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ABSTRACT
We study fair allocation of indivisible goods and chores for agents

with ordinal preferences and arbitrary entitlements. In the case of

both goods and chores, we show that there always exist allocations

that are weighted necessarily proportional up to one item (WSD-
PROP1), that is, allocations that are WPROP1 under all additive
valuations consistent with agents’ ordinal preferences. We give a

polynomial-time algorithm to find such allocations by reducing it to

a problem of finding perfect matchings in a bipartite graph. We give

a complete characterization of these allocations as extreme points of

a perfect matching polytope. Using this polytope, we can optimize

any linear objective function over all WSD-PROP1 allocations, for
example, to find a min-cost WSD-PROP1 allocation of goods or

most efficientWSD-PROP1 allocation of chores. Additionally, we

show the existence and computation of sequencible (SEQ)WSD-
PROP1 allocation using rank-maximal perfect matchings and show

the incompatibility of Pareto optimality under all valuations with

the WSD-PROP1 notion.
We also consider the notion of Best-of-Both-Worlds (BoBW)

fairness. Using our characterization, we give a polynomial-time

algorithm to compute Ex-ante envy-free (WSD-EF) and Ex-post

WSD-PROP1 allocations for both goods and chores.
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1 INTRODUCTION
Discrete fair allocation is a fundamental problem at the intersection

of economics and computer science with applications in various

multi-agent settings. Here, we are required to allocate a set of

indivisible items to agents based on their preferences, such that

each item is allocated to exactly one agent. This setting is commonly

referred to as the assignment problem [5, 20, 22, 35, 44]. In this

setting, there is a set𝐴 of 𝑛 agents and a set 𝐵 of𝑚 indivisible items
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with each agent 𝑎𝑖 ∈ 𝐴 expressing an ordinal preference ordering

over the items in 𝐵, given by a permutation 𝜋𝑖 (𝐵) of the items in

𝐵. In addition to their ordinal preferences, agents may also have

private cardinal valuations that reflect the utility or disutility of

each item, ensuring compatibility with their ordinal preferences.

The goal is to allocate the items to agents in a fair manner. In

this paper, we focus on additive valuations, where the utility (or

disutility) of a set of items is the sum of the utilitites (or disutilities)

of individual items.

The set 𝐵 can represent goods, covering scenarios such as inheri-

tance division, house allocation, allocation of public goods, among

others. Alternatively, 𝐵 could be a set of chores, modeling situa-

tions like task allocation among employees or household chore

distribution between couples and so on.

Among various notions of fairness studied in the literature, two

prominent ones are Envy-freeness (EF) and Proportionality (PROP).
An allocation is said to be envy-free if no agent would prefer to

have the bundle held by any of the others. On the other hand, pro-

portionality requires that each agent receives a set of items whose

value is at least (at most, for chores) her proportional share of the

total value of all the items. Unfortunately, PROP or EF allocations

do not always exist and are NP-hard to compute [5, 14, 32]. Hence

relaxations of these notions have been proposed in literature. PROP
is relaxed as Proportionality up to one item (PROP1) [6, 8, 16, 19]
and EF is relaxed as Envy-free up to one item (EF1)[17, 32].

In practical scenarios, agents can have varying entitlements in
situations such as inheritance division, division of shares among

investors and so on. To capture such cases, a more generalized

version of these notions, namely the weighted envy-freeness WEF
[6, 18] and weighted proportionalityWPROP[4, 25] are considered.

Given only the ordinal preferences, these notions of fairness

are further strengthened by considering the stochastic dominance
(SD) relation. An agent prefers one allocation over another with

respect to the SD relation if she gets at least as much utility from

the former allocation as the latter for all cardinal utilities consistent

with the ordinal preferences. An allocation is said to be weighted

necessarily proportional (also known as weighted strong SD pro-

portionality) (WSD-PROP) if it remains WPROP under all cardinal

utilities consistent with the ordinal preferences. Similarly, the no-

tion of envy-freeness (EF) can be extended to weighted necessarily

envy-freeness (WSD-EF). Clearly, just like PROP and EF, WSD-
PROP and WSD-EF allocations may not exist. In fact, as shown in

[5, 39], in an SD-PROP allocation, each agent must receive their

most favorite item - which is not realizable when two or more

agents have the same most favorite item. For agents with varying

entitlements and under ordinal preferences, these notions can be

relaxed to WSD-EF1 and WSD-PROP1 (see e.g. [18, 25, 45]).

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

780

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Given the non-existence of WPROP allocations, a well-studied

notion of fairness is that of WPROPx. AlthoughWPROPx alloca-
tions exists under cardinal valuations [31], an analogous notion

for the ordinal instances - namely, WSD-PROPx allocations - need
not exist. We give an example in the full version [42]. This further

motivates the study of WSD-PROP1 allocations.
Another approach to tackle the non-existence of EF and PROP

allocations is via randomization. A promising notion of fairness

which has gained popularity over the recent years, is the notion of

"Best of Both Worlds Guarantees" (BoBW) [2, 4, 7, 21, 25]. The aim is

to compute a randomized fair allocation which also guarantees an

approximate fairness notion in the deterministic setting. Suppose P
and Q are two notions of fairness. Given a set of 𝑘 allocations 𝐴 =

⟨𝐴1, 𝐴2, · · · , 𝐴𝑘 ⟩ and a probability distribution 𝑝 = ⟨𝑝1, 𝑝2, · · · , 𝑝𝑘 ⟩
over 𝐴, the pair ⟨𝐴, 𝑝⟩ is said to be ex-post Q fair if each allocation

𝐴1, 𝐴2, · · · , 𝐴𝑘 are Q fair and is called ex-ante P fair if P fairness

is guaranteed in expectation.

In [2, 21], Aziz and Freeman et al. proposed polynomial time

algorithms - the PS-Lottery algorithm (also called as the Eating al-

gorithm) to compute ex-ante SD-EF and ex-post SD-EF1 allocations
of goods. In their approach, the agents are asked to hypothetically

eat the goods to produce a fractional allocationwhich is later decom-

posed into integral allocations. This approach was later modified

in [25] where the agents eat the goods at varying speeds to com-

pute allocations that are ex-anteWSD-EF and ex-postWSD-PROP1
along with weighted transfer envy-free up to one good WEF(1,1).

In practice, multiple allocations satisfyingWSD-PROP1 might

exist, and some could be better than others. For instance, different

allocations of goods might incur different shipping/transportation

costs or agents might have varying efficiency or expertise for each

chore, independent of their own disutility or preference. In such

cases, it becomes essential to optimize over the set of all WSD-
PROP1 allocations. In this work, we particularly address this prob-

lem, providing a unified way to deal with goods and chores.

1.1 Our Contributions
In this paper, we investigate fair allocation problems for agents

with ordinal preferences and unequal entitlements. We provide the

following key contributions. The theorems in this paper are for

chores, analogous result for goods are given in the full version [42].

• We show that the problem of existence and computation

of WSD-PROP1 allocations reduces to that of the existence

and computation of a perfect matching in a bipartite graph.

We give such a reduction for both goods and chores. This

gives a straightforward, matching based, polynomial-time

algorithm that seamlessly adapts to computation of a WSD-
PROP1 allocation of both goods and chores. In Theorem 3.6,

we show the reduction for chores.

• We show that every perfect matching in the graph con-

structed above corresponds to a WSD-PROP1 allocation,

and vice versa. Thus, we give a complete characterization

of WSD-PROP1 allocations for both goods and chores as

extreme points of a perfect matching polytope. This enables

optimization of any linear objective function over the set of

allWSD-PROP1 allocations. (See Section 4)

• We study the economic efficiencies that can be guaranteed

along with WSD-PROP1. We provide a counter-example to

show that Pareto optimality
1
(PO) is not compatible with

WSD-PROP1.
• On the positive side, in Theorem 6.3, we show that every allo-

cation that corresponds to a rank-maximal perfect matching

in our perfect matchings instance is sequencible. En-route

to this result, we show that rank-maximal matchings and

rank-maximal perfect matchings in any bipartite graph are

sequencible. (See Lemma 6.2). This may be of independent

interest.

• We also consider the best of both world fairness notion, in

the context of our characterization. We show that our char-

acterization leads to a simple polynomial-time algorithm

for computing ex-anteWSD-EF ex-postWSD-PROP1 allo-
cations for both goods and chores. (See Theorem 5.3.)To the

best of our knowledge, this is the first instance of such an

algorithm for the case of chores. In the context of goods,

our approach offers an alternative solution to the methods

proposed in [4, 25].

