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ABSTRACT
Multi-agent learning algorithms have been shown to display com-
plex, unstable behaviours in a wide array of games. In fact, previous
works indicate that convergent behaviours are less likely to occur
as the total number of agents increases. This seemingly prohibits
convergence to stable strategies, such as Nash Equilibria, in games
with many players.

To make progress towards addressing this challenge we study
the Q-Learning Dynamics, a classical model for exploration and
exploitation in multi-agent learning. In particular, we study the
behaviour of Q-Learning on games where interactions between
agents are constrained by a network. We determine a number of
su�cient conditions, depending on the game and network structure,
which guarantee that agent strategies converge to a unique stable
strategy, called the Quantal Response Equilibrium (QRE). Crucially,
these su�cient conditions are independent of the total number
of agents, allowing for provable convergence in arbitrarily large
games.

Next, we compare the learned QRE to the underlying NE of
the game, by showing that any QRE is an n-approximate Nash
Equilibrium. We� rst provide tight bounds on n and show how
these bounds lead naturally to a centralised scheme for choosing
exploration rates, which enables independent learners to learn
stable approximate Nash Equilibrium strategies. We validate the
method through experiments and demonstrate its e�ectiveness
even in the presence of numerous agents and actions. Through
these results, we show that independent learning dynamics may
converge to approximate Nash Equilibria, even in the presence of
many agents.

KEYWORDS
Multi-Agent Learning, Quantal Response Equilibrium, Online Learn-
ing in Games

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

ACM Reference Format:
Aamal Hussain, Dan Leonte, Francesco Belardinelli, and Georgios Piliouras.
2024. On the Stability of Learning in Network Games with Many Players.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 18 pages.

1 INTRODUCTION
Game Theory (EGT) has emerged as a powerful formalism for
studying learning in multi-agent settings [55, 63]. Here, agents are
required to explore their state space to determine optimal actions,
whilst simultaneously maximising their expected reward in the face
of the changing behaviour of their opponents. By modelling these
situations as idealised games it is possible to study the e�ect of vari-
ous factors, such as payo�s and number of agents, on the dynamics
of learning. An important question which is often studied from this
lens is whether popular multi-agent learning algorithms converge
to an equilibrium [20, 31, 41] (most often the Nash Equilibrium).

Unfortunately, it seems that the general answer to this question
is no. Recent work has shown that, even in zero-sum games, the
dynamics of no-regret learning algorithms can be cyclic [39] or
chaotic [6]. In addition, even small deviations from the zero-sum
setting can result in robustly non-convergent dynamics [7, 25] so
that in general-sum games, non-convergent behaviour appears to
be the norm [13, 14, 17, 27, 30, 44, 45, 52, 65, 66]. To make matters
worse, recent� ndings in [51] suggest that, as the number of agents
in the game increases, the likelihood for chaotic dynamics also
increases when agents have low exploration rates. Similarly, the
results of [26] imply that incredibly large exploration rates may
be required in games with many agents in order to ensure conver-
gence. This seemingly presents a bottleneck for strong convergence
guarantees in multi-agent settings with many agents.

Despite this, many real world problems such as resource alloca-
tion [1, 46], routing [3, 8, 9] and robotics [19, 57] consider a large
number of agents who continuously adapt to one another. These
practical applications in conjunction with the negative results in
the face of many players immediately yield the following question:
Is there any hope for independent learning agents to converge to an

equilibrium in games with many players?
Tomake progress in answering this question, this work examines

multi-agent learning in network games. Here, it is assumed that
agents can only interact with their neighbours within an underlying
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communication network. Such systems are ubiquitous: machine
learning architectures often impose structure between models [22,
33]; in robotic systems, agents interact through communication
networks [16, 57]; in both economics and biology, agent interactions
are constrained through social networks. Network games re�ne
the setting of [26, 51], in which it was assumed that each agent is
directly in�uenced by every other agent in the environment. This
work provides strong evidence that the network structure matters,
in some cases even more so than the total number of agents.

