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ABSTRACT
In this paper, we initiate the study of the𝑚-Capacitated Facility

Location Problem (𝑚-CFLP) within a Bayesian Mechanism Design

framework. We consider the case in which every agent’s private

information is their position on a line and assume that every agent’s

position is independently drawn from a common and known distri-

bution 𝜇. In this context, we propose the Extended Ranking Mecha-

nisms (ERMs), a truthful generalization of the recently introduced

Ranking Mechanisms, that allows to handle problems where the

total facility capacity exceeds the number of agents. Our primary

results pertain to the study of the efficiency guarantees of the ERMs.

In particular, we demonstrate that the limit of the ratio between the

expected Social Cost of an ERM and the expected optimal Social

Cost is finite. En route to these results, we reveal that the optimal

Social Cost and the Social Cost of any ERMs can be expressed as

the objective value of a suitable norm minimization problem in the

Wasserstein space. We then tackle the problem of determining an

optimal ERM tailored to a𝑚-CFLP and a distribution 𝜇. Specifically,

we aim to identify an ERM whose limit Bayesian approximation

ratio is the lowest compared to all other ERMs. We detail how to

retrieve an optimal ERM in two frameworks: (i) when the total

facility capacity matches the number of agents and (ii) when 𝜇 is

the uniform distribution and we have two facilities to place. Lastly,

we conduct extensive numerical experiments to compare the per-

formance of the ERMs against other truthful mechanisms and to

evaluate the convergence speed of the Bayesian approximation

ratio. In summary, all our findings highlight that a well-tuned ERM

consistently outperforms all other known mechanisms, making it a

valid choice for solving the𝑚-CFLP within a Bayesian framework.
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1 INTRODUCTION
Mechanism Design seeks to establish protocols for aggregating the

private information of a set of agents to optimize a global objective.

Nonetheless, optimizing a communal goal solely based on reported

preferences frequently leads to undesirable manipulation driven by

the agents’ self-interested behaviour. Hence, a key property that a

mechanism should possess is truthfulness, which ensures that no

agent can gain an advantage by misrepresenting their private infor-

mation. Unfortunately, this stringent condition often clashes with

the goal of optimizing the communal objective, leading to subopti-

mal outcomes from a truthful mechanism. To quantify the efficiency

loss entailed by a truthful mechanism, Nisan and Ronen introduced

the concept of approximation ratio, which represents the maximum

ratio between the objective achieved by the truthful mechanism and

the optimal objective attainable across all possible agents’ reports

[37]. A prominent problem in Mechanism Design is the𝑚-Facility

Location Problem (𝑚-FLP) [10, 11]. In its fundamental guise, the

𝑚-FLP involves locating𝑚 facilities amidst 𝑛 self-interested agents.

Each agent requires access to a facility, making it preferable for

a facility to be located as close as possible to their position. Fur-

thermore, each facility can accommodate any number of agents,

thus the agents can select which facility to use devoid of any con-

cern about possible overload. A natural extension of the𝑚-FLP is

the𝑚-Capacitated Facility Location Problem (𝑚-CFLP), in which

every facility has a capacity limit. The capacity limit constraints

the amount of agents that the facility can serve. In this case, the

solution does not only elicit the positions of the facilities, but it

also specifies to which facility every agent is assigned to, ensuring

that no facility is overloaded. To the best of our knowledge, there

are very few works that analyzed the Mechanism Design aspects of

the𝑚-CFLP. Moreover, all the existing results are conducted in the

classic worst-case analysis, where the designer has no information

on the agents and therefore aims to define mechanisms that work

well on every possible input, regardless of the likelihood of the

input. This type of analysis is, however, too pessimistic and gives

little insight into how to select a mechanism for a specific task. For

example, there are currently no mechanisms capable of locating

more than two capacitated facilities while achieving a finite approx-

imation ratio. Furthermore, even if we restrict our attention to the

case where𝑚 = 2, the approximation ratio of all the known truthful

mechanisms depends linearly on the number of agents [5], making

these efficiency guarantees less meaningful as the scale of the prob-

lem increases. In this paper, we overcome these issues by studying

the𝑚-CFLP from a Bayesian viewpoint. In Bayesian Mechanism

Design, every agent’s location is a random variable whose law is

known to the designer [26] thus the scope of the mechanism is not
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to minimize the cost in the worst possible case but rather to define

truthful routines that work well in expectation.

