance of appropriately defined golden ticket and wooden

spoon properties. The former states that for each agent, in addition

to being compensated her bid (due to individual rationality), there

must be a profile where she is paid an additional and costly sum of

money that is sure to maximise her utility. The latter again states

that each must also lose the auction. We show that a similarly-

defined Willy Wmechanism

Our first mechanism is a natural analogue to the Willy Wonka

mechanism for revenue maximisation, but we show that its perfor-

mance with respect to frugality against the optimal solution can

go to zero. We then amend the payment rule to modify the (costly)

golden ticket profiles and show that the resulting mechanism never

overpays the agents by more than a factor of two with respect to

the second-lowest social cost.

Main Result 3 (informal). There is a procurement auc-

tion that is not obviously manipulable and pays at most

twice the cost of the second-best solution.

We note the change of benchmark to being against the second-

best social cost. If some agent can never be allocated at the same

time as another, then the frugality ratio with respect to the optimal

will go to zero if the auction is NOM, and is therefore unavoidable.

We can sidestep this issue by benchmarking the mechanism against

the cost of the next best solution, and show that whenever an agent

must be the sole winner of the auction our mechanism does not

overpay at all with respect to this cost. We conclude the paper with

a brief discussion on the areas for further research that our work

leaves open.

2 PRELIMINARIES
General setup. For a natural number 𝑘 , let [𝑘] denote the set

{1, 2, . . . , 𝑘}. We consider the familiar mechanism design setting

where there is a set [𝑛] of agents (or equally, bidders) where each
agent 𝑖 has a piece of private information 𝑡𝑖 (also known as her type)

taken from some domain 𝐷𝑖 . The set of type profiles is denoted by

𝐷 = ×𝑖∈[𝑛]𝐷𝑖 . We also refer to 𝐷 as the set of bid profiles. For any
𝒃 = (𝑏1, 𝑏2, . . . , 𝑏𝑛) ∈ 𝐷 we write (𝑡𝑖 , 𝒃−𝑖 ) to denote the bid profile

obtained by replacing the 𝑖th coordinate of 𝒃 with 𝑡𝑖 ∈ 𝐷𝑖 .

Auctions.We consider mechanisms that use monetary transfers.

In this setting an auction (mechanism) is a tuple𝑀 = (𝑎, 𝑝) consist-
ing of an allocation function 𝑎 : 𝐷 → A, where A is some set of

feasible allocations, and a payment function 𝑝 : 𝐷 → R𝑛 . On input

𝒃 the output of𝑀 is denoted𝑀 (𝒃). An agent’s type describes the

utility she gets from each allocation, and we can think of agent 𝑖’s

type as a function 𝑡𝑖 : A → R. For a given allocation 𝐴 ∈ A we as-

sume 𝐴 can be decomposed into the vector (𝐴1, 𝐴2, . . . , 𝐴𝑛), where
𝐴𝑖 denotes what is allocated to agent 𝑖 under 𝐴. We also assume

each agent derives utility only with regard to her own allocation,

hence for each agent 𝑖 and allocation 𝐴 we have 𝑡𝑖 (𝐴) = 𝑡𝑖 (𝐴𝑖 ). We

will therefore denote byA𝑖 the set of all unique allocations to agent

𝑖 . Moreover we denote by 𝜇 (𝐴) the set of bidders allocated under

the allocation𝐴. We will also refer to this set as the set of “winners”.

The notation 1[·] represents the indicator function, and we will use
1[𝑖 ∈ 𝜇 (𝐴)] = 1 if 𝑖 ∈ 𝜇 (𝐴) and 1[𝑖 ∈ 𝜇 (𝐴)] = 0 otherwise. Given

a mechanism𝑀 and agent 𝑖 with type 𝑡𝑖 we write 𝑖’s utility on out-

come𝑀 (𝒃) as 𝑢𝑖 (𝑀 (𝒃) ; 𝑡𝑖 ). All auctions we consider are assumed

to be individually rational, meaning that for each agent 𝑖 with type

𝑡𝑖 and every partial profile 𝒃−𝑖 it holds that 𝑢𝑖 (𝑀 (𝑡𝑖 , 𝒃−𝑖 ) ; 𝑡𝑖 ) ≥ 0.

Goods and chores. Depending on the setting, we assume each

agent receives either a non-negative or non-positive utility for

each feasible allocation in A. We refer to the former as a goods

auction and the latter as a procurement auction, or equivalently,

an auction in which allocations represent (bundles of) chores. In

a goods auction we extract payments from the bidders and we

assume our auctions make no positive transfers, meaning no bidder

is paid money in addition to their allocation. Conversely, for a

procurement auction agents incur a cost for being allocated and

hence must be compensated, and here individual rationality implies

that all payments to agents are non-negative. We will formally

introduce these notions, including those related to the optimality of

an auction’s allocation and payment functions, in their respective

Sections 3 and 4 as needed.

Incentive compatibility. We are interested in designing in-

centive-compatible mechanisms for agents with a particular form

of imperfect rationality whereby they are only able to compare

outcomes of the mechanism at the extremes of their utility function.