Model and Contribution. We consider agents who update via the
Q-Learning dynamic, [54, 64], a foundational model from game
theory which describes the behaviour of agents who balance ex-
ploration and exploitation. Similar to [26] we determine a number
of su�cient conditions on exploration rates such that Q-Learning
is guaranteed to converge to a unique equilibrium. In this work,
however, we� nd that these conditions depend on graph theoretic
properties of the interaction network. In our experiments, we exam-
ine how these conditions depend on the total number of agents and
�nd network structures for which there is no explicit dependence.
These implications are visualised on a number of representative
network games and it is shown that large numbers of agents may
converge to an equilibrium, so long as weakly connected network
structures are used. By contrast, if the network is strongly con-
nected, we recover the results of [26, 51] and show that stability
depends on the total number of agents.

The equilibrium solution to which Q-Learning converges is the
Quantal Response Equilibrium (QRE) [32, 35], a widely studied ex-
tension of the Nash Equilibrium for agents who explore their state
space [15, 29, 31]. In this work, we quantify the ‘distance’ between
a QRE and NE by showing that any QRE is an approximate Nash
Equilibrium and providing tight bounds on this approximation. Us-
ing this, we present a procedure for choosing exploration rates so
that Q-Learning agents may converge ‘closer’ to the Nash Equilib-
rium, whilst maintaining the stability of the dynamic. We validate
this procedure in a number of large scale network games and show
that it leads to improvements in the convergence of Q-Learning
dynamics towards approximate Nash Equilibria.

Related Work. In [14] the authors showed that the Experience
Weighted Attraction (EWA) dynamic, which is closely related to
Q-Learning [32], achieves chaos in classes of two-player games.
Advancing this result, [51] showed that chaotic dynamics become
more prevalent as the number of agents increase. Similar to this
work, [26] apply the framework of monotone game [12, 47, 61] to
show that Q-Learning Dynamics converge to a unique equilibrium
in any game, given su�cient exploration. However, they also�nd
that this condition increases with the number of agents.

Besides online learning, other approaches have been developed
to try to compute Nash Equilibria in games. For our purposes, the
most relevant of these are homotopy-like methods [21, 62]. The
principle of these methods is to perturb the payo� functions so that
the resulting perturbed game is ‘easier’ to solve. Then, by iteratively
annealing this perturbation, one can approximate the underlying
NE. Recently [15] applies an entropy perturbation of payo�s and
use gradient-descent based approach to solve for a continuum of
Quantal Response Equilibria (QRE), which eventually leads to a
NE [35]. Whilst homotopy methods present a powerful tool for

computing approximate equilibria, they often lack the advantages
of decentralisation provided by online learning and may not come
with strong guarantees. [48] combines the entropy perturbation
approach with online learning and show that, in two-player zero-
sum games, this method allows independent learners to converge
asymptotically to an NE. However, as with most learning strategies,
its behaviour in many player, general sum games is unknown.

We address the problem of learning in many player games by
examining the role of an underlying communication network. A
number ofworks in game theory have shown that network structure
a�ects the uniqueness and stability of NE [2, 4, 11, 37, 47]. Our
main result re�nes that of [26] to include the network and show
that Q-Learning dynamics can reach a QRE in any network game,
given su�ciently high exploration rates. Crucially, these conditions
are explicitly independent of the total number of agents. We also
show that the QRE achieved by Q-Learning is an approximate
Nash Equilibrium, and design a centralised scheme for updating
exploration rates so that Q-Learning dynamics converge along the
continuum of stable QRE to an approximate Nash Equilibrium.

2 PRELIMINARIES
We begin in Section 2.1 by de�ning the network game model, which
is the setting on which we study the Q-Learning dynamics, which
we describe in Section 2.2.