1.1 Our Contribution
Our contribution is as follows:

(1) We define and study the Extended RankingMechanisms (ERMs),

a generalization of the class of Ranking Mechanisms introduced

in [5]. Our extension allows to tackle a broader framework in

which the combined capacity of the facilities surpasses the total

amount of agents. Moreover, a Ranking Mechanism is truthful

if and only if it places all the facilities at, at most, two locations,

while a ERM does not necessarily require such constraint to

ensure truthfulness. See Section 3.

(2) We then delve into a Bayesian Framework to examine the as-

ymptotic performances of the ERMs. We consider the case in

which every agent’s position is represented by a set of i.i.d.

random variables. Our investigation reveals that 𝑚-CFLP is

equivalent to a norm minimization problem over a subset of

the Wasserstein space [41]. By leveraging the properties of

the Wasserstein distance, we then establish the convergence

of the Bayesian approximation ratio, i.e., the ratio between the

expected cost incurred by the mechanism and the expected op-

timal cost, as the number of agents tends toward infinity. This

is our primary result, as seen in Theorem 4.2. We also compute

this limit and show that it depends solely on the specifics of the

problem, namely, the probability distribution 𝜇 describing the

agents, the vector ®𝑞 determining the capacities of the facilities,

and the characteristics of the mechanism. See Section 4.

(3) After that, we tackle the problem of identifying an optimal ERM

tailored to the𝑚-CFLP with agents distributed according to 𝜇

given the capacities determined by ®𝑞. First, we show that an

optimal ERM always exists and characterize it as a solution to a

minimization problem. Subsequently, we narrow our focus on

two specific scenarios: (i) no-spare capacity framework in which

the total capacity of the facilities matches the total number of

agents, and (ii) the 2-CFLP for a population of agents distributed

according to a uniform distribution. See Section 5.

(4) Finally, we validate our findings through extensive numerical

experiments in Section 6. In particular, we compare the perfor-

mances of the ERMs with the performances of other truthful

mechanisms, such as the InnerGap Mechanism [42] and the

Extended Endpoint Mechanism [5]. From our experiments, we

observe that a well-tuned ERM outperforms all the other mech-

anisms whenever 𝑛 ≥ 20. From these comparisons, we also

observe that the limit Bayesian approximation ratio is a reliable

estimation of the Bayesian approximation ratio of the ERM

when the number of agents is greater than 20.

Our outcomes shed light on how to outline a mechanism depending

on the problem, contributing to a better understanding of the strate-

gic aspects of the𝑚-CFLP in a Bayesian framework. All the missing

proofs and missing materials are available in the full version of the

paper (see https://arxiv.org/pdf/2312.16034.pdf, [4]).

1.2 Related Work
The𝑚-Facility Location Problem (𝑚-FLP) and its variations are sig-

nificant issues in various practical domains, such as disaster relief

[7], supply chain management [36], healthcare [1], clustering [28],

and public facilities accessibility [8]. Procaccia and Tennenholtz

initially delved into the Mechanism Design study of the 𝑚-FLP,

laying the groundwork for this field in their pioneering work [38].

Following that, a range of mechanisms with constant approxima-

tion ratios for placing one or two facilities on trees [21, 22], circles

[31, 31, 32], general graphs [2, 17], and metric spaces [35, 40] were

introduced. Despite the generality of the underlying space, it is

important to stress that all these positive results are confined to

the case in which we have at most two facilities to place and/or

the number of agents is limited. Moreover, different works tried

to generalize the initial framework proposed in [38], by consider-

ing different agents’ preferences [15, 34], different costs [19], and

additional constraints [20, 23].