A mechanism𝑀 = (𝑎, 𝑝) is not obviously manipulable (NOM) if the
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following two conditions hold for every 𝑖 ∈ [𝑛]:

sup

𝒃−𝑖

{𝑢𝑖 (𝑀 (𝑡𝑖 , 𝒃−𝑖 ) ; 𝑡𝑖 ) } ≥ sup

𝒃−𝑖

{𝑢𝑖 (𝑀 (𝑏𝑖 , 𝒃−𝑖 ; 𝑡𝑖 ) }, (1)

inf

𝒃−𝑖
{𝑢𝑖 (𝑀 (𝑡𝑖 , 𝒃−𝑖 ) ; 𝑡𝑖 ) } ≥ inf

𝒃−𝑖
{𝑢𝑖 (𝑀 (𝑏𝑖 , 𝒃−𝑖 ; 𝑡𝑖 ) }. (2)

If (1) holds then𝑀 is best-case not obviously manipulable (BNOM)
and if (2) holds then it is worst-case not obviously manipulable
(WNOM). We also use the term incentive compatible to refer to a

mechanism that is NOM. Any misreport 𝑏𝑖 such that either (1) or

(2) does not hold is said to be an obvious manipulation of player 𝑖

for the mechanism𝑀 .

The structure of the feasible set. The structure of A reflects

the auction setting under consideration. We provide several exam-

ples here for clarity of exposition. A set system is a tuple (𝐸,S)
where 𝐸 is referred to as the ground set and S ⊆ 2

𝐸
the family of

subsets. In general in a binary allocation unit-demand setting each

bidder can either be allocated or unallocated in each allocation 𝐴,

and the feasible set of allocations A in these settings can be de-

scribed by the set S in the set system ( [𝑛],S). This set S will vary

depending on the type of auction being run, and can encompass,

for example, digital goods auctions [7], knapsack auctions [1], and

spanning tree auctions [12]. For these settings we can represent

each allocation by the vector 𝐴 ∈ {0, 1}𝑛 , where 𝐴𝑖 = 1 if 𝑖 is al-

located and 𝐴𝑖 = 0 otherwise. In a multi-unit auction there are 𝑘

copies of a single item and each agent may therefore be allocated

up to 𝑘 copies (and note that agent types may not be linear func-

tions in the number of items they are allocated). In this case each

allocation can be represented by a vector 𝐴 ∈ {0, . . . , 𝑘}𝑛 , where
𝐴𝑖 describes the number of copies allocated to agent 𝑖 (and clearly

we require

∑
𝑖∈[𝑛] 𝐴𝑖 ≤ 𝑘 for 𝐴 to be a feasible allocation). As a

final example, consider a combinatorial auction in which there is

a set 𝑆 of items and each allocation distributes a (possibly empty)

bundle of items to each agent. Here for each allocation 𝐴 the entry

𝐴𝑖 ⊆ 𝑆 describes the bundle of items allocated to 𝑖 , and therefore

the feasible set of allocations can be represented by the set of all

𝐴 such that 𝐴𝑖 ⊆ 𝑆 for each 𝑖 , and 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for each distinct

𝑖, 𝑗 ∈ [𝑛]. Regardless of the specific setting we assume that for each

player there is some feasible allocation inA where they do not win,

otherwise clearly there is nothing to be done from the perspective

of realigning incentives.

Bidding languages. In general we assume that each agent 𝑖

reports her type directly to the mechanism by specifying a real

number for each unique personal allocation 𝐴𝑖 ∈ A𝑖 . To avoid

cluttering the notation we will drop the 𝑖 subscript from 𝐴𝑖 . There-

fore agent 𝑖’s type is represented by the vector 𝑡𝑖 = (𝑡𝐴𝑖 )𝐴∈A𝑖
. In

Section 3 we assume that for each 𝐴 ∈ A we have 𝑡𝐴
𝑖
∈ [0, ℎ]

and in Section 4 we assume that 𝑡𝐴
𝑖
∈ [−ℎ, 0] for some ℎ ∈ R+. In

auctions based on set systems each agent needs only to report a

single number to the mechanism, and as such we refer to them in

this case as being single-parameter. When this is not the case then

agents are in general said to be multiparameter.

3 REVENUE MAXIMISATION
In this section we consider goods auctions, where for each agent

𝑖 and each allocation 𝐴 ∈ A we have 𝑡𝑖 (𝐴) ≥ 0. We therefore

refer to each agent’s type as her valuation function and denote the

valuation function for agent 𝑖 as 𝑣𝑖 : A → R≥0. This is simply

a notational change to differentiate between the two settings of

revenue maximisation and frugality. In this setting the auction

mechanism extracts payments from bidders in exchange for their

allocation, hence for an auction mechanism𝑀 = (𝑎, 𝑝) and input

bid profile 𝒃 the utility that agent 𝑖 with valuation 𝑣𝑖 will receive is

denoted 𝑢𝑖 (𝑀 (𝒃) ; 𝑣𝑖 ) = 𝑣𝑖 (𝑎𝑖 (𝒃)) − 𝑝𝑖 (𝒃).
In this setting we consider allocation functions that (approx-

imately) maximise the social welfare. Fix a valuation profile 𝒗.
The social welfare of an allocation 𝐴 with respect to 𝒗 is simply

SW(𝐴, 𝒗) = ∑
𝑖∈[𝑛] 𝑣𝑖 (𝐴𝑖 ). An allocation function 𝑎 is said to 𝛼-

approximate the social welfare for 𝛼 ∈ (0, 1) if SW(𝑎(𝒗), 𝒗) ≥ 𝛼𝑊 ∗

for every 𝒗, where𝑊 ∗ = max𝐴∈A SW(𝐴, 𝒗) denotes the optimal

social welfare of an allocation with respect to 𝒗.
We study the revenue we can extract from the bidders while

ensuring the mechanism is NOM. The revenue of an auction (𝑎, 𝑝)
on bid profile 𝒃 is simply the sum of the payments

∑
𝑖∈[𝑛] 𝑝𝑖 (𝒃).