2.1 Game Model
In this work, we consider network polymatrix games [32]. ANetwork
Game is described by the tuple G = (N , E, (D: ,S: ):2N), where
N denotes a� nite set N of players, indexed by : = 1, . . . ,# . Each
agent can choose from a� nite set S: of actions, indexed by 8 =
1, . . . , =. We denote the strategy x: of an agent : as the probabilities
with which they play their actions. Then, the set of all strategies of
agent : is �(S: ) := {x: 2 R= :

Õ
8 G:8 = 1, G:8 � 0}. Each agent is

also given a payo�function D: : �(S: )⇥�(S�: ) ! R. Agents are
connected via an underlying network de�ned by E. In particular,
E consists of pairs (:,; ) 2 N ⇥ N of connected agents : and ; .
For any agent : 2 N , we denote by N: = {; 2 N : (:,; ) 2 E}

the neighbours of : , i.e. all the agents who directly interact with
agent : in the network. An equivalent way to de�ne the network
is through an adjacency matrix ⌧ such that

[⌧]:,; =

(
1, if agents :,; are connected,
0, otherwise.

.

It is assumed that the network is undirected so that⌧ is a symmetric
matrix. Each edge (:,; ) 2 E corresponds to a pair of payo�matrices
�:; , �;: . With these speci�cations, the payo� received by each
agent : under joint strategy x = (x: , x�: ) is given by

D: (x: , x�: ) =
’

(:,;)2E

x: · �:;x; . (1)

For any x 2 � =: ⇥:�(S: ), we can de�ne the reward to agent : for
playing action 8 as A:8 (x�: ) = mD:8 (x)/mG:8 . Under this notation,
D: (x: , x�: ) = hx: , A: (x�: )i. With this in place, we can de�ne
suitable equilibrium solutions for the game.

De�nition 2.1 (Nash Equilibrium (NE)). A joint mixed strategy
x̄ 2 � is a Nash Equilibrium (NE) if, for all agents : and all actions
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8 2 S:

x̄: = arg max
y: 2�:

D: (y: , x̄�: ).

De�nition 2.2 (Quantal Response Equilibrium (QRE)). A joint
mixed strategy x̄ 2 � is a Quantal Response Equilibrium (QRE) if,
for all agents : and all actions 8 2 S:

x̄:8 =
exp(A:8 (x̄�: )/): )Õ

92S:
exp(A: 9 (x̄�: )/): )

.

The QRE [5, 35] naturally extends the Nash Equilibrium through
the parameter ): , known as the exploration rate. In particular, the
limit): ! 0 corresponds exactly to the Nash Equilibrium, whereas
the limit ): ! 1 corresponds to the case where action 8 2 S: is
played with the same probability regardless of its associated reward.
The link between the QRE and the Nash Equilibrium is made precise
through the following result.

Proposition 2.3 ([38]). Consider a game G = (N , E, (D: ,S: ):2N)

and let)1, . . . , )# > 0 be exploration rates. De�ne the perturbed game
G
� = (N , E, (D�: ,S: ):2N) with the payo�functions

D�: (x: , x�: ) = D: (x: , x�: ) �): hx: , ln x: i.

Then x̄ 2 � is a QRE of G i� it is a Nash Equilibrium of G� .

Game Structure. To achieve our main result, we must parame-
terise interactions in the network game. This allows us to consider
network games which are not necessarily zero-sum. First, we de�ne
the in�uence bound for each agent : .

De�nition 2.4 (In�uence Bound). Let G = (N , E, (D: ,S: ):2N)

be a network game. Then, for any : 2 N , the in�uence bound is
given by

X: = max
82S: ,0�: ,0̃�: 2S�:

{|A:8 (0�: ) � A:8 (0̃�: ) |}, (2)

where the pure strategies 0�: , 0̃�: 2 S�: di�er only in the action
of one agent ; 2 N: .

The in�uence bound describes how sensitive each agent’s reward
is to changes in opponent strategies. As another parameterisation
which is directly applicable to network games, we de�ne the inten-
sity of identical interests.

De�nition 2.5 (Intensity of Identical Interests). Let G be a net-
work game whose edgeset E is associated with the payo�matrices
(�:; ,�;:

)(:,;)2E . The intensity of identical interests f� of G is given
as

f� = max
(:,;)2E

k�:;
+ (�;:

)
>
k2, (3)

where k" k2 = supkxk2=1k"xk2 denotes the operator 2-norm [36].