Extensions: Our characterization of WSD-PROP1 allocations in

terms of matchings paves a way to use tools from fairness in match-

ings to further generalization of the allocation problem. For instance,

items (and also agents) can belong to various categories depending

on their attributes, and there can be upper and lower quotas on

each category of items that can be allotted to each agent, and also

on each category of agents as to the number of items they get.

Existing results from the literature on fairness in matchings (e.g.

[23, 33, 38, 40, 41]) can then be used to determine the existence

of WSD-PROP1 allocations satisfying the category quotas, and

outputting one if it exists.

1.2 Related Work
Over the past two decades, there has been a growing interest in

the study of computation of discrete fair division [1, 3, 5, 9, 13,

14, 32, 37]. In [17, 32], Budish et al. and Lipton et al. show the

existence of EF1 allocations for goods. In [8, 19], Conitzer et al.

and Barman et al. extensively studied PROP1 allocations for goods.
While significant advancements have been made in the allocation of

goods, progress in the case of chores has been notably slower, and

our understanding of chore allocation remains relatively limited in

comparison to goods allocation. In 2019, Brânzei and Sandomirskiy

in [16] extended the notion of PROP1 to the case of chores and gave
an algorithm to compute them. Their algorithm runs in polynomial

time when either the number of agents or the number of chores

is fixed. Subsequently, Bhaskar et al. showed the existence and

polynomial time computation of EF1 allocation of chores [10].

For agents with varying entitlements, Chakraborty et al. [18]

showed the existence and computation of WEF1+PO allocation

in pseudo-polynomial time. They showed that, in the context of

weighted allocations, WEF1 does not imply WPROP1 for goods,

in contrast to the unweighted case. Li et al., in [31] showed the

existence and computation of WPROPx (which implies WPROP1)
allocation of chores. Recently, Ex-post WPROP1 allocations along

1
Here, given only ordinal rankings, we call an allocation cardinally PO if it is PO under

all cardinal valuations compatible with the ordinal rankings.
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with Ex-ante WEF allocations for goods were studied in [4, 25]. In

[4], Aziz et al. proposed the Weighted Max Nash lottery Algorithm

which computes an Ex-ante PO and Ex-postWPROP1 allocation,
for agents with additive cardinal valuations.

In the weighted setting with agents expressing ordinal prefer-

ences for goods, Pruhs et al. in [39] reduced the problem of WSD-
PROP allocation of goods to that of finding perfect matchings in a

bipartite graph. This was later generalized to preference lists with

ties by Aziz et al. in [5]. While WSD-PROP allocations may not

always exist, their method provides a polynomial-time algorithm to

compute one when it exists. Our reductions are inspired from their

work. In 2023, Wu et al. proposed the Reversed Weighted Picking
Sequence Algorithm [45] which always computes a WSD-EF1+SEQ
(thus WSD-PROP1+SEQ) allocation of chores in polynomial time.

2 PRELIMINARIES
Let 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} denote the set of 𝑛 agents and let 𝐵 =

{𝑏1, 𝑏2, . . . , 𝑏𝑚} be set of 𝑚 indivisible items. Each agent 𝑎𝑖 ex-

presses ordinal preferences over the items, given by a permutation

𝜋𝑖 of the items in 𝐵. The item set 𝐵 can either be a set of goods or

a set of chores. Each agent 𝑎𝑖 ∈ 𝐴 is endowed with an entitlement
𝛼𝑖 ∈ [0, 1] such that

∑
𝑎𝑖 ∈𝐴 𝛼𝑖 = 1.

Given an agent 𝑎𝑖 ∈ 𝐴, we denote the ordinal preference of 𝑎𝑖
as a rank function 𝜋𝑖 : [𝑚] → 𝐵. The 𝑗 th rank item is given by

𝜋𝑖 ( 𝑗) and the rank of an item 𝑏 is given by 𝜋−1
𝑖
(𝑏). In the case of

goods, 𝜋𝑖 ( 𝑗) represents the 𝑗 th-most favorite good and in the case

of chores, 𝜋𝑖 ( 𝑗) is the 𝑗 th-least favorite chore.

An instance of the allocation problem under ordinal valuations

is represented by a tuple I = ⟨𝐴, 𝐵,Π, F ⟩, where 𝐴 and 𝐵 are the

sets of agents and goods, respectively. Π = {𝜋1, 𝜋2, . . . , 𝜋𝑛} denotes
the set of rank functions, and F = {𝛼1, 𝛼2, . . . , 𝛼𝑛} represents the
entitlements of agents.

Fractional and Randomized Allocations: We adopt the definitions

of fractional and randomized allocations as outlined in [2, 4, 7,

21]. A fractional allocation of the items in 𝐵 to the agents in 𝐴

is given by a non-negative 𝑛 ×𝑚 matrix 𝑋 = [𝑥𝑖, 𝑗 ] ∈ [0, 1]𝑛×𝑚
such that an entry 𝑥𝑖, 𝑗 denotes the fraction of the item 𝑏 𝑗 allocated

to the agent 𝑎𝑖 ; for each item 𝑏 𝑗 ∈ 𝐵,
∑
𝑎𝑖 ∈𝐴 𝑥𝑖, 𝑗 = 1. We denote

𝑋𝑖 = ⟨𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑚⟩ as the fractional bundle of items that is

assigned to agent 𝑎𝑖 . A fractional allocation is integral, if 𝑥𝑖, 𝑗 ∈
{0, 1} for all 𝑎𝑖 ∈ 𝐴 and 𝑏 𝑗 ∈ 𝐵. For an integral allocation 𝑋 , bundle
𝑋𝑖 refers to the set of items that is assigned to agent 𝑎𝑖 and the

allocation 𝑋 can be characterized by the bundles of the agents, i.e.

𝑋 = ⟨𝑋1, 𝑋2, . . . , 𝑋𝑛⟩.
A randomized allocation is a lottery over integral allocations.

In particular, a randomized allocation 𝑅 is determined by 𝑘 pairs

{(𝑝1, 𝑌 1), (𝑝2, 𝑌 2), . . . , (𝑝𝑘 , 𝑌𝑘 )}, where each of the integral allo-

cations 𝑌 𝑗
for 𝑗 ∈ [𝑘], is implemented with probability 𝑝 𝑗 > 0

and

∑
𝑗∈[𝑘 ] 𝑝 𝑗 = 1. We say that such an integral allocation is in

the support of the randomized allocation. Moreover, we say that a

fractional allocation 𝑋 implements a randomized allocation 𝑌 , if

the marginal probability of agent 𝑎𝑖 receiving item 𝑏 𝑗 is 𝑥𝑖, 𝑗 .

Cardinal Valuations: Each agent 𝑎𝑖 ∈ 𝐴 can have a private

cardinal valuation function 𝑣𝑖 : 2
𝐵 → R≥0. When 𝐵 represents a

set of goods, 𝑣𝑖 is called as a utility function. When 𝐵 represents a

set of chores, 𝑣𝑖 is called as a disutility function. The heaviest (least

favorite) chore is assigned the highest disutility value. We consider

agent’s valuation function to be additive, that is ∀𝑆 ⊆ 𝐵, 𝑣𝑖 (𝑆) =∑
𝑏∈𝑆 𝑣𝑖 (𝑏).
A valuation function 𝑣𝑖 is said to be 𝜋𝑖 -respecting if 𝑣𝑖 is con-

sistent with the ordinal ranking 𝜋𝑖 . That is, ∀𝑏,𝑏′ ∈ 𝐵, 𝜋−1𝑖
(𝑏) <

𝜋−1
𝑖
(𝑏′) =⇒ 𝑣𝑖 (𝑏) ≥ 𝑣𝑖 (𝑏′). We denote the set of all 𝜋𝑖 -respecting

valuations as 𝒰(𝜋𝑖 ).