The performance of a mechanism’s payment function will be mea-

sured with respect to some benchmark. Let X(𝒃) be the revenue of
some payment benchmark X when given bid profile 𝒃 . A payment

function 𝑝 is said to be 𝛽-competitive against X for 𝛽 ∈ (0, 1) if for
all 𝒃 it holds that

∑
𝑖∈[𝑛] 𝑝𝑖 (𝒃) ≥ 𝛽X(𝒃).

3.1 Binary allocation
We begin by characterising the class of auctions which are NOM

for single-parameter agents binary allocation settings. Our charac-

terisation shows that two properties based on the outcomes of the

mechanism, known as “golden ticket” and “wooden spoon” profiles,

are necessary and sufficient in order for the mechanism to be NOM.

The former states that, for each bidder and each bid, it is possible,

given some bid profile of the other agents, to win the auction for

free. It is straightforward to see that this ensures that (1) is satisfied,

since there is a bid profile where each agent receives her highest

possible utility (assuming no positive transfers from the mechanism

to the agent). On the other hand, as long as the allocation function

has a positive welfare guarantee then the golden ticket property

is necessary when the mechanism is BNOM, otherwise she may

submit a bid below the assumed minimum payment price and get

strictly greater utility in the best case than when bidding truthfully.

Lemma 1 (Golden ticket for binary allocation). Let𝑀 = (𝑎, 𝑝) be an
auction where the allocation function has any positive approximation
𝛼 > 0 to the optimal social welfare. Then 𝑀 is BNOM if and only
if for every agent 𝑖 ∈ [𝑛] with valuation 𝑣𝑖 there exists a bid profile
such that 𝑖 wins the auction for free.

Proof. ( =⇒ ) Begin by observing that 𝑖 must always be able to

win the auction. On the bid profile (𝑣𝑖 , 0, . . . , 0) a positive approxi-
mation to the optimal social welfare is only possible if 𝑖 is allocated.

Suppose for contradiction that whenever 𝑖 wins the auction she

pays at least some positive price 𝑝 . Her best utility when bidding

𝑣𝑖 truthfully is at most 𝑣𝑖 − 𝑝 . Now let 𝑏𝑖 be any misreport such

that 0 < 𝑏𝑖 < 𝑝 and note that 𝑝 ≤ 𝑣𝑖 by individual rationality. Take

the profile (𝑏𝑖 , 0, . . . , 0) and by the same argument 𝑖 must win. Her

utility for this misreport is at least 𝑣𝑖 −𝑏𝑖 ≥ 𝑣𝑖 −𝑝 , breaking BNOM.

Therefore 𝑖 must be able to win the auction for free.
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(⇐= ) Since 𝑖 can win the auction for free when bidding 𝑣𝑖 her

best truthful utility is exactly 𝑣𝑖 . This is clearly unbeatable by any

misreport if 𝑀 makes no positive transfers, hence the auction is

BNOM. □

Note that as a corollary of Lemma 1 we have that for NOM

auctions in which for each allocation the set of winning bidders is

a singleton then the revenue guarantee against the optimal goes

to zero when taken over all possible inputs. To verify, consider the

strategyproof (and hence NOM) Vickrey auction. The revenue this

mechanism obtains is simply the second highest bid, which is zero

whenever there is a single agent 𝑖 with a positive bid 𝑏𝑖 and the

remaining agents bid zero. The optimal revenue is 𝑏𝑖 , resulting in a

0-approximation.

Analogously to the golden ticket, the wooden spoon property

states that for each bidder and each bid, it is possible to lose the

auction. This guarantees that (2) is satisfied, since now there is a

bid profile where each agent receives zero utility and by individual

rationality this is the lowest possible when bidding truthfully. Since

this holds for each bid then the worst utility of a dishonest bid can

certainly be no greater than zero. Now to prove the necessity of

the wooden spoon we assume the payment function extracts any

positive factor of revenue from the bidders and show that if the

agent always wins the auction then it is possible to underbid and

get a strictly greater worst case utility versus a truthful bid.

Lemma 2 (Wooden spoon for binary allocation). Let 𝑀 = (𝑎, 𝑝)
be an auction where the payment function guarantees to extract any
positive factor 𝛽 > 0 of the sum of bids in revenue from the bidders.
Then𝑀 is WNOM if and only if for every agent 𝑖 ∈ [𝑛] with valuation
𝑣𝑖 there exists a bid profile such that 𝑖 loses the auction.

Proof. ( =⇒ ) Suppose bidder 𝑖 always wins the auction. When

bidding 𝑏𝑖 < 𝑣𝑖 her worst utility is at least 𝑣𝑖 − 𝑏𝑖 . On the profile

(𝑣𝑖 , 0, . . . , 0) then 𝑖 must win the auction and pay at least 𝛽𝑣𝑖 mean-

ing her worst truthful utility is at most (1−𝛽)𝑣𝑖 . Taking a misreport

𝑏𝑖 < 𝛽𝑣𝑖 results in a worst case utility of 𝑣𝑖−𝑏𝑖 > (1−𝛽)𝑣𝑖 , breaking
WNOM. Therefore 𝑖 must lose the auction.

( ⇐= ) Take bidder 𝑖 with value 𝑣𝑖 . Since 𝑖 can lose then her

worst utility when bidding 𝑣𝑖 truthfully is at exactly 0. If 𝑖 were to

underbid then the same argument gives her a worst dishonest utility

of 0, while submitting an overbid 𝑏𝑖 can clearly yield a negative

utility if 𝑖 were to win and pay 𝑏𝑖 > 𝑣𝑖 . Hence𝑀 is WNOM. □

With Lemmas 1 and 2 we have a full characterisation for NOM

auctions in a range of binary allocation settings. Namely, as long the

allocation function has some positive approximation guarantee to

the optimal social welfare and the payment function always extracts

some positive revenue from the bidders, then for each agent there

must be both a bid profile where she wins the auction for free and a

bid profile where she loses. This motivates the following definition

for auctions that satisfy these criteria.