The intensity of identical interests can be thought of as a measure
of how cooperative a network game is. The reasoning for this is
as follows. Suppose �,⌫ are the payo� matrices which maximise
(3) and suppose that ⌫> = 2� for some 2 = (�1, 1). Then, f� is
minimised when 2 = �1, in which case �,⌫ is zero-sum, and is
maximised at 2 = 1 so that � = ⌫>, which de�nes an game of
identical interests.

2.2 Learning Model
In this work, we analyse the Q-Learning dynamic, a prototypical
model for determining optimal policies by balancing exploration
and exploitation [55, 59]. In this model, each agent : 2 N maintains
a history of the past performance of each of their actions. This
history is updated via the Q-update

&:8 (g + 1) = (1 � U: )&:8 (g) + U:A:8 (x�: (g)),

where g denotes the current time step.
&:8 (g) denotes the Q-value maintained by agent : about the

performance of action 8 2 (: . In e�ect, &:8 gives a discounted
history of the rewards received when 8 is played, with 1� U: as the
discount factor.

Given these Q-values, each agent updates their mixed strategies
according to the Boltzmann distribution, given by

G:8 (g) =
exp(&:8 (g)/): )Õ
9 exp(&: 9 (g)/): )

,

in which ): 2 [0,1) is the exploration rate of agent : .
It was shown in [54, 64] that a continuous time approximation

of the Q-Learning algorithm could be written as

§G:8
G:8

= A:8 (x�: ) � hx: , A: (x)i+ ):
’
92(:

G: 9 ln
G: 9
G:8

, (QLD)

which we call the Q-Learning dynamics (QLD). The� xed points
of this dynamic coincide with the (QRE) of the game [32]. QLD
can also be seen as an entropy regularised form of the well-studied
replicator dynamics (RD) [23, 34]. Besides its importance in the
study of population biology [42], RD is known to be a special case
of the generalised Follow the Regularised Leader learning dynamic
[40], which models agents who maximise their accumulated payo�s
subject to a penalisation function. RD has been shown to display
asymptotic convergence in potential games [23], cyclic behaviour
in zero-sum games [39] and chaos in a number of other classes
[17, 53]. The connection between RD and QLD is explored in [31].

3 GUARANTEED CONVERGENCE OF
Q-LEARNING IN NETWORK GAMES

In this sectionwe determine a number of su�cient conditions on the
exploration rates ): under which Q-Learning dynamics converge
to a unique QRE. We� nd that these conditions are dependent
on the structure of the rewards in the game, parameterised by
the interaction coe�cient or the in�ence bound, and also on the
structure of the network. We then compare our result to that of
[26] and show that, under suitable network structures, stability
can be achieved with comparatively low exploration rates, even in
the presence of many players. This also re�nes the result of [51]
which suggests that learning dynamics are increasingly unstable as
the number of players increases, regardless of exploration rate. All
proofs are in Appendix B.

Theorem 3.1. Consider a network game G = (N , E, (D: ,S: ):2N)

which has a network adjacency matrix ⌧ . Let f� denote the intensity
of identical interests for G and X: denote the in�uence bound of each
agent : 2 N . Then, the Q-Learning Dynamic converges to a unique
QRE x̄ 2 � if any of the following conditions hold for all agents
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Ring Network
k⌧ k1 = 2, k⌧ k2 = 2

Star Network
k⌧ k1 = # � 1, k⌧ k2 =

p
# � 1

Fully Connected Network
k⌧ k1 = # � 1, k⌧ k2 = # � 1

Figure 1: Examples of networks with� ve agents and associated k⌧ k1 and k⌧ k2.

Shapley Game Sato Game

Shapley Game Sato Game

Figure 2: Lower Bound on su�cient exploration as de�ned by (Top) (C2) in a Full Network and Ring Network (Bottom) (C3) in a
Full Network, Star Network and Full Network.