The Interval Representation of Items: Consider an agent 𝑎𝑖 ∈ 𝐴
with an entitlement 𝛼𝑖 . We arrange the items along a number line

from 0 to𝑚, such that the 𝑗 th rank item 𝜋𝑖 ( 𝑗) occupies the interval
[ 𝑗 − 1, 𝑗] for 1 ≤ 𝑗 ≤ 𝑚. We refer to the interval [ 𝑗 − 1, 𝑗] as
the item 𝜋𝑖 ( 𝑗) itself. Furthermore, given an interval 𝐼 = [𝑝, 𝑞] ⊆
[0,𝑚], we refer to 𝐼 as a fractional bundle itself. If a 𝛿 fraction

of an interval [ 𝑗 − 1, 𝑗] overlaps with the interval [𝑝, 𝑞], that is
| [ 𝑗 − 1, 𝑗] ∩ [𝑝, 𝑞] | = 𝛿 , then 𝛿 fraction of the item 𝑏 = 𝜋𝑖 ( 𝑗)
belongs to the fractional bundle 𝐼 . For a cardinal valuation function

𝑣𝑖 of agent 𝑎𝑖 , the value of the bundle 𝐼 = [𝑝, 𝑞] is calculated as

𝑣𝑖 (𝐼 ) =
∑

𝑗∈[𝑚] | [ 𝑗 − 1, 𝑗] ∩ [𝑝, 𝑞] | · 𝑣𝑖 (𝜋𝑖 ( 𝑗)).
Now, let the [0,𝑚] interval be sub-divided into 𝑘𝑖 = ⌈𝑚𝛼𝑖 ⌉ many

intervals of lengths
1

𝛼𝑖
, except possibly the last interval, which

can be shorter. The the ℓ th interval is given by 𝐼 𝑖
ℓ
=

[
ℓ−1
𝛼𝑖

, ℓ
𝛼𝑖

]
for

1 ≤ ℓ ≤ ⌊𝑚𝛼𝑖 ⌋, and, if𝑚𝛼𝑖 is not integral, then the last interval is[
⌊𝑚𝛼𝑖 ⌋
𝛼𝑖

,𝑚

]
.

Definition 2.1. For an agent 𝑎𝑖 ∈ 𝐴, we define the set of intervals
𝐼 𝑖 = {𝐼 𝑖

1
, 𝐼 𝑖
2
, . . . , 𝐼 𝑖

𝑘𝑖
} as the interval set of 𝑎𝑖 .

Note that if 𝛼𝑖 < 1, length of each interval
1

𝛼𝑖
> 1. Thus each

interval 𝐼 𝑖
ℓ
, except possibly the last one, contains a non-zero portion

of at least two consecutive items.

Stochastic Dominance(SD):. A standard way of comparing frac-

tional/randomized allocations is through first-order stochastic dom-

inance. This notion has been extensively studied previously in

[5, 12]. An agent 𝑎𝑖 prefers one allocation over another with re-

spect to the SD relation if she gets at least as much value (or at

most - in the case of chores) from the former allocation as the latter

under all 𝜋𝑖 -respecting cardinal valuations.

Suppose 𝑋𝑖 and 𝑌𝑖 denote the fractional bundles of goods that

an agent 𝑎𝑖 receives in the allocations 𝑋 = [𝑥𝑖 𝑗 ] and 𝑌 = [𝑦𝑖 𝑗 ]
respectively. We say that an agent 𝑎𝑖 SD prefers 𝑋𝑖 to 𝑌𝑖 , denoted

by 𝑋 ≿SD
𝑖

𝑌 if the following holds:

∀𝑗∗ ∈ [𝑚],
∑︁

𝑗 :𝜋𝑖 ( 𝑗 )≥𝜋𝑖 ( 𝑗∗ )
𝑥𝑖, 𝑗 ≥

∑︁
𝑗 :𝜋𝑖 ( 𝑗 )≥𝜋𝑖 ( 𝑗∗ )

𝑦𝑖, 𝑗

When 𝑋𝑖 and 𝑌𝑖 denote bundles of chores, we say 𝑋 ≿
SD

𝑖
𝑌 if the

following holds:

∀𝑗∗ ∈ [𝑚],
∑︁

𝑗 :𝜋𝑖 ( 𝑗 )≥𝜋𝑖 ( 𝑗∗ )
𝑥𝑖, 𝑗 ≤

∑︁
𝑗 :𝜋𝑖 ( 𝑗 )≥𝜋𝑖 ( 𝑗∗ )

𝑦𝑖, 𝑗

2.1 Fairness and Efficiency Notions
We begin with ex-ante - ex-post notions as defined in [2, 4, 7, 12,

21, 25]. For any property ⟨𝑃⟩ defined for an allocation, we say that

a randomized allocation 𝑅 satisfies ⟨𝑃⟩ ex-ante if the allocation 𝑋

that implements 𝑅 satisfies ⟨𝑃⟩. For any property ⟨𝑄⟩ defined for an
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integral allocation, we say that a randomized allocation 𝑅 satisfies

⟨𝑄⟩ ex-post if every integral allocation in its support satisfies ⟨𝑄⟩.
We now define various notions of weighted fairness under or-

dinal valuations. We start with the classic notion of envy-freeness.
Consider an instance of the allocation problem under ordinal valu-

ations I = ⟨𝐴, 𝐵,Π, F ⟩.

Definition 2.2 (WSD-EF). ([12]) Let 𝐵 be a set of chores. An allo-

cation 𝑋 = ⟨𝑋1, 𝑋2, . . . , 𝑋𝑛⟩ of 𝐵 is said to be weighted SD envy-free
(WSD-EF), if for every pair of agents 𝑎𝑖 , 𝑎𝑘 ∈ 𝐴, we have

𝑣𝑖 (𝑋𝑖 )
𝛼𝑖

≤ 𝑣𝑖 (𝑋𝑘 )
𝛼𝑘

∀𝑣𝑖 ∈ 𝒰(𝜋𝑖 ),∀𝑣𝑘 ∈ 𝒰(𝜋𝑘 )

If 𝐵 is a set of goods, then 𝑋 is WSD-EF if, for every pair of agents

𝑎𝑖 , 𝑎𝑘 ∈ 𝐴, we have
𝑣𝑖 (𝑋𝑖 )
𝛼𝑖

≥ 𝑣𝑖 (𝑋𝑘 )
𝛼𝑘

∀𝑣𝑖 ∈ 𝒰(𝜋𝑖 ),∀𝑣𝑘 ∈ 𝒰(𝜋𝑘 )

We consider the following notions of relaxed proportionality

defined for integral allocations under cardinal valuations.

Definition 2.3 (WPROP1 [6]). Let 𝐵 be a set of chores. In an

integral allocation 𝑋 = ⟨𝑋1, 𝑋2, . . . , 𝑋𝑛⟩, a bundle 𝑋𝑖 is said to be

weighted proportional up to one item (WPROP1) for an agent 𝑎𝑖 with

a valuation function 𝑣𝑖 , if:

∃𝑏 ∈ 𝑋𝑖 , 𝑣𝑖 (𝑋𝑖 \ {𝑏}) ≤ 𝛼𝑖 · 𝑣𝑖 (𝐵)

If 𝐵 is a set of goods, then a bundle 𝑋𝑖 is said to be WPROP1 for an
agent 𝑎𝑖 if:

∃𝑏 ∈ 𝐵, 𝑣𝑖 (𝑋𝑖 ∪ {𝑏}) ≥ 𝛼𝑖 · 𝑣𝑖 (𝐵)

The allocation 𝑋 is said to be WPROP1 if, for all 𝑖 ∈ [𝑛], bundle 𝑋𝑖
is WPROP1 for agent 𝑎𝑖 .

Although the notion of WPROP1 is conventionally defined for

integral allocations, for the sake of analysis, we extend this notion

to fractional allocations as follows:

Definition 2.4 (fractionalWPROP1). Let 𝐵 be a set of chores. A

fractional bundle 𝑋𝑖 = ⟨𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑚⟩ is WPROP1 for an agent

𝑎𝑖 with a valuation function 𝑣𝑖 , if ∃𝑏 = ⟨𝛽1, 𝛽2, . . . , 𝛽𝑚⟩, where
∥𝑏∥1 = 1 and∀𝑗 ∈ [𝑚] 0 ≤ 𝛽 𝑗 ≤ 𝑥𝑖, 𝑗 , we have 𝑣𝑖 (𝑋𝑖−𝑏) ≤ 𝛼𝑖 ·𝑣𝑖 (𝐵).