Definition 1 (Willy Wonka mechanism for binary allocation). A

Willy Wonka mechanism for binary allocation settings is a mecha-

nism 𝑀 = (𝑎, 𝑝) whose allocation and payment functions satisfy

the following:

(1) For each 𝑖 and each 𝑏𝑖 there is a bid profile (𝑏𝑖 , 𝒃−𝑖 ) where 𝑖
wins the auction for free.

(2) For each 𝑖 and each 𝑏𝑖 there is a bid profile (𝑏𝑖 , 𝒃−𝑖 ) where 𝑖
loses the auction.

Given a bid 𝑏𝑖 of player 𝑖 we refer to the golden ticket profile for 𝑏𝑖
as the profile 𝒃−𝑖 such that 𝑖 wins for free on (𝑏𝑖 , 𝒃−𝑖 ). Likewise we
refer to the wooden spoon profile for 𝑏𝑖 as the profile 𝒃−𝑖 such that

𝑖 loses the auction on (𝑏𝑖 , 𝒃−𝑖 ). Therefore as long as each player

𝑖 has both a golden ticket profile and a wooden spoon profile for

each bid 𝑏𝑖 then the resulting mechanism is NOM. In the following

we will assume that the wooden spoon profile is ensured by the

feasible set, meaning that for a sufficiently approximately-optimal

allocation function and each bid of an agent 𝑖 there is a bid profile

of the other agents where 𝑖 must lose the auction.

Our idea is to design Willy Wonka mechanisms that sacrifice a

small portion of the revenue in order to achieve incentive compati-

bility. Ideally, for each bidder 𝑖 and each bid 𝑏𝑖 we want to find a

bid profile 𝒃−𝑖 and an allocation 𝐴 where 𝑖 wins that maximises

the social welfare of the bidders excluding 𝑖 , since we can charge

first-price payments to the winners and award 𝑖 her allocation for

free. This 𝒃−𝑖 would then be the golden ticket profile for 𝑖 with bid

𝑏𝑖 . In other words for each 𝑖 with bid 𝑏𝑖 the optimal Willy Wonka

mechanism would compute an allocation that obtains revenue

max

𝐴 : 𝑖∈𝜇 (𝐴)
{max

𝒃−𝑖
SW(𝐴, 𝒃−𝑖 ) }. (3)

Suppose we have black box access to an 𝛼-approximate alloca-

tion function. In order to tackle finding a good approximation to

the optimal revenue above, consider the Willy Wonka mechanism

that first computes an approximately optimal allocation and then

charges first-price payments to all but the lowest winning bidder,

who is allocated at no charge. Then the revenue extracted by the

mechanism is simply

𝛼 · SW(𝐴, 𝒃) − min

𝑖∈𝜇 (𝐴)
𝑏𝑖 .

A problem with this mechanism is that it specifies a golden

ticket profile for every input 𝒃 . Now if there is any allocation 𝐴

such that |𝜇 (𝐴) | = 1 then we lose all of the revenue, resulting in a

0-approximation. We amend this in Mechanism 1 by only allocating

the lowest bidder for free when the cardinality of the winning set is

maximal over all allocations in the image of the allocation function.

Mechanism 1 Willy Wonka auction for binary allocation.

Input: Bid profile 𝒃 ∈ 𝐷 .
Output: Allocation 𝑎(𝒃) ∈ A ⊆ {0, 1}𝑛 , payments 𝑝 (𝒃) ∈ R𝑛≥0.

Let 𝐴 be an 𝛼-optimal allocation w.r.t. 𝒃 and let 𝜇 = 𝜇 (𝐴).
for each bidder 𝑖 ∈ [𝑛] do
𝑎𝑖 (𝒃) ← 𝐴𝑖

𝑝𝑖 (𝒃) ← 𝑏𝑖 · 𝐴𝑖

if 𝐴 ∈ argmax{ |𝜇 (𝐴′) | : 𝐴′ ∈ A } then
Let 𝑖 ∈ argmin{𝑏 𝑗 : 𝑗 ∈ 𝜇 }
𝑝𝑖 (𝒃) ← 0

return 𝑎(𝒃), 𝑝 (𝒃)

We note a few assumptions made by the mechanism in order to

simplify its description. Firstly, we assume that in each bid profile

corresponding to a winning set of maximum cardinality there is a

distinct lowest winning bidder in the optimal allocation. If lowest
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winning bids are tied then in order to obtain the revenue bound

of Theorem 1 we would want for only one of these to be allocated

for free. We can break ties arbitrarily when this is the case, and

since there is at least one profile where each player is the unique

lowest winning bidder for each possible then Lemma 1 ensures the

mechanism is BNOM.

Again we note that this payment rule taken together with the

allocation algorithm does not necessarily define any wooden spoon

profiles. In most cases the wooden spoon profiles should be ensured

by the welfare approximation of the allocation function being high

enough and by the feasible set of allocations. In other words, if it is

possible to lose the auction then WNOM is guaranteed by Lemma 2.

In settings where this does not hold and it is always possible to

allocate a given agent, then in order to achieve WNOM we must

specify these profiles explicitly. In this special case then, again, in

order to achieve the revenue bound of Theorem 1 we have to take

care that the golden ticket profile of one agent does not coincide

with the wooden spoon profile of another agent.

Theorem 1. Mechanism 1 is not obviously manipulable and is 𝛼 (1−
1/𝜏)-competitive to the optimal revenue, where 𝜏 = max{ |𝜇 (𝐴) | :
𝐴 ∈ A } denotes the cardinality of the largest winning set under 𝑎.