Shapley Game Sato Game

Figure 3: Lower Bound on su�cient exploration as de�ned by (C1), (C2) and (C3) in a Star Network. For (C1), max:2N X: |N: | is
depicted which therefore coincides with the condition de�ned in [26].

: 2 N ,

): > X: |N: |, (C1)

): >
1
2
f� k⌧ k1 , (C2)

where k" k1 = max8
Õ

9 | ["]8 9 | is the operator 1-norm. If, in addi-
tion, each edge de�nes the same bimatrix game (�,⌫ ), then asymp-
totic convergence of Q-Learning Dynamics holds if, for all : 2 N

): >
1
2
f� k⌧ k2 . (C3)
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Remark 3.2. Condition (C1) immediately re�nes the result of [26] to
the case of network games. In the latter work, the authors implicitly
assume that the reward for each agent depends on all other agents.
In our work, this corresponds exactly to the case of a fully connected
network, whereN: = N\{:}. In addition, [26] de�ne the in�uence
bound to be over all agents, yielding a single condition which must
hold for all : . Instead (C1) allows for agents who have a lower X:
or who are not strongly connected in the network to have lower
exploration rates ): without compromising convergence.

Remark 3.3. We can directly compare (C1) and (C2) due to the
de�nition of the in�nity norm. In particular k⌧ k1 = max: |N: | is
the maximum number of neighbours for any agent : 2 N . There-
fore, in a network where all agents are connected identically, the
network dependency in (C1) is the same as that in (C2) . Next, the
advantage of using the in�uence bound is that its de�nition applies
in games which are not de�ned by matrices, and so the result gener-
alises outside of network polymatrix games. By contrast, f� is often
easier to compute than X: as it is based on matrix norms rather
than pairwise di�erences. Furthermore, 1

2f� is less than X: in a
number of polymatrix games (c.f. Sec. 4). In summary, (C1) presents
an advantage in terms of generality , whilst (C2) is often easier to
compute and can be a tighter bound in network polymatrix games
where all agents are identically coupled.

Remark 3.4. Theorem 3.1 applies generally across all network poly-
matrix games, without making any assumptions, such as the net-
work zero-sum condition. In fact, for networks of pairwise zero
sum games, the following holds

Corollary 3.5. If the network game G is a pairwise zero-sum matrix,
i.e.�:;

+ (�;:
)
> = 0 for all (:,; ) 2 E, then the Q-Learning dynamics

converge to a unique QRE so long as exploration rates): for all agents
are strictly positive.

Corollary 1 is supported by the result of [26, 32] in which it was
shown that Q-Learning converges to a unique QRE in all network
zero-sum games, even if they are not pairwise zero-sum , so long
as all exploration rates ): are positive.

Remark 3.6. Whilst (C3) requires a stronger assumption, namely
that each edge corresponds to the same bimatrix game, this setting
is well motivated in the literature [17, 60]. In addition, it holds
that k⌧ k2  k⌧ k1 for all symmetric matrices ⌧ . Therefore, (C3)
provides a stronger bound than (C2). Figure 2 depicts (C2) and (C3)
on various network games, whilst a direct comparison is visualised
in Figure 3.

3.1 QRE as approximate Nash Equilibria
In the following section we compare the QRE as an equilibrium
solution to the Nash Equilibrium (NE) condition. In particular we
show that the QRE of any game, which no longer needs to be a
network game, is close to an NE in the following sense

De�nition 3.7 (n-approximate Nash Equilibrium). A strategy x̄ 2

� is an n-approximate Nash Equilibrium for the game G if, for all
agents : , and all strategies y: 2 �:

D: (y: , x̄�: ) � D: (x̄: , x̄�: )  n .