In this paper, we analyze the𝑚-Capacitated Facility Location

Problem (𝑚-CFLP), a variant of the𝑚-FLP in which each facility can

accommodate a finite number of agents. The Mechanism Design

aspects of the𝑚-CFLP have only recently begun to attract atten-

tion. Indeed, the game theoretical framework for the𝑚-CFLP that

we consider was introduced in [5]. This work defined and studied

various truthful mechanisms, like the InnerPoint Mechanism, the

Extended Endpoint Mechanism, and the Ranking Mechanisms. A

more theoretical study of the problem was then presented in [42],

demonstrating that no mechanism can position more than two ca-

pacitated facilities while adhering to truthfulness, anonymity, and

Pareto optimality. Additionally, another paper dealing with Mecha-

nism Design aspects of the𝑚-CFLP is [6]. However, it explores a

different framework where only one facility needs to be placed and

is unable to serve all agents. To the best of our knowledge, all the

results on the𝑚-CFLP concerned the classic Mechanism Design

framework that evaluates the performances of themechanism based

on worst-case analysis. In this paper, we consider an alternative

approach: the Bayesian Mechanism Design perspective. Unlike tra-

ditional Mechanism Design, where the designer lacks information

about agent types, in the Bayesian Mechanism Design framework

each agent’s type follows a known probability distribution [14, 25].

In this framework, we are able to determine a probability distri-

bution over the set of all the possible inputs of the mechanism,

enabling us to consider the expected cost of a mechanism. Bayesian

Mechanism Design has been applied to investigate routing games

[24], facility location problems [44], combinatorial mechanisms

using 𝜖-greedy mechanisms [33], and, notably, auction mechanism

design [12, 13, 18, 27, 43].

2 PRELIMINARIES
In this section, we fix the notations on the𝑚-CFLP, Bayesian Mech-

anism Design, and Optimal Transport (OT).

The𝑚-Capacitated Facility Location Problem. Given a set of self-

interested agents [𝑛] := {1, . . . , 𝑛}, we denote with ®𝑥 ∈ R𝑛 the

vector containing the agents’ positions. Likewise, given 𝑚 ∈ N,
we denote with ®𝑐 ∈ N𝑚 the vector containing the capacities of

the facilities, namely ®𝑐 = (𝑐1, . . . , 𝑐𝑚). In this setting, a facility

location is defined by three objects: (i) a 𝑚-dimensional vector

®𝑦 = (𝑦1, . . . , 𝑦𝑚) whose entries are𝑚 positions on the line, (ii) a

permutation 𝜋 ∈ S𝑚 that decides the capacity of the facility built

at 𝑦 𝑗 , so that 𝑐𝜋 ( 𝑗 ) is the capacity of the facility built at 𝑦 𝑗 , and
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(iii) a matching Γ ⊂ [𝑛] × [𝑚] that determines how the agents

are assigned to facilities, i.e. (𝑖, 𝑗) ∈ Γ if and only if the agent at

𝑥𝑖 is assigned to 𝑦 𝑗 . Due to the capacity constraints, the degree

of vertex 𝑗 ∈ [𝑚] according to Γ is at most 𝑐𝜋 ( 𝑗 ) . Similarly, every

agent is assigned to only one facility, thus the degree of every

𝑖 ∈ [𝑛] according to Γ is 1. Given the positions of the facilities ®𝑦
and a matching Γ, we define the cost of an agent positioned in 𝑥𝑖 as