Proof. The mechanism is NOM by Lemmas 1 and 2. It charges

first-price payments to all winning bidders apart from the lowest

when the number of winners is maximal, meaning the revenue is a

(1−1/𝜏) factor of the social welfare of the returned allocation. Since
the allocation function is 𝛼-approximate then the social welfare

of the allocation is at least an 𝛼 fraction of the optimal, giving the

bound. □

In the next section we generalise the arguments in Lemmas 1

and 2 to handle general outcome spaces, with an additional condi-

tion on the allocation function.

3.2 General outcome spaces
In this section we assume A represents more general classes of

allocations and that agents are multiparameter. Recall that each

agent 𝑖’s type is now a vector (𝑣𝐴
𝑖
)𝐴∈A where 𝑣𝐴

𝑖
∈ [0, ℎ] represents

the utility 𝑖 receives from allocation 𝐴. In order to derive similar

golden ticket and wooden spoon properties to the previous section

we impose an additional requirement on the allocation function

of the mechanism that requires the allocation to be able maximise

over a fixed range of allocations. An allocation function 𝑎 is said to

be maximal-in-range if there exists some subset R ⊆ A such that

for all 𝒃 ∈ 𝐷 the function outputs 𝑎(𝒃) ∈ argmax𝐴∈R SW(𝐴, 𝒃).

Lemma 3 (Golden ticket for general outcome spaces). Let 𝑀 =

(𝑎, 𝑝) be an maximal-in-range auction with range R ⊆ A. Then𝑀

is BNOM if and only if for every agent 𝑖 ∈ [𝑛] with valuation 𝑣𝑖 =

(𝑣𝐴
𝑖
)𝐴∈A there exists a bid profile 𝒃 such that 𝑎(𝒃) ∈ argmax𝐴∈R 𝑣

𝐴
𝑖

and 𝑝𝑖 (𝒃) = 0.

Proof. Let𝐴 ∈ argmax𝐴′∈R 𝑣
𝐴′
𝑖

be 𝑖’s highest-valued allocation

amongst those in R and first note that it must always be possible

for 𝑖 to be allocated 𝐴. Take the bid profile (𝑣𝑖 , 0, . . . , 0), where
0 = (0, . . . , 0) denotes the all-zero type. Since 𝑀 is maximal-in-

range and 𝐴 ∈ R then𝑀 must return the allocation 𝐴.

( =⇒ ) Now suppose that whenever the allocation 𝐴 is returned

𝑖 must pay some positive price 𝑝 . Her best truthful utility is at

most 𝑣𝐴
𝑖
− 𝑝 . Let 𝑏𝑖 be any misreport of agent 𝑖 with 0 < 𝑏𝐴

𝑖
< 𝑝

and 𝑏𝐴
𝑖
= max𝐴′∈R 𝑏𝐴

′
𝑖
. Note that 𝑏𝐴

𝑖
is an underbid for allocation

𝐴 since 𝑝 ≤ 𝑣𝐴
𝑖

by individual rationality. Now take the profile

(𝑏𝑖 , 0, . . . , 0). By the same argument as above 𝑖 must be allocated 𝐴

and pay some amount 𝑝′ where 0 < 𝑝′ < 𝑏𝐴
𝑖
. Her best utility for

this misreport is at least 𝑣𝐴
𝑖
−𝑏𝐴

𝑖
> 𝑣𝐴

𝑖
− 𝑝 and hence strictly larger

than her best utility for reporting 𝑣𝑖 truthfully, breaking BNOM.

Hence 𝑖 must win 𝐴 for free under some bid profile.

( ⇐= ) Since 𝑖 wins 𝐴 for free then bidding 𝑣𝑖 truthfully can

result in a utility of 𝑣𝐴
𝑖
, which is clearly unbeatable since 𝑀 makes

no positive transfers. Therefore𝑀 is BNOM. □

We must strengthen the requirement of the allocation function

being 𝛼-optimal to being maximal-in-range. This ensures that bid-

der 𝑖 is allocated her most valuable allocation in the range of the

auction when the other bidders are excluded from winning. With-

out this requirement then the auction could return any allocation

𝐴 that 𝑖 values at least an 𝛼 fraction as much as her favourite allo-

cation, which may not imply incentive-compatibility. In this case

the performance of the allocation function can be expressed as

𝛼 = min

𝒃

argmax𝐴∈R SW(𝐴, 𝒃)
argmax𝐴∈A SW(𝐴, 𝒃) . (4)

The wooden spoon property remains exactly the same and using

the exact very simple argument from the proof of Lemma 2 we

can show that if each agent can lose the auction then it must be

WNOM.

Lemma 4 (Wooden spoon for general outcome spaces). Let𝑀 =

(𝑎, 𝑝) be an auction for multiparameter agents that is 𝛽-competitive
against the social welfare. If for every agent 𝑖 ∈ [𝑛] with valuation
𝑣𝑖 = (𝑣𝐴𝑖 )𝐴∈A there exists a bid profile 𝒃 such that 𝑎𝑖 (𝒃) = ∅ then𝑀
is WNOM.

We note that unlike Lemmas 1 to 3 this is not a complete charac-

terisation since we do not have the necessity of the wooden spoon

for auctions in these settings to be WNOM. However, when de-

signing our NOM auctions in the following we will only need the

sufficiency of the golden tickets and wooden spoons to show the

resulting mechanisms are incentive-compatible.