In the case of goods, a fractional bundle 𝑋𝑖 is WPROP1 for an
agent 𝑎𝑖 , if ∃𝑏 = ⟨𝛽1, 𝛽2, . . . , 𝛽𝑚⟩, where ∥𝑏∥1 = 1, 𝛽 𝑗 ≥ 0, and

∀𝑗 ∈ [𝑚] 𝑥𝑖, 𝑗 + 𝛽 𝑗 ≤ 1, we have 𝑣𝑖 (𝑋𝑖 + 𝑏) ≥ 𝛼𝑖 · 𝑣𝑖 (𝐵). The
allocation 𝑋 is WPROP1 if bundle 𝑋𝑖 is WPROP1 for every agent

𝑎𝑖 ∈ 𝐴.

We can extend these definitions to the case of ordinal valuations

as follows:

Definition 2.5 (WSD-PROP1). An allocation 𝑋 is said to be WSD-
PROP1, if 𝑋 isWPROP1 for every agent 𝑎𝑖 ∈ 𝐴 under all valuations

𝑣𝑖 ∈ 𝒰(𝜋𝑖 ).

It is straightforward to see that, for an agent 𝑎𝑖 , if a bundle 𝑋

is WSD-PROP1, then every bundle 𝑌 s.t. 𝑌 ≿SD
𝑖

𝑋 is also WSD-
PROP1.

Along with the notions of fairness, we study the following eco-

nomic efficiencies considered in literature.

Definition 2.6 (Pareto Optimailty (PO)). For agents with cardinal

valuations, an allocation 𝑋 is said to be Pareto Optimal (PO) if there
is no allocation 𝑌 that Pareto dominates it. In the case of chores, an

allocation 𝑌 is said to Pareto dominate an allocation 𝑋 if 𝑣𝑖 (𝑌𝑖 ) ≤
𝑣𝑖 (𝑋𝑖 ) for all 𝑖 ∈ [𝑛] and ∃ 𝑗 ∈ [𝑛] such that 𝑣 𝑗 (𝑌𝑗 ) < 𝑣 𝑗 (𝑋 𝑗 ). For
goods, 𝑌 is said to Pareto dominate 𝑋 if 𝑣𝑖 (𝑌𝑖 ) ≥ 𝑣𝑖 (𝑋𝑖 ) for all
𝑖 ∈ [𝑛] and ∃ 𝑗 ∈ [𝑛] such that 𝑣 𝑗 (𝑌𝑗 ) > 𝑣 𝑗 (𝑋 𝑗 ).

In the absence of Pareto Optimal allocations, a weaker notion

of efficiency known as sequencibility (SEQ) is often considered. A

picking sequence of 𝑛 agents for𝑚 items is an𝑚-length sequence

𝜎 = ⟨𝑎′
1
, 𝑎′

2
, . . . , 𝑎′𝑚⟩ where 𝑎′𝑖 ∈ 𝐴 for 𝑖 ∈ [𝑚]. An allocation 𝑋

is the result of the picking sequence 𝜎 if it is the output of the

following procedure: Initially every bundle is empty; then, at time

step 𝑡 , agent 𝑎′𝑡 inserts in her bundle the most preferred item among

the available ones. Once an item is selected, it is removed from the

set of the available items.

Definition 2.7 (Sequencibility (SEQ)). An allocation 𝑋 is said to

be sequencible (SEQ) if 𝑋 is the result of some picking sequence 𝜎 .

It is known that PO implies SEQ , and when number of agents

𝑛 = 2, then PO is same as SEQ [15].

2.2 Graphs and Matchings
In a graph 𝐺 = (𝑉 , 𝐸), for any 𝑆 ⊂ 𝑉 , 𝑁 (𝑆) denotes the set of

neighbors of the vertices in 𝑆 . A matching is a subset of edges,

no two of which share a vertex. A matching𝑀 is said to saturate
or match a vertex 𝑣 if 𝑀 contains an edge incident on 𝑣 . Given

a bipartite graph 𝐺 = (𝐴 ∪ 𝐵, 𝐸), an 𝐴-perfect matching 𝑀 is a

matching in𝐺 that saturates all the vertices in𝐴. When |𝐴| = |𝐵 |, an
𝐴-perfect matching is same as a perfect matching. Given a matching

𝑀 and a matched vertex 𝑎 ∈ 𝐴, we denote by 𝑀 (𝑎) the matched

partner of 𝑎.

Rank-Maximal Matchings [27]: Consider a bipartite graph 𝐺 =

(𝐴 ∪ 𝐵, 𝐸), s.t |𝐴| = 𝑛, |𝐵 | =𝑚, where each vertex 𝑎 in 𝐴 ranks its

neighbours 𝑁 (𝑎) from 1 to |𝑁 (𝑎) |. For each edge (𝑎, 𝑏) ∈ 𝐸, let

𝑟𝑎𝑛𝑘 (𝑎, 𝑏) ∈ [𝑚] denote the rank of 𝑏 in 𝑎’s ranking. The graph 𝐺

along with the ranking is denoted as 𝐺 = (𝐴 ∪ 𝐵, 𝐸1, 𝐸2, . . . , 𝐸𝑚)
where 𝐸𝑖 = {(𝑎, 𝑏) ∈ 𝐸 | 𝑟𝑎𝑛𝑘 (𝑎, 𝑏) = 𝑖}, for all 𝑖 ∈ [𝑛]. A matching

𝑀 in 𝐺 can be decomposed as 𝑀 = 𝑀1 ∪ 𝑀2 ∪ · · · ∪ 𝑀𝑚 where

𝑀𝑖 = 𝑀 ∩ 𝐸𝑖 . We define signature of a matching 𝑀 in 𝐺 as an𝑚

length tuple 𝜌 (𝑀) = ⟨|𝑀1 |, |𝑀2 |, . . . , |𝑀𝑚 |⟩.

Definition 2.8 (Rank-Maximal Matching). Given a bipartite graph

𝐺 = (𝐴 ∪ 𝐵, 𝐸1, 𝐸2, . . . , 𝐸𝑚), a matching𝑀 in 𝐺 with lexicographi-

cally highest signature 𝜌 (𝑀) is called as a rank-maximal matching.

Note that all rank-maximal matchings have identical signature.

Furthermore, a rank-maximal matching need not be a maximum

size matching.

Definition 2.9 (Rank-Maximal Perfect Matching). Given a bipar-

tite graph 𝐺 = (𝐴 ∪ 𝐵, 𝐸1, 𝐸2, . . . , 𝐸𝑚), a perfect matching 𝑀 in 𝐺

with lexicographically highest signature 𝜌 (𝑀) among all perfect

matchings in 𝐺 is called as a rank-maximal perfect matching.

A matching𝑀 in𝐺 can be interpreted as an allocation of vertices

in 𝐵 to the vertices in 𝐴. The ranks of the edges can be interpreted
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as the ordinal preferences of the vertices in 𝐴. Under this interpre-

tation, we borrow the definition of sequencibility (SEQ) (Defini-

tion 2.7) for matchings. A matching 𝑀 is said to be sequencible if

the corresponding allocation𝑀 is sequencible. We denote by 𝜌 (𝑀),
the picking sequence of vertices in 𝐴 that constructs𝑀 .

3 EXISTENCE AND COMPUTATION OF
WSD-PROP1 ALLOCATIONS FOR CHORES
VIA MATCHINGS

We now show thatWSD-PROP1 allocations always exist for chores.
To show this, we first characterizeWSD-PROP1 bundles in Lemma 3.1.

Using this lemma, we construct a bipartite graph 𝐺𝑐 = (𝑆 ∪ 𝐵, 𝐸)
called an allocation graph of a chores instance. We show that a

𝐵-perfect matching in𝐺𝑐 corresponds to a WSD-PROP1 allocation.
We then use Hall’s marriage condition [24] to demonstrate that

such a matching always exists, thus establishing the existence of

WSD-PROP1 allocations. We extend these results to the case of

goods in the full version [42].

Lemma 3.1. Let 𝑇 ⊆ 𝐵 be a set of𝑚𝑖 chores, and let 𝑟1 < 𝑟2 <

· · · < 𝑟𝑚𝑖
be the ranks of the chores in 𝑇 in the ranking 𝜋𝑖 of agent

𝑎𝑖 (i.e, this set consists of the 𝑟1-least favorite chore, 𝑟2-least favorite
chore,· · ·, and the 𝑟𝑚𝑖

-least favorite chore for agent 𝑎𝑖 ). Then bundle
𝑇 is WSD-PROP1 for 𝑎𝑖 if and only if the following two conditions
hold:

𝑚𝑖 ≤ ⌊𝑚𝛼𝑖 ⌋ + 1 (1)

∀1 ≤ ℓ ≤ 𝑚𝑖 , 𝑟ℓ ≥
⌈
ℓ − 1
𝛼𝑖

⌉
(2)

Proof. Without loss of generality, for simplifying the notation,

let the chores be renumbered according to the ranking of agent 𝑎𝑖 .