Proposition 3.8. Consider a game G and let )1, . . . , )# > 0 denote
positive exploration rates. Then any QRE x̄ 2 � is an n-approximate
Nash Equilibrium where

n = max
:2N

):�: (x̄: ), (4)

�: (x: ) = max
82(:

lnG:8 � hx: , ln x: i. (5)

Remark 3.9. Comparing (4) with (QLD), it can be seen that n denotes
the maximum amount of entropy regularisation applied to the
payo�s at the QRE x̄. Of course, this depends on the value of x̄ itself.
As an example, if the QRE is the uniform distribution, i.e. x̄: =
(1/=: , . . . , 1/=: ) for all agents : , then �: (x̄: ) = 0. In this case, x̄ is
exactly an NE of the game.

Remark 3.10. It is also important to note that value of n given by any
QRE x̄ holds exactly. This gives the tightest possible approximation
of Nash for any given QRE x̄. Whilst it is largely known that QRE
can be considered as approximations of Nash [15, 35, 62], to our
knowledge Proposition 3.8 is the� rst which exactly quanti�es the
‘distance’ between the two equilibrium concepts.

We plot �: (x) for the case =: = 3 and =: = 2 in the Appendix
(Figure 9). To determine its upper bounds, note that �: (x̄: ) 

maxx: 2�: �: (x: ) =: �̄: . The form for �̄: is in general unavailable
in closed form and sowe give exact values in the Appendix, focusing
here on sharp bounds.

Lemma 3.11 (Full version in Lemma C.1).

�̄: := max
x: 2�:

✓
max
82(:

lnG:8 � hx: , ln x: i
◆
= O(ln=: ).

3.2 Updating Exploration Rates
In this section, we use Theorem 3.1 and Proposition 3.8 to devise
a scheme to update exploration rates so that which Q-Learning
dynamics are driven ‘close’ to a NE. The full algorithm is provided
in the Appendix, with the main ideas discussed here. Starting with
a choice of ): which satis�es any of the conditions in Theorem
3.1, it is clear that agents will achieve an n-NE where n is given by
(4). First, we notice that the value of n depends only on the agent
who maximises ):�: (x̄: ). Therefore, it is natural to decrease the
exploration rate for only this agent. We repeat this process until
another agent maximises):�: (x̄: ), in which case this becomes the
agent whose exploration rate is decreased, or the learning dynamics
no longer achieve asymptotic convergence, at which point the
learning process stops, and the last found QRE is chosen as the�nal
joint strategy of all agents. To evaluate whether the system achieves
asymptotic convergence for any choice of): , a window of the�nal
� -iterations of learning is recorded and, for each : 2 N , 8 2 S:
the relative di�erence between the maximum and minimum value
of G:8 across the window is determined. If this value is less some
tolerance, the system is said to have converged. More formally the
dynamics are said to have converged if✓

maxC 2� G:8 (C) �minC 2� G:8 (C)

maxC 2� G:8 (C)

◆
< ; . (6)

By following this process, agents iteratively reach QRE which
are closer approximations of an NE. We evaluate this process in
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our experiments and show that, even in large scale games, the n-
approximation of the NE improves leading to optimal, and stable,
learned joint strategies.

4 EXPERIMENTS
We� rst visualise and exemplify the implications of our main result,
Theorem 3.1, on a number of games. In particular, we simulate
the Q-Learning algorithm described in Section 2.2 and show that
Q-Learning asymptotically approaches a unique QRE so long as
the exploration rates are su�ciently large. We show, in particular,
that the amount of exploration required depends on the structure
of the network rather than the total number of agents.

Remark 4.1. In our experiments, we take all agents : to have the
same exploration rate ) and so drop the : notation. As all bounds
in Theorem 3.1 must hold for all agents : , this assumption does not
a�ect the generality of the results.

4.1 Convergence of Q-Learning
We� rst illustrate the convergence of Q-Learning using the Network
Chakraborty Game, which was analysed in [43] to characterise
chaos in learning dynamics. Formally, the payo� to each agent : is
de�ned as

D: (x: , x�: ) = x>: Ax; , ; = : � 1 mod # ,

� =
✓
1 U
V 0

◆
, U, V2 R.

We visualise the trajectories generated by running Q-Learning
in Figure 4 for a three agent network and choosing U = 7, V = 8.5.
It can be seen that, for low exploration rates, the dynamics reach
a limit cycle around the boundary of the simplex. However, as
exploration increases, the dynamics are eventually driven towards
a� xed point for all initial conditions.