𝑑𝑖,Γ (𝑥𝑖 , ®𝑦) = |𝑥𝑖−𝑦 𝑗 |, where (𝑖, 𝑗) is the unique edge in Γ adjacent to
𝑖 . Given a matching Γ and a permutation 𝜋 ∈ S𝑚 , a cost function is

a map𝐶Γ : R𝑛 ×R𝑚 → [0, +∞) that associates to ( ®𝑥, ®𝑦) the overall
cost of placing the facilities at the positions in ®𝑦 following the

permutation 𝜋 and assigning the agents positioned at ®𝑥 according

to Γ.1 Given a vector ®𝑥 ∈ R𝑛 containing the agents’ positions, the

𝑚-Capacitated Facility Location Problem with respect to the cost

𝐶 , consists in finding the locations for𝑚 facilities, a permutation

𝜋 , and the matching Γ that minimize the function ®𝑦 → 𝐶 ( ®𝑥, ®𝑦).
The most studied cost function is the Social Cost (𝑆𝐶), which is

defined as the sum of all the agents’ costs. Since multiplying the

cost function by a constant does not affect the approximation ratio

results, throughout the paper we consider the Social Cost rescaled

by the total number of agents, that is 𝑆𝐶 ( ®𝑥, ®𝑦) = 1

𝑛

∑
𝑖∈[𝑛] |𝑥𝑖 −𝑦 𝑗 |.

Mechanism Design, the Worst-Case Analysis, and the Ranking
Mechanisms. An𝑚-facility location mechanism is a function 𝑓 that

takes the agents’ reports ®𝑥 in input and returns a set of𝑚 positions

®𝑦 on the line, a permutation 𝜋 ∈ S𝑚 , and a matching Γ to allocate

the agents to the facilities. In general, an agent may misreport its

position if it would result in a set of facility locations such that

the agent’s incurred cost is smaller than reporting truthfully. A

mechanism 𝑓 is said to be truthful (or strategy-proof ) if, for every
agent, its cost is minimized when it reports its true position. That is,

𝑑𝑖 (𝑥𝑖 , 𝑓 ( ®𝑥)) ≤ 𝑑𝑖 (𝑥𝑖 , 𝑓 ( ®𝑥−𝑖 , 𝑥 ′𝑖 )) for any misreport 𝑥 ′
𝑖
∈ R, where

®𝑥−𝑖 is the vector ®𝑥 without its 𝑖-th component. Although deploying

a truthful mechanism prevents agents from getting a benefit by

misreporting their positions, this leads to a loss of efficiency. To

evaluate this efficiency loss, Nisan and Ronen introduced the notion

of approximation ratio [37]. Given a truthful mechanism 𝑓 , its

approximation ratio with respect to the Social Cost is defined as

𝑎𝑟 (𝑓 ) := sup®𝑥∈R𝑛
𝑆𝐶𝑓 ( ®𝑥 )
𝑆𝐶𝑜𝑝𝑡 ( ®𝑥 ) , where 𝑆𝐶𝑓 ( ®𝑥) is the Social Cost of

placing the facilities and assigning the agents to them following the

output of 𝑓 , while 𝑆𝐶𝑜𝑝𝑡 ( ®𝑥) is the optimal Social Cost achievable

when the agents’ report is ®𝑥 . The Ranking Mechanisms are a class of
mechanisms for the𝑚-CFLP that work under the assumption that

the total capacity of the facilities matches the number of agents,

[5]. Each Ranking Mechanism is defined by two parameters: a

permutation 𝜋 ∈ S𝑚 and a vector ®𝑡 = (𝑡1, . . . , 𝑡𝑚) ∈ [𝑛]𝑚 . Given 𝜋

and ®𝑡 the routine of the RankingMechanism is as follows: (i) given ®𝑥
the vector containing the agents’ reports ordered non-decreasingly,

then the mechanism places the facility with capacity 𝑐𝜋 ( 𝑗 ) at 𝑥𝑡 𝑗 .
(ii) The agents are assigned to the facility from left to right while

respecting the capacity constraints. It was shown in [5] that a

Ranking Mechanism is truthful if and only if every 𝑡 𝑗 admits at

most two different values. Moreover, the approximation ratio of

these mechanisms is bounded only when the number of agents is

1
In what follows, we omit Γ from the indexes of 𝑑 and𝐶 if it is clear from the context

which matching we are considering.

even, the number of facilities to places is 2, and the two facilities

have the same capacity. In this case, the mechanism is also called

InnerPoint Mechanism (IM) and its approximation ratio is
𝑛
2
− 1.