Thus, 𝑏 𝑗 = 𝜋𝑖 ( 𝑗) for 1 ≤ 𝑗 ≤ 𝑚. We assume 𝛼𝑖 < 1 as otherwise any

bundle isWSD-PROP1 for agent 𝑎𝑖 and further, 𝛼𝑖 > 0 as otherwise

agent 𝑎𝑖 can be removed from the instance.

First, let us prove the necessity of these conditions. If any of the

two conditions are not met, we exhibit a valuation 𝑣𝑖 according

to which, the bundle 𝑇 is not WPROP1 for agent 𝑎𝑖 . Suppose 𝑇

violates condition 1, i.e.𝑚𝑖 ≥ ⌊𝑚𝛼𝑖 ⌋ + 2. We set 𝑣𝑖 (𝑏 𝑗 ) = 1 for all

𝑏 𝑗 ∈ 𝐵. Under this valuation,
∀𝑏 ∈ 𝑇, 𝑣𝑖 (𝑇 \ {𝑏}) ≥ ⌊𝑚𝛼𝑖 ⌋ + 1 > 𝑚𝛼𝑖 = 𝛼𝑖 · 𝑣𝑖 (𝐵)

Thus 𝑇 is not aWPROP1 bundle. Now, suppose 𝑇 violates condi-

tion 2, i.e. 𝑟ℓ ≤
⌈
ℓ−1
𝛼𝑖

⌉
− 1 for some 1 ≤ ℓ ≤ 𝑚𝑖 . We set 𝑣𝑖 (𝑏 𝑗 ) = 1

for all 1 ≤ 𝑗 ≤
⌈
ℓ−1
𝛼𝑖

⌉
− 1 and 𝑣𝑖 (𝑏 𝑗 ) = 0 for all 𝑗 ≥

⌈
ℓ−1
𝛼𝑖

⌉
. Under

this valuation, ∀𝑏 ∈ 𝑇 we have

𝑣𝑖 (𝑇 \ {𝑏}) ≥ ℓ − 1 =
(
ℓ − 1
𝛼𝑖

)
𝛼𝑖 >

(⌈
ℓ − 1
𝛼𝑖

⌉
− 1

)
𝛼𝑖 = 𝛼𝑖 · 𝑣𝑖 (𝐵)

Therefore, the bundle 𝑇 is not WPROP1.
We now show the sufficiency of these conditions. Suppose con-

ditions 1 and 2 hold for the bundle𝑇 . It suffices to consider the case

when both the conditions 1 and 2 are tight, except 𝑟1 = 1. This is

because, for any other bundle 𝑌𝑖 = {𝜋 (𝑟 ′
1
), 𝜋 (𝑟 ′

2
) · · · , 𝜋 (𝑟 ′

𝑘
)} where

1 ≤ 𝑟 ′
1
< 𝑟 ′

2
< · · · < 𝑟 ′

𝑘
, and at least one of the conditions 1 or 2 is

not tight, we have 𝑌𝑖 ≿
SD

𝑖
𝑇 since, for all 1 ≤ ℓ ≤ 𝑘 , 𝑟 ′

ℓ
≥ 𝑟ℓ .
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· · · 𝑚
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Figure 1: Construction of the fractional allocation𝑇 ′ (shaded
in grey) that is SD dominated by 𝑇 .

To show that 𝑇 is WSD-PROP1 for agent 𝑎𝑖 , we construct a

fractional allocation 𝑇 ′ using 𝑇 such that 𝑇 ≿SD
𝑖

𝑇 ′ and 𝑇 ′ is a
WSD-PROP1 allocation.

Consider the interval set 𝐼 𝑖 = {𝐼 𝑖
1
, 𝐼 𝑖
2
, . . . , 𝐼 𝑖

𝑘𝑖
} of agent 𝑎𝑖 . Include

the chore 𝑏1 in𝑇
′
. For any other chore 𝑏 𝑗 ∈ 𝑇 \ {𝑏1}, we know that

𝜋−1
𝑖
(𝑏 𝑗 ) =

⌈
ℓ−1
𝛼𝑖

⌉
for some ℓ ∈ [𝑚𝑖 ]. Therefore, a non-zero fraction

of the chore𝑏 𝑗 lies in the right end of the interval 𝐼
𝑖
ℓ−1 =

[
ℓ−2
𝛼𝑖

, ℓ−1𝛼𝑖

]
.

Suppose
ℓ−1
𝛼𝑖

=

⌈
ℓ−1
𝛼𝑖

⌉
−𝛿 for some 0 ≤ 𝛿 < 1. That is, 1−𝛿 fraction

of 𝑏 𝑗 lies in 𝐼 𝑖
ℓ−1 and the remaining 𝛿 portion lies in the interval

𝐼 𝑖
ℓ
. Then, from the interval 𝐼 𝑖

ℓ−1 include the 1 − 𝛿 fraction of chore

𝑏 𝑗 and 𝛿 fraction of the preceding chore 𝑏 𝑗−1 in 𝑇 ′ (as shown in

Figure 1). Under any valuation 𝑣𝑖 ∈ 𝒰(𝜋𝑖 ), for every chore 𝑏 𝑗 we

have 𝛿𝑣𝑖 (𝑏 𝑗−1) + (1 − 𝛿)𝑣𝑖 (𝑏 𝑗 ) ≥ 𝑣𝑖 (𝑏 𝑗 ). Therefore it is clear that
𝑇 ≿SD

𝑖
𝑇 ′.

From the construction of 𝑇 ′, we know 𝑇 ′ \ {𝑏1} contains the
least valued one unit of chore from each interval (except possibly

the last interval which could have no contribution to𝑇 ′). Therefore,
𝑣𝑖 (𝑇 − 𝑏1) ≤

∑𝑘𝑖
𝑗=1

𝛼𝑖𝑣𝑖 (𝐼 𝑖𝑗 ) = 𝛼𝑖 · 𝑣𝑖 (𝐵). Thus, 𝑇 ′ is a WSD-PROP1
bundle. □

With the help of this characterization, we can now construct

an allocation graph 𝐺𝑐 of chores. Given a fair allocation instance

I = ⟨𝐴, 𝐵,Π, F ⟩, we construct the allocation graph𝐺𝑐 = (𝑆 ∪ 𝐵, 𝐸)
as follows:

- The set of chores 𝐵 forms one bipartition of 𝐺𝑐 with chores

interpreted as vertices.

- For every agent 𝑎𝑖 ∈ 𝐴, and every ℓ = 1, 2, · · · ,𝑚𝑖 , where

𝑚𝑖 = ⌊𝑚𝛼𝑖 ⌋ + 1, there is a vertex 𝑠𝑖,ℓ in 𝑆 . We call these the

𝑚𝑖 many slots of agent 𝑎𝑖 .
- From each slot 𝑠𝑖,ℓ , draw edges to every chore 𝑏 for which

𝜋−1
𝑖
(𝑏) ≥

⌈
ℓ−1
𝛼𝑖

⌉
. That is, (𝑠𝑖,ℓ , 𝑏) ∈ 𝐸 ⇐⇒ 𝜋−1

𝑖
(𝑏) ≥

⌈
ℓ−1
𝛼𝑖

⌉
The allocation graph 𝐺𝑐 exhibits several interesting properties:

Firstly, we have

Proposition 3.2. Every 𝐵-perfect matching in𝐺𝑐 , (i.e a matching
that saturates all the chores), satisfies conditions 1 and 2 and this
corresponds to aWSD-PROP1 allocation of chores. Conversely, any
WSD-PROP1 allocation satisfies conditions 1 and 2 and thus forms a
𝐵-perfect matching in 𝐺𝑐 .

Moreover, in the interval set 𝐼 𝑖 = {𝐼 𝑖
1
, 𝐼 𝑖
2
, . . . , 𝐼 𝑖

𝑘𝑖
} of an agent 𝑎𝑖 ,

if non-zero fraction of a chore 𝑏 lies in the interval 𝐼 𝑖
ℓ
=

[
ℓ−1
𝛼𝑖

, ℓ
𝛼𝑖

]
,
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then 𝜋−1
𝑖
(𝑏) ≥

⌈
ℓ−1
𝛼𝑖

⌉
. Thus slot 𝑠𝑖,ℓ has an edge to chore 𝑏 in 𝐺𝑐 .