Definition 2 (WillyWonkamechanism for general outcome spaces).
AWilly Wonka mechanism for general outcome spaces is a mecha-

nism 𝑀 = (𝑎, 𝑝) whose allocation and payment functions satisfy

the following:

(1) For each 𝑖 and each 𝑏𝑖 there is a bid profile (𝑏𝑖 , 𝒃−𝑖 ) where 𝑖
is allocated argmax𝐴∈A 𝑏𝐴

𝑖
for free.

(2) For each 𝑖 and each 𝑏𝑖 there is a bid profile (𝑏𝑖 , 𝒃−𝑖 ) where 𝑖
loses the auction.

We only need to modify Mechanism 1 slightly in order to apply

to general outcome spaces, which we provide in Mechanism 2. We

now assume the allocation function 𝑎 is maximal-in-range as per

Lemma 3, but as before in Mechanism 2 we compute an approxi-

mately optimal allocation and then charge first-price payments in

most cases. When the allocation has maximal cardinality then we
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sacrifice the revenue from the lowest winning bidder in order to

satisfy the golden ticket property.

Mechanism 2 Willy Wonka auction for general outcome spaces.

Input: Bid profile 𝒃 ∈ 𝐷 .
Output: Allocation 𝑎(𝒃) ∈ A, payments 𝑝 (𝒃) ∈ R𝑛≥0.

Let 𝐴 ∈ argmax{ SW(𝐴′, 𝒃) : 𝐴′ ∈ R } and let 𝜇 = 𝜇 (𝐴).
for each bidder 𝑖 ∈ [𝑛] do
𝑎𝑖 (𝒃) ← 𝐴𝑖

𝑝𝑖 (𝒃) ← 𝑏𝐴
𝑖
· 1[𝑖 ∈ 𝜇]

if 𝐴 ∈ argmax{ |𝜇 (𝐴′) | : 𝐴′ ∈ R } then
Let 𝑖 ∈ argmin{𝑏𝐴

𝑗
: 𝑗 ∈ 𝜇 }

𝑝𝑖 (𝒃) ← 0

return 𝑎(𝒃), 𝑝 (𝒃)

Again it is assumed that the wooden spoon profiles arise from

the feasible set itself, that is, for each agent there is some bid profile

such that it is not feasible to allocate the agent. If this is not the case

we would have to artificially exclude the agent from the winning

set. Naturally Mechanism 2 obtains a similar revenue guarantee to

Mechanism 1 of 𝛼 (1− 1/𝜏) where 𝜏 is the size of the maximum car-

dinality winning set for any allocation returned by the mechanism,

and 𝛼 again corresponds to the approximation guarantee of the

allocation function with respect to the socially optimal allocation

and takes the form given in (4).

Theorem 2. Mechanism 2 is not obviously manipulable and is 𝛼 (1−
1/𝜏)-competitive to the optimal revenue, where 𝜏 = max{ |𝜇 (𝐴) | :
𝐴 ∈ R } denotes the cardinality of the largest winning set under the
maximal-in-range allocation function 𝑎.

4 FRUGAL PROCUREMENT
In this section we consider procurement auctions, where for each

agent 𝑖 and each allocation 𝐴 ∈ A we have 𝑡𝑖 (𝐴) ≤ 0. For clarity

of exposition we now introduce for each agent 𝑖 a cost function
and denote it 𝑐𝑖 : A → R≥0, setting 𝑐𝑖 = −𝑡𝑖 . Now we have a

procurement auction that allocates chores to the agents, hence the

agents must be compensated for taking on their allocation. For

a procurement auction 𝑀 = (𝑎, 𝑝) given the input 𝒃 the utility

that agent 𝑖 with cost 𝑐𝑖 will receive is denoted 𝑢𝑖 (𝑀 (𝒃) ; 𝑐𝑖 ) =
𝑝𝑖 (𝒃) − 𝑐𝑖 (𝑎𝑖 (𝒃)).

We are now interested in allocation functions that (approx-

imately) minimise the social cost of resulting allocation. Fix a

cost profile 𝒄 . The social cost of an allocation 𝐴 with respect to

𝒄 is SC(𝐴) =
∑
𝑖∈[𝑛] 𝑐𝑖 (𝐴𝑖 ). An allocation function 𝑎 is said to

𝛼-approximate the social cost for 𝛼 ≥ 1 if SC(𝑎(𝒄), 𝒄) ≤ 𝛼𝐶∗ for
every 𝒄 , where 𝐶∗ = min𝐴∈A SC(𝐴, 𝒄) denotes the social cost of
an optimal allocation with respect to 𝒄 .

We now need to compensate agents for their allocations. All of

our mechanisms must be individually rational, hence each bidder

must always be paid at least the cost she reports for the resulting

allocation. We want to study the extent to which our mechanism

overpays with respect to some benchmark. Let X be some payment

benchmark for a procurement auction and X(𝒃) denote the sum of

payments made to the bidders on bid profile 𝒃 . A payment function

𝑝 is said to be 𝛽-frugal againstX for 𝛽 ≥ 1 if

∑
𝑖∈[𝑛] 𝑝𝑖 (𝒃) ≤ 𝛽X(𝒃)

for all 𝒃 . We refer to 𝛽 as the frugality ratio of the payment function

(and equally, the mechanism) with respect to X.
We think of the auctions as allocating bundles of chores, and to

maintain individual rationality we must now instead reimburse or

compensate the bidders allocated a chore with a monetary transfer.

For consistency we still refer to the set of such bidders as the set of

winners, and every other bidder is therefore still considered a loser

of the auction. We also restrict our attention to single-parameter

agents.