Bayesian Mechanism Design. In Bayesian Mechanism Design,

every agent’s type is described by a random variable 𝑋𝑖 . In what

follows, we assume that every𝑋𝑖 is identically distributed according

to a law 𝜇 and independent from the other random variables. In this

framework, a mechanism is truthful if, for every agent 𝑖 , it holds

E ®𝑋−𝑖
[𝑑𝑖 (𝑥𝑖 , 𝑓 (𝑥𝑖 , ®𝑋−𝑖 ))] ≤ E ®𝑋−𝑖

[𝑑𝑖 (𝑥𝑖 , 𝑓 (𝑥 ′𝑖 , ®𝑋−𝑖 ))], ∀𝑥𝑖 ∈ R, (1)

where 𝑥𝑖 agent 𝑖’s true type, ®𝑋−𝑖 is the (𝑛 − 1)-dimensional ran-

dom vector that describes the other agents’ type, and E ®𝑋−𝑖
is the

expectation with respect to the joint distribution of ®𝑋−𝑖 . It is easy
to see that if a mechanism is truthful in the classic Mechanism

Design framework, it is also truthful in the Bayesian framework.

Given 𝛽 ∈ R, a mechanism 𝑓 is a 𝛽-approximation if it holds

E[𝑆𝐶𝑓 ( ®𝑋𝑛)] ≤ 𝛽 E[𝑆𝐶𝑜𝑝𝑡 ( ®𝑋𝑛)], where E is the expectation with

respect to the joint distribution of ®𝑋𝑛 . Similarly to what happens for

the approximation ratio, the lower 𝛽 is, the better the mechanism

is. To unify the notation, we define the Bayesian approximation
ratio of a mechanism 𝑓 as the ratio between the expected Social

Cost of a mechanism and the expected optimal Social Cost. More

formally, given a mechanism 𝑓 , its Bayesian approximation ratio

with respect to the Social Cost is defined as follows

𝐵𝑎𝑟 (𝑓 ) :=
E[𝑆𝐶𝑓 ( ®𝑋𝑛)]

E[𝑆𝐶𝑜𝑝𝑡 ( ®𝑋𝑛)]
, (2)

where the expected value is taken over the joint distribution of the

vector ®𝑋𝑛 := (𝑋1, . . . , 𝑋𝑛). Notice that, if 𝐵𝑎𝑟 (𝑓 ) < +∞, then 𝑓 is a

𝐵𝑎𝑟 (𝑓 )-approximation.

The Wasserstein Distance. Let us denote with P(R) the set of

probability measures over R. Given 𝛾 ∈ P(R), we denote with

𝑠𝑝𝑡 (𝛾) ⊂ R the support of 𝛾 and with𝑚𝑒𝑑 (𝛾) the smallest median

of 𝛾 . We denote with P𝑚 (R) the set of probability measures over

R whose support contains at most𝑚 points, thus a measure 𝜈 ∈
P𝑚 (R) is such that 𝜈 =

∑𝑚
𝑗=1 𝜈 𝑗𝛿𝑥 𝑗

, where 𝑥 𝑗 ∈ R for all 𝑗 ∈
[𝑚], 𝜈 𝑗 are non-negative values satisfying

∑𝑚
𝑗=1 𝜈 𝑗 = 1, and 𝛿𝑥 𝑗

is the Dirac delta measure centered at 𝑥 𝑗 . Given two measures

𝛼, 𝛽 