This is formally stated in the following proposition.

Proposition 3.3. In the allocation graph 𝐺𝑐 of a chore allocation
instance I, each slot 𝑠𝑖,ℓ of each agent 𝑎𝑖 ∈ 𝐴, has edges to every chore
with a non-zero portion in the intervals 𝐼 𝑖

𝑘
, ∀𝑘 ≥ ℓ in the interval set

of 𝑎𝑖 .

We also observe the following property regarding edge relation-

ships in 𝐺𝑐 :

Proposition 3.4. Let 𝑆𝑖 = {𝑠𝑖,ℓ | ℓ ∈ [𝑚𝑖 ]} represent the set
of slots in 𝑆 that belong to an agent 𝑎𝑖 ∈ 𝐴. For any two chores 𝑏 𝑗
and 𝑏𝑘 in 𝐵, such that 𝜋−1

𝑖
(𝑏𝑘 ) ≥ 𝜋−1

𝑖
(𝑏 𝑗 ), the neighbourhood of 𝑏𝑘

in 𝑆𝑖 contains the neighbourhood of 𝑏 𝑗 in 𝑆𝑖 . That is, 𝑁 (𝑏 𝑗 ) ∩ 𝑆𝑖 ⊆
𝑁 (𝑏𝑘 ) ∩ 𝑆𝑖 . Therefore, for any set of chores 𝑌 = {𝑏1, 𝑏2, · · · , 𝑏𝑘 }, the
following holds:

𝑆𝑖 ∩ 𝑁 ({𝜋𝑖 (1), 𝜋𝑖 (2), · · · , 𝜋𝑖 (𝑘)}) ⊆ 𝑆𝑖 ∩ 𝑁 (𝑌 )

We now show the existence of WSD-PROP1 allocations by show-
ing that a 𝐵-perfect matching always exists in𝐺𝑐 . To prove this, we

rely on the Hall’s marriage theorem [24] which characterizes the

existence of perfect matchings in bipartite graphs.

Theorem 3.5 (Hall’s Theorem [24]). Given a bipartite graph
𝐺 = (𝐴 ∪ 𝐵, 𝐸), there exists an 𝐴-perfect matching in𝐺 if and only if
∀𝑆 ⊆ 𝐴, |𝑁 (𝑆) | ≥ |𝑆 |.

Now, we establish the following main result:

Theorem 3.6. For any fair allocation instance of chores I =

⟨𝐴, 𝐵,Π, F ⟩, there always exists a WSD-PROP1 allocation.

Proof. Consider the allocation graph𝐺𝑐 of I. We show that𝐺𝑐

always has a 𝐵-perfect matching and thus I has a WSD-PROP1
allocation. Let 𝑇 = {𝑏1, 𝑏2, · · · , 𝑏𝑘 } ⊆ 𝐵 be a set of 𝑘 vertices in 𝐵.

The goal is to show that |𝑁 (𝑇 ) | ≥ |𝑇 |. From Proposition 3.4, we can

assume w.l.o.g that, for each agent 𝑎𝑖 ∈ 𝐴, the chores 𝑏1, 𝑏2, · · · , 𝑏𝑘
are the first (lowest rank) 𝑘 chores, since it minimizes the size

of the neighbourhood of the chores. For an agent 𝑎𝑖 , let 𝑠𝑖,ℓ𝑖 be

the highest index slot which has an edge to 𝑏𝑘 . Thus, all the slots

𝑠𝑖,1, 𝑠𝑖,2, · · · , 𝑠𝑖,ℓ𝑖 have edges to 𝑏𝑘 . Therefore, |𝑁 (𝑇 ) | ≥
∑
𝑖∈[𝑛] ℓ𝑖 .

Since the slot 𝑠𝑖,ℓ𝑖+1 does not have an edge to 𝑏𝑘 , condition 2 is

violated. Thus,

𝑘 <

⌈
(ℓ𝑖 + 1) − 1

𝛼𝑖

⌉
=⇒ 𝑘 <

ℓ𝑖

𝛼𝑖
+ 1

=⇒ (𝑘 − 1)𝛼𝑖 < ℓ𝑖

=⇒
∑︁
𝑖∈[𝑛]

(𝑘 − 1)𝛼𝑖 <
∑︁
𝑖∈[𝑛]

ℓ𝑖 (Summing over all agents)

=⇒ 𝑘 − 1 < |𝑁 (𝑇 ) | (We know

∑︁
𝑖∈[𝑛]

ℓ𝑖 ≤ |𝑁 (𝑇 ) |)

=⇒ 𝑘 ≤ |𝑁 (𝑇 ) | (As both |𝑁 (𝑇 ) | and 𝑘 are integers)

Therefore, for any set of 𝑘 chores the size of the neighbourhood is

more than or equal to 𝑘 . From Theorem 3.5, the allocation graph𝐺𝑐

always has a 𝐵-perfect matching - which corresponds to a WSD-
PROP1 allocation of chores. □

The graph𝐺𝑐 has O(𝑚) vertices and O(𝑚2) many edges, assum-

ing𝑚 ≥ 𝑛. Therefore, using the famous Hopcroft-Karp algorithm

[26] to find perfect matchings, we can compute a WSD-PROP1
allocation in time O(𝑚2.5).

4 OPTIMIZING OVER ALLOCATIONS
Recall that any 𝐵-perfect matching in the allocation graph𝐺𝑐 corre-

sponds to a WSD-PROP1 allocation and vice versa. In this section,

we extend the allocation graph 𝐺𝑐 to 𝐺+𝑐 by balancing the two

parts of the bipartite graph while maintaining the correspondence

between WSD-PROP1 allocations and perfect matchings in 𝐺+𝑐 .
We can then optimize any linear objective function over all WSD-
PROP1 allocations using the perfect matching polytope.

Extending the Allocation Graph: Consider the allocation graph

𝐺𝑐 = (𝑆 ∪ 𝐵, 𝐸) of an instance I of chores allocation. For each

agent 𝑎𝑖 ∈ 𝐴, there are𝑚𝑖 = ⌊𝑚𝛼𝑖 ⌋ + 1 many slots in 𝑆 . Therefore

the total number of slots |𝑆 | = 𝑛 + ∑
𝑖∈[𝑛] ⌊𝑚𝛼𝑖 ⌋. To construct

𝐺+𝑐 = (𝑆 ∪ 𝐵′, 𝐸′), we create |𝑆 | −𝑚 = 𝑞 many additional dummy
chores 𝑏′

1
, 𝑏′

2
, · · · , 𝑏′𝑞 in 𝐵′ to balance the bipartite graph. Draw

additional edges from all the slots in 𝑆 to every dummy chore.

A WSD-PROP1 allocation of chores gives a 𝐵-perfect matching

in 𝐺𝑐 . We can extend this matching to a perfect matching in 𝐺+𝑐 by

matching the dummy chores in anymanner as all the dummy chores

have edges to every slot. Conversely, given a perfect matching in

𝐺+𝑐 , we can ignore the edges from dummy chores to get a 𝐵-perfect

matching in 𝐺𝑐 and thus a WSD-PROP1 allocation.
Given a bipartite graph𝐺 = (𝑋 ∪𝑌, 𝐸), the following constraints

define the matching polytope:∑︁
𝑥∈𝑁 (𝑦)

𝑒𝑥𝑦 = 1 ∀𝑦 ∈ 𝑌∑︁
𝑦∈𝑁 (𝑥 )

𝑒𝑥𝑦 = 1 ∀𝑥 ∈ 𝑋

𝑒𝑥𝑦 ≥ 0

(3)

We know that above matching polytope is integral [34] and hence a

matching that maximizes a given objective function is computable

in polynomial-time [29, 30]. We now use this fact to computeWSD-
PROP1 allocations while considering agents’ efficiency in doing the

chores.

4.1 Considering Agent Competence
Regardless of how each agent personally values any given chore,

it is important to acknowledge that their skills and proficiency

in performing them can vary significantly across different tasks.