Network Shapley Game. In the following example, each edge of
the network game has associated the same pair of matrices �,⌫
where

� = ©≠
´
1 0 V
V 1 0
0 V 1

™Æ
¨
, ⌫ = ©≠

´
�V 1 0
0 �V 1
1 0 �V

™Æ
¨
,

where V 2 (0, 1).
This has been analysed in the two-agent case in [56], where it

was shown that the Fictitious Play learning dynamic do not con-
verge to an equilibrium. [26] analysed the network variant of this
game for the case of a ring network and numerically showed that
convergence can be achieved by Q-Learning through su�cient
exploration.

In Figure 5 we examine both a fully connected network and
a ring network with 15 agents. In this case, the dynamics evolve
in R45 which prohibits a visualisation of the complete dynamics.
To resolve this, we instead take three representative agents and
depict the spread of their strategies in the� nal 2500 iterations
of learning. A bar which stretches from 0 to 1 indicates that the
dynamics are spread across the simplex which may occur in a limit
cycle or chaotic orbit that approaches the boundary of the simplex
(c.f. Figure 4). These are seen to occur for low exploration rates.
By contrast, when exploration rates are increased beyond a certain

threshold, a� at line is seen which indicates that the dynamics
are stationary, i.e. a� xed point has been reached. Importantly,
the boundary at which equilibrium behaviour occurs is higher in
the fully connected network, where k⌧ k1 = 14 than in the ring
network, where k⌧ k1 = 2. This indicates that larger numbers of
agents may be introduced in the environment without impacting
stability, so long as a weakly connected network is chosen.

Network Sato Game. Wealso analyse the behaviour of Q-Learning
in a variant of the game introduced in [53], where it was shown
that chaotic behaviour is exhibited by learning dynamics in the two-
agent case. We extend this towards a network game by associating
each edge with the payo�matrices �,⌫ given by

� = ©≠
´
n- �1 1
1 n- �1
�1 1 n-

™Æ
¨
, ⌫ = ©≠

´
n. �1 1
1 n. �1
�1 1 n.

™Æ
¨
,

where n- , n. 2 R. Notice that for n- = n. = 0, this corresponds
to the classic Rock-Paper-Scissors game which is zero-sum so that,
by Corollary 1, Q-Learning will converge to an equilibrium with
any positive exploration rates. We choose n- = 0.01, n. = �0.05 in
order to stay consistent with [53] which showed chaotic dynamics
for this choice. The boxplot once again shows that su�cient ex-
ploration leads to convergence of all initial conditions. However,
the amount of exploration required is signi�cantly smaller than
that of the Network Shapley Game. This can be seen as being due
to the signi�cantly lower interaction coe�cient of the Sato game
f� = 0.05 as compared to the Shapley game f� = 2.

4.2 Stability Boundary
In these experiments we empirically determine the dependence of
the stability boundary w.r.t. the number of agents. For accurate com-
parison with Figure 2, we consider the Network Sato and Shapley
Games in a fully-connected network, star network and ring net-
work. We iterate Q-Learning for various values of ) and determine
whether the dynamics have converged. To evaluate convergence,
we apply (6) with |� | = 2500 iterations and ; = 1 ⇥ 10�5. In Figure
6, we plot the smallest exploration rate ) for which (6) holds for
varying choices of # . It can be seen that the prediction of Theorem
3.1 holds, in that the number of agents plays no impact for the
ring network whereas the increase in the fully-connected network
is linear in # . In addition, it is clear that the stability boundary
increases slower in the Sato game than in the Shapley game, owing
to the smaller interaction coe�cient.

An additional point to note is that the stability boundary for the
star network increases slower than the fully-connected network in
all games. We anticipate that this is due to the fact that the 2-norm
k⌧ k2 in the star network is smaller than that of the fully-connected
network (c.f. Figure 1).