Lemma 5 (Golden ticket for binary allocation). Let𝑀 = (𝑎, 𝑝) be
a procurement auction that 𝛼-approximates the social cost for any
𝛼 > 0. Then 𝑀 is BNOM if and only if for every agent 𝑖 ∈ [𝑛] with
cost 𝑐𝑖 there exists a bid profile where 𝑖 wins the auction and is paid ℎ.

Proof. ( =⇒ ) Suppose for contradiction that𝑀 only ever pays

bidder 𝑖 at most 𝑝 < ℎ when she bids 𝑐𝑖 . By individual rationality we

must have 𝑝 ≥ 𝑐𝑖 . Now take an overbid 𝑏𝑖 such that 𝑝 < 𝑏𝑖 < ℎ/𝛼 .
Let 𝒃 = (𝑏𝑖 , 𝒃−𝑖 ) be a bid profile such that 𝑏 𝑗 > 𝛼𝑏𝑖 for each

𝑗 ≠ 𝑖 . On 𝒃 the chore must get allocated to 𝑖 in order to preserve

the 𝛼 guarantee to the optimal social cost. Since 𝑖 is allocated the

chore she must be compensated at least 𝑏𝑖 , resulting in a best case

dishonest utility of at least 𝑏𝑖 − 𝑐𝑖 which is strictly greater than her

best case truthful utility of 𝑝 − 𝑐𝑖 , thus violating BNOM.

( ⇐= ) If there exists a bid profile where 𝑖 wins and is paid

ℎ then when 𝑖 has cost 𝑐𝑖 and bids truthfully her best utility is

ℎ − 𝑐𝑖 ≥ 0. Since 𝑖 can never submit an overbid greater than ℎ then

no misreport can get her a greater utility, thus𝑀 is BNOM. □

Lemma 6 (Wooden spoon for binary allocation). Let 𝑀 = (𝑎, 𝑝)
be a procurement auction that is 𝛽-frugal against the social cost for
any 𝛽 > 0. Then 𝑀 is WNOM if and only if for every agent 𝑖 ∈ [𝑛]
with cost 𝑐𝑖 there exists a bid profile such that 𝑖 loses the auction.

Proof. ( =⇒ ) Assume 𝑖 always wins the auction. Then on an

overbid 𝑏𝑖 > 𝑐𝑖 she would get utility at least 𝑏𝑖 − 𝑐𝑖 . Now take the

bid profile (𝑐𝑖 , ℎ, . . . , ℎ) such that (𝑛 − 1)ℎ/𝛽 > 𝑐𝑖 where only 𝑖 may

win the auction. The 𝛽-frugality of the auction means that 𝑖 cannot

be compensated more than 𝛽𝑐𝑖 meaning her best truthful utility

is at most (𝛽 − 1)𝑐𝑖 . Taking 𝑏𝑖 > 𝛽𝑐𝑖 results in a worst utility of

at least 𝑏𝑖 − 𝑐𝑖 > (𝛽 − 1)𝑐𝑖 thus breaking the WNOM constraints.

Therefore 𝑖 must be able to lose the auction.

( ⇐= ) By a similar argument to the proof of Lemma 5 if the

monetary payment is independent of the bid then 𝑖’s worst truthful

and dishonest utilities are both 0, satisfying WNOM. □

We use the above conditions to design frugal Willy Wonka mech-

anisms for procurement auctions. Similarly to (3) fix a player 𝑖 with

bid 𝑏𝑖 . On the golden ticket profile for 𝑖 the optimal Willy Wonka

mechanism for frugal procurement should select an allocation 𝐴

that compensates the agents by

min

𝐴 : 𝑖∈𝜇 (𝐴)
{min

𝒃−𝑖
SC(𝐴, 𝒃−𝑖 ) + ℎ },

since 𝑖 will be paid ℎ while the remaining winners are paid their

bid. To obtain a good approximation to the above, again consider a

mechanism with black box access to an 𝛼-approximate allocation

function such that on input 𝒃 the mechanism selects an 𝛼-optimal

allocation 𝐴 that pays the highest winner ℎ and the remaining

winners their bid. Now the highest winning bidder (instead of the

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

84



lowest) is the recipient of the golden ticket, since this minimises

the total payment made on the given instance. Then the total cost

on allocation 𝐴 is equal to

𝛼 · SC(𝐴, 𝒃) + ℎ − max

𝑖∈𝜇 (𝐴)
𝑏𝑖 .

Again, we need not designate a golden ticket profile (giving the

highest winning bidder a payment of ℎ) for every bid profile 𝒃 as

this will degrade the frugality ratio with respect to the sum of (win-

ning) bids. Consider an analogous approach to Mechanisms 1 and 2

for designing frugal Willy Wonka procurement auctions, where

the golden ticket profile occurs for each bidder when they have

the highest reported cost in an (approximately) optimal allocation

of maximum winning set cardinality. Suppose A contains all al-

locations with singleton winning sets. Now fix bidder 𝑖 and take

𝒃 = (𝑏𝑖 , ℎ, . . . , ℎ) for some 𝑏𝑖 . Observe that the optimal cost of al-

locating only 𝑖 is 𝑏𝑖 , and at least ℎ for any other allocation. For a

given 𝛼 then a sufficiently small 𝑏𝑖 means 𝑖 must be the sole winner.

If the mechanism paid ℎ to bidder 𝑖 then the resulting frugality ratio

would be infinite when we take 𝑏𝑖 to zero.