For any specific agent-chore pairing 𝑎𝑖 , 𝑏, we can quantify the

agent’s competence in performing chore 𝑏 as 𝑢𝑖 (𝑏) ∈ [0, 1], where
0 indicates low competency and 1 indicates high competency. This

efficiency metric helps us assess how well-suited each agent is to

tackle a particular chore, guiding us in achieving a fair and efficient

chore allocation.

We can use the above given linear programming formulation to

maximize efficiency over allWSD-PROP1 allocations by setting the
objective function as: maximize

∑
(𝑠𝑖,ℓ ,𝑏 ) ∈𝐸′ 𝑢𝑖 (𝑏) · 𝑒 (𝑖,ℓ ),𝑏 Simi-

larly, we can optimize for time spent on doing chores and other

linear objective functions.
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5 BEST OF BOTHWORLDS
In this section, using the perfect matchings in the extended alloca-

tion graph𝐺+𝑐 , we give a polynomial time algorithm to compute an

ex-ante WSD-EF and ex-post WSD-PROP1 allocation of chores.

We begin by constructing aWSD-EF allocation𝑋 = ⟨𝑋1, · · · , 𝑋𝑛⟩.
Give each agent 𝑎𝑖 ∈ 𝐴, an 𝛼𝑖 fraction of every chore 𝑏 ∈ 𝐵. In this

allocation, for each pair of agents 𝑎𝑖 and 𝑎𝑘 , for any two valuations

𝑣𝑖 ∈ 𝒰(𝜋𝑖 ), 𝑣𝑘 ∈ 𝒰(𝜋𝑘 ), we know that
𝑣𝑖 (𝑋𝑖 )
𝛼𝑖

=
𝑣𝑖 (𝑋𝑘 )
𝛼𝑘

= 𝑣𝑖 (𝐵)
and hence 𝑋 is aWSD-EF allocation. We now show that this frac-

tional allocation can be realized as a fractional perfect matching in

the extended allocation graph 𝐺+𝑐 .

Lemma 5.1. Given an instanceI = ⟨𝐴, 𝐵,Π, F ⟩ of chore allocation,
there exists a fractional perfect matching in the extended allocation
graph 𝐺+𝑐 = (𝑆 ∪ 𝐵′, 𝐸′) of I that corresponds to a WSD-EF chore
allocation where each agent 𝑎𝑖 receives 𝛼𝑖 fraction of every chore.

Proof. We first construct a fractional matching𝑀 that saturates

all the real chores (non-dummy chores). Such a matching can al-

ways be extended to a fractional perfect matching by assigning the

dummy chores in any manner, as all the dummy chores have edges

to all the slots.

Consider the interval set 𝐼 𝑖 of an agent 𝑎𝑖 ∈ 𝐴. From Propo-

sition 3.3, we know that slot 𝑠𝑖,ℓ has edges to every chore in the

interval 𝐼 𝑖
ℓ
. With the help of this fact, we construct a fractional

matching𝑀 in 𝐺+𝑐 as follows:

Let 𝑥𝑖,ℓ,𝑏 denote the fraction of the edge (𝑠𝑖,ℓ , 𝑏) in 𝑀 . Let 𝛿𝑏,ℓ
denote the fraction of a chore 𝑏 ∈ 𝐵 that is present in the interval 𝐼 𝑖

ℓ
.

For every edge (𝑠𝑖,ℓ , 𝑏), we set 𝑥𝑖,ℓ,𝑏 = 𝛼𝑖 · 𝛿𝑏,ℓ . A slot 𝑠𝑖,ℓ receives

non-zero fractions of the chores from the interval 𝐼 𝑖
ℓ
. Each slot

receives at most 1 unit of chore because total chores assigned for a

slot 𝑠𝑖,ℓ is : ∑︁
𝑏∈𝐵

𝑥𝑖,ℓ,𝑏 = 𝛼𝑖

∑︁
𝑏∈𝐵

𝛿𝑏,ℓ ≤ 𝛼𝑖
1

𝛼𝑖
= 1

The fraction of a given real chore 𝑏 received by agent 𝑖 across all

the slots is:

𝑚𝑖∑︁
ℓ=1

𝑥𝑖,ℓ,𝑏 = 𝛼𝑖

𝑚𝑖∑︁
ℓ=1

𝛿𝑏,ℓ = 𝛼𝑖

Thus the matching 𝑀 saturates all the real chores. Since the

graph𝐺+𝑐 is a balanced bipartite graph, and as all the dummy chores

have edges to all the slots, the matching 𝑀 can be extended to a

fractional perfect matching by dividing the dummy chores across

the remaining spaces of all the slots in any arbitrary way. □

Let us denote this fractional perfect matching as𝑀∗. Note that
𝑀∗ lies inside the matching polytope of 𝐺+𝑐 . We now decompose

this fractional perfect matching into convex combination of integral

perfect matchings using the Birkhoff-von Neumann decomposition.

Given a perfect matching𝑀 (fractional or otherwise) of a balanced

bipartite graph𝐺 = (𝑃∪𝑄, 𝐸)with 2𝑛 vertices,𝑀 can be represented

as a 𝑛×𝑛 bi-stochastic matrix𝑋 = (𝑥𝑖 𝑗 ) where an entry 𝑥𝑖 𝑗 denotes

the fraction of the edge (𝑖, 𝑗) present in𝑀 . Given a fractional perfect

matching, we can decompose it as a convex combination of integral

perfect matchings with the help of Birkhoff-von-Neumann theorem

[11, 28, 34, 43].

Theorem 5.2 (Birkhoff-von Neumann). Let 𝑋 be a 𝑝 × 𝑝 bi-
stochastic matrix. There exists an algorithm that runs in O(𝑝4.5) time
and computes a decomposition 𝑋 =

∑𝑞

𝑘=1
𝜆𝑘𝑋𝑘 where 𝑞 ≤ 𝑝2 −𝑝 + 2;

for each 𝑘 ∈ [𝑞], 𝜆𝑘 ∈ [0, 1], 𝑋𝑘 is a 𝑝 × 𝑝 permutation matrix; and∑𝑞

𝑘=1
𝜆𝑘 = 1.

Using Theorem 5.2, we designAlgorithm 1.We call it The Uniform
Lottery Algorithm, which gives an ex-ante WSD-EF and ex-post

WSD-PROP1 allocation of chores using only the ordinal valuations.

Algorithm 1 Uniform Lottery Algorithm for chores

Input: A chore allocation instance I = ⟨𝐴, 𝐵,Π, F ⟩, where |𝐴| = 𝑛

and |𝐵 | =𝑚.

Output: A fractionalWSD-EF allocation 𝑋 =
∑𝑞

𝑘=1
𝜆𝑘 𝑋𝑘 where

each 𝑋𝑘 represents a deterministicWSD-PROP1 allocation and

𝑞 ∈ O(𝑚𝑐 ).
1: 𝐺+𝑐 ← extended allocation graph of I
2: 𝑌 ← fractional perfect matching in𝐺+𝑐 where each agent𝑎𝑖 ∈ 𝐴

gets 𝛼𝑖 fraction of every real chore ⊲ (As in Lemma 5.1)

3: Invoke Theorem 5.2 to compute a decomposition 𝑌 =∑𝑞

𝑘=1
𝜆𝑘𝑌𝑘 where 𝑞 ≤ (𝑚 + 𝑛)2 − (𝑚 + 𝑛) − 2

4: Convert 𝑌 =
∑𝑞

𝑘=1
𝜆𝑘𝑌𝑘 to 𝑋 =

∑𝑞

𝑘=1
𝜆𝑘𝑋𝑘 where all the

dummy chores are ignored.

5: return Allocation 𝑋 and its decomposition

∑𝑞

𝑘=1
𝜆𝑘𝑋𝑘

Theorem 5.3. The randomized allocation implemented by Algo-
rithm 1 is ex-ante WSD-EF and ex-post WSD-PROP1.

Proof. Algorithm 1 returns an allocation 𝑋 and its decompo-

sition

∑𝑞

𝑘=1
𝜆𝑘𝑋𝑘 . From Lemma 5.1, we know that the allocation

𝑋 returned by the algorithm is WSD-EF. Each of the 𝑋𝑘s in the

decomposition is a 𝐵-perfect matching in the allocation graph 𝐺𝑐 .

Therefore, from Proposition 3.2, each 𝑋𝑘 is WSD-PROP1. □

6 BEYOND FAIRNESS: ECONOMIC
GUARANTEES

In Section 3, we discussed the reduction from WSD-PROP1 alloca-
tions to matchings. In this section, we investigate the incorporation

of additional economic efficiency notions alongside fairness. In the

full version of this paper [42], we give an example instance where

noWSD-PROP1 allocation is Pareto optimal under all valuations.