4.3 E�ectiveness of Exploration Update Scheme
In these experiments, we evaluate the exploration update scheme
outlined in Section 3.2. using |� | = 500 and ; = 1⇥10�5. In Figure 7
we consider the Network Chakraborty Game with U = 2.5, V = 1.5
We measure the ‘distance’ between the strategy x(C) and the NE
using two metrics:� rst by n as given in (4) and second through
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) = 0.7 ) = 1.5 ) = 2 ) = 2.7

Figure 4: Trajectories of Q-Learning in a three agent NetworkChakraborty Gamewith U = 7, V = 8.5. Axes denote the probabilities
with which each player chooses their� rst action.

Fully Connected Network Ring Network

Fully Connected Network Ring Network

Figure 5: Q-Learning in the (Top) Network Shapley Game (Bottom) Network Sato Game with 15 agents. The boxplot depicts the
probabilities with which three of the agents play their� rst action in the� nal 2500 iterations of learning. This is depicted for
varying choices of exploration rate ) .

Shapley Game Sato Game

Figure 6: Empirically determined stability boundary of Q-Learning measured against the number of agents. Q-Learning is
iterated with 10 initial conditions and the game is considered to have converged if, for all agents and initial conditions (6) holds
with ; = 1 ⇥ 10�5. The Fully Connected Network, Star Network and Ring Networks are considered.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

867



Figure 7: Measures of ‘closeness’ to Nash Equilibrium as the exploration update scheme is applied to the Network Chakraborty
Game with� ve agents and U = 2.5, V = 1.5. (Left) Distance to NE measured by exploitability (7) of the joint strategy x(C). (Right)
n as de�ned by (4). Both metrics decreases as exploration rates are updated until condition (6) fails at approx. 8 ⇥ 104 iterations,
after which learning is halted.

Figure 8: Histograms depicting the decrease of (Top) Ex-
ploitability and (Bottom) n over 150, 000 iterations of learning
across 500 randomly generated network games with payo�s
bounded in [0, 5].

exploitability q (x) given as

q (x) =
’
:

max
y: 2�:

D: (y: , x�: ) � D: (x: , x�: ). (7)

The exploitability is used, sometimes under di�erent names, as
a measure of distance to the NE [15, 49] and, from (4) it can be
seen that q (x̄) =

Õ
: ):�: (x̄: ) for any QRE x̄. The reason for

examining q is that its de�nition holds for any strategy x 2 �,
whilst (4) only holds at a QRE x̄ 2 �. It can be seen in all cases
that both metrics decrease as agents learn, until condition (6) is no
longer satis�ed. To examine the generality of this performance, we
evaluate the exploration update scheme in 500 randomly generated
network games with 15 agents, two actions and a ring structure.
Exploitability and n are evaluated at the� rst iteration and�nal

iteration and the di�erence is recorded. Figure 8 plots the decrease of
bothmetrics as a histogram across all 500 games. These experiments
(as well as additional presented in Appendix D) suggest that, if
exploration rates are updated according the scheme in Section 3.2,
independent learning agents may learn stable equilibrium strategies
which closely approximate Nash Equilibria.

5 CONCLUSION
In this paper we show that the Q-Learning dynamics is guaranteed
to converge in arbitrary network games, independent of any re-
strictive assumptions such as network zero-sum or potential. This
allows us to make a branching statement which applies across all
network games.

In particular, our analysis shows that convergence of the Q-
Learning dynamics can be achieved through su�cient exploration,
where the bound depends on the pairwise interaction between
agents and the structure of the network. Overall, compared to the
literature, we are able to tighten the bound on su�cient exploration
and show that, under certain network interactions, the bound does
not increase with the total number of agents. This allows for stabil-
ity to be guaranteed in network games with many players.

A fruitful direction for future research would be to capture the
e�ect of the payo�s through a tighter bound than the interaction
coe�cient and to explore further how properties of the network
a�ect the bound. In addition, whilst there is still much to learn in
the behaviour of Q-Learning in stateless games, the introduction
of the state variable in the Q-update is a valuable next step.
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