We provide an alternative way of specifying the golden ticket

profiles of each bidder in Mechanism 3 and show that although its

frugality ratio with respect to the optimal can still be infinite, it will

never overpay the bidders bymore than twice the cost of the second-

best solution, provided there exists an allocation for each agent

where they are not the sole winner. Let 𝑘 = max𝐴 : 𝑖∈𝜇 (𝐴) |𝜇 (𝐴) |
denote the maximum cardinality of winning set containing 𝑖 for

any allocation in A, and let 𝑆 be the corresponding winning set of

any such allocation. Given bid 𝑏𝑖 of player 𝑖 define the golden ticket

profile such that for all 𝑗 ≠ 𝑖 we have 𝑏 𝑗 = ℎ/(𝑘 − 1) whenever
𝑗 ∈ 𝑆 and 𝑏 𝑗 = ℎ otherwise. Denote this golden ticket for 𝑏𝑖 as

𝛾𝑖 (𝑏𝑖 ).

Mechanism 3 Willy Wonka procurement auction.

Input: Bid profile 𝒃 ∈ 𝐷 .
Output: Allocation 𝑎(𝒃) ∈ A ⊆ {0, 1}𝑛 , payments 𝑝 (𝒃) ∈ R𝑛≥0.

Let 𝐴 be an 𝛼-optimal allocation w.r.t. 𝒃 and let 𝜇 = 𝜇 (𝐴).
for each bidder 𝑖 ∈ [𝑛] do
𝑘 ← max𝐴′ : 𝑖∈𝜇 (𝐴′ ) |𝜇 (𝐴′) | and ℎ′ ← ℎ/(𝑘 − 1) (when 𝑘 > 1)

𝛾𝑖 (𝑏𝑖 ) ← (ℎ′, . . . , ℎ′︸    ︷︷    ︸
(𝑘−1)

, ℎ, . . . , ℎ︸  ︷︷  ︸
(𝑛−𝑘 )

)

𝑎𝑖 (𝒃) ← 𝐴𝑖

𝑝𝑖 (𝒃) ← 𝑏𝑖 · 𝐴𝑖

if 𝒃−𝑖 = 𝛾𝑖 (𝑏𝑖 ) then
𝑝𝑖 (𝒃) ← 0

return 𝑎(𝒃), 𝑝 (𝒃)

We note that the frugality ratio for Mechanism 3 can vary de-

pending on the size 𝑘 of the set 𝑆 . If 𝑘 > 1 then the total payments

made on the bid profile (𝑏𝑖 , 𝛾𝑖 (𝑏𝑖 )) is ℎ + (𝑘 − 1)ℎ/(𝑘 − 1) = 2ℎ.

When 𝑏𝑖 = 0 then the optimum cost is ℎ, giving a frugality ratio

of 2. If 𝑘 = 1 then the sum of payments is ℎ while the optimum is

zero, meaning the frugality ratio is infinite.

Instead let us benchmark the mechanism again the cost of the

second-best solution. We denote by FR
(2) (𝒃) the frugality ratio

of a given mechanism on input 𝒃 with respect to the cost of the

second-best solution:

FR
(2) (𝒃) =

∑
𝑖∈[𝑛] 𝑝𝑖 (𝒃)

min𝐴{ SC(𝐴, 𝒃) : SC(𝐴, 𝒃) > 𝐶∗ } ,

where 𝐶∗ = min𝐴 SC(𝐴, 𝒃) denotes the cost of an optimum alloca-

tion on 𝒃 . We then take FR
(2) = max𝒃 FR

(2) (𝒃). With the following

we show that Mechanism 3 has good performance with respect to

FR
(2)

as long as there exists for each agent an allocation where

they are not the only winning bidder.

Claim 1. The frugality ratio FR
(2)

for Mechanism 3 is equal to 2

whenever 𝑘 > 1, and 1 otherwise.

Proof. Let 𝐴 = 𝑎(𝒃) be the allocation returned by 𝑎 on input

𝒃 = (𝑏𝑖 , 𝛾𝑖 (𝑏𝑖 )). For all cases where 𝑘 ≥ 1 then the cost of the

second-best solution is at least ℎ. When 𝑘 > 1 then if 𝑖 ∈ 𝜇 (𝐴) the
total sum of payments is at mostℎ+(𝑘−1)ℎ/(𝑘−1) = 2ℎ, otherwise

if 𝑖 ∉ 𝜇 (𝐴) then the total sum of payments is simply ℎ. When 𝑘 = 1

then 𝛾𝑖 (𝑏𝑖 ) = (ℎ, . . . , ℎ) by definition, and whoever wins is paid

ℎ, either because 𝑖 wins the golden ticket or because some bidder

𝑗 ≠ 𝑖 wins and must be compensated at least her bid. □

5 CONCLUSION
In this work we study NOM auctions for revenue-maximisation and

frugal procurement. We characterise the set of incentive-compatible

mechanisms using golden tickets and wooden spoons, then show

that given black-box access to an (approximately) optimal allocation

function we can design simple payment rules that provide good

performance guarantees with respect to either maximising the

sum of payments extracted from the bidders or minimising the

compensation paid out. These payment rules work by selecting,

for an optimal allocation with the maximum (across all allocations)

number of winning bidders, a single bidder whose utility function

we will maximise.

There are several directions for further research left open by

our work. The performance of the payment rules we design is

dependent on the number of winners in an optimal allocation. Can

we design payment rules whose performance does not depend on

the structure of the feasible set, to better deal with instances where

this results in poor performance for the mechanism? We also note

that, given a bid 𝑏𝑖 of player 𝑖 , the best and worst outcomes of the

mechanism always occur on the same profile, regardless of her

true type. These are the golden ticket and wooden spoon profiles,

respectively, and the resulting mechanisms are therefore single-line
[2]. Can we design non single-line payment rules that yield better

performance? Finally, can we design (efficient) allocation functions

ourselves for general settings so that our mechanisms do not rely

on them as black boxes, and can we use in conjunction with an

appropriate payment rule to yield a NOM mechanism?
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