Furthermore, we give examples of instances where given the cardi-

nal valuations, there does not exist a Pareto optimal allocation that

is WSD-PROP1 for the underlying ordinal instance. Therefore, we

explore a more relaxed concept known as sequencibility (SEQ). We

prove a general graph theoretic lemma, showing that every rank-

maximal 𝐴-perfect matching is sequencible. This lemma could be

of independent interest, and may find other applications. Using

this result, we establish that computing a rank-maximal perfect

matching, rather than an arbitrary one, yields WSD-PROP1+SEQ
allocations.

We begin with the following simple observation about rank-

maximal matchings:

Proposition 6.1. Given a graph 𝐺 = (𝐴 ∪ 𝐵, 𝐸 = 𝐸1 ∪ . . . ∪ 𝐸𝑟 ),
if𝑀 is a rank-maximal matching in 𝐺 , then𝑀 is sequencible (SEQ).
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Figure 2: The edges in red form a perfect matching - but
it is not sequencible. The blue edges correspond to a rank-
maximal matching, but it is not perfect. The squiggly edges
corresponds to a rank-maximal 𝐴-perfect matching. This is
sequencible, and the picking sequence is ⟨𝑎1, 𝑎2, 𝑎4, 𝑎3⟩

Proof. Define𝐺𝑖 = (𝐴∪𝐵, 𝐸1 ∪ . . .∪𝐸𝑖 ). Let the rank-maximal

matching 𝑀 be decomposed as 𝑀 = 𝑀1 ∪ 𝑀2 ∪ . . . 𝑀𝑟 where

𝑀𝑖 = 𝑀 ∩ 𝐸𝑖 for 𝑖 ∈ [𝑟 ]. For a vertex 𝑎, we denote its matched

partner in𝑀 as𝑀 (𝑎). A picking sequence for𝑀 is ⟨𝐴1, 𝐴2, . . . , 𝐴𝑟 ⟩
where, for 𝑖 ∈ [𝑟 ], 𝐴𝑖 is an arbitrary ordering of vertices in 𝐴 that

are matched by an edge in𝑀𝑖 . This sequence results in𝑀 , for the

following reason. Firstly, 𝑀1 is a maximum matching in 𝐺1. For

each 𝑖 ∈ [𝑟 ], 𝑖 > 1, after the agents in 𝐴1 ∪ . . . ∪ 𝐴𝑖−1 pick the

items they are matched to in 𝑀 , 𝑀𝑖 is a maximum matching on

rank 𝑖 edges in the remaining graph. Thus, when all the agents in

𝐴1 ∪ . . . ∪ 𝐴𝑖 pick their favorite item among the available items,

there are no items left, which are ranked between 1 and 𝑖 for any

of the remaining agents, this results in agents in 𝐴𝑖+1 picking their

rank 𝑖 + 1 items. □

Our interest is in finding an 𝐴-perfect matching that is also se-

quencible. In general, a rank-maximal matching need not be an

𝐴-perfect matching and all perfect matchings are not sequencible.

Figure 2 shows one such example. We show that rank-maximal per-

fect matchings are sequencible. Unlike a rank-maximal matching,

a rank-maximal perfect matching 𝑀 may not satisfy the proper-

ties mentioned in Proposition 6.1 i.e., 𝑀1 may not be a maximum

matching in𝐺1, and in general, after agents in 𝐴1 ∪ . . . ∪𝐴𝑖−1 pick
their respective choices, 𝑀𝑖 may not be a maximum matching on

rank 𝑖 edges in the remaining graph. Hence the ordering of vertices

in 𝐴1, . . . , 𝐴𝑟 needs to be carefully chosen while constructing the

picking sequence.

Lemma 6.2. Given a graph𝐺 = (𝐴 ∪ 𝐵, 𝐸1 ∪ . . . ∪ 𝐸𝑟 ) which is an
instance of the rank-maximal matchings problem, and an 𝐴-perfect
matching𝑀 in 𝐺 , if𝑀 is a rank-maximal 𝐴-perfect matching then
𝑀 is sequencible.

Kindly refer to the full version [42] for the proof of this lemma.

Using Lemma 6.2, we now show that a rank-maximal perfect

matching in the extended allocation graph 𝐺+𝑐 gives a sequencible

WSD-PROP1 allocation.

Theorem 6.3. There always exists aWSD-PROP1+SEQ allocation
of chores.

Proof. Let 𝐺+𝑐 = (𝑆, 𝐵′, 𝐸′) be the extended allocation graph of

an instance I. Recall that 𝐵 is the set of real chores and 𝐵′ \𝐵 is the

set of dummy chores and |𝐵 | =𝑚, |𝐵′ | =𝑚+𝑞. For each slot 𝑠𝑖,ℓ , we

first rank the real chores from 1 to𝑚 as 𝑟𝑎𝑛𝑘 (𝑠𝑖,ℓ , 𝑏) =𝑚+1−𝜋𝑖 (𝑏)
for all 𝑏 ∈ 𝐵. The dummy chores are ranked from𝑚 + 1 to𝑚 + 𝑞 in

an arbitrary way.

For any two slots 𝑠𝑖,𝑝 and 𝑠𝑖,𝑞 of an agent 𝑎𝑖 , if 𝑝 > 𝑞, then

𝑁 (𝑝) ⊆ 𝑁 (𝑞). This is because 𝐺+𝑐 satisfies condition 2. Therefore,

given a matching 𝑀 , if 𝑟𝑎𝑛𝑘 (𝑠𝑖,𝑝 , 𝑀 (𝑠𝑖,𝑝 )) > 𝑟𝑎𝑛𝑘 (𝑠𝑖,𝑞, 𝑀 (𝑠𝑖,𝑞)),
then we can interchange𝑀 (𝑠𝑖,𝑝 ) and𝑀 (𝑠𝑖,𝑞) without altering the

signature of the matching. Thus, given a rank-maximal perfect

matching𝑀 , we can assume w.l.o.g. that for any agent 𝑎𝑖 ∈ 𝐴, and
𝑝, 𝑞 ≤ 𝑚𝑖 , if 𝑝 > 𝑞 then 𝑟𝑎𝑛𝑘 (𝑠𝑖,𝑝 , 𝑀 (𝑠𝑖,𝑝 )) < 𝑟𝑎𝑛𝑘 (𝑠𝑖,𝑞, 𝑀 (𝑠𝑖,𝑞)).

Given a rank-maximal perfectmatching𝑀 in𝐺+𝑐 , from Lemma 6.2

we obtain a sequence 𝜎 (𝑆) of slots. To construct a sequence of

agents, replace each 𝑠𝑖,ℓ with the corresponding agent 𝑎𝑖 . Since

dummy chores are ranked higher than real chores, all the slots that

are matched to dummy chore forms the tail of the sequence 𝜎 (𝑀)
and hence they can be safely ignored. Therefore, a rank-maximal

perfect matching in 𝐺+𝑐 gives a WSD-PROP1+SEQ allocation. □

Therefore, using the algorithm to find rank-maximal perfect

matchings [27, 36], we can compute aWSD-PROP1+SEQ allocation

in time O((𝑚 + 𝑛)3.5).

7 CONCLUSION
In this paper, we consider the fairness notion of weighted neces-

sarily proportionality up to one item (WSD-PROP1). We show that

finding WSD-PROP1 allocations can be reduced to finding per-

fect matchings in a bipartite graph - namely the allocation graph.

This insight provides a practical framework for leveraging tools

and techniques from the field of matching theory. We show that

rank-maximal perfect matchings give picking sequences for finding

WSD-PROP1+SEQ allocations. We show that the perfect matching

polytope of the allocation graph captures all the WSD-PROP1 allo-
cations, thus enabling us to optimize any linear objective function

overWSD-PROP1 allocations. We then create a fractional perfect

matching in the allocation graph, corresponding to a WSD-EF allo-

cation. Decomposing this allocation, equivalent to decomposing the

fractional matching into integral matchings, results in a randomized

algorithm for computing an Ex-anteWSD-EF Ex-postWSD-PROP1
allocation, both in the case of goods and chores. Our works raises

the open question of the existence of WSD-PROP1 allocations in
the mixed setting, where the set 𝐵 includes both goods and chores.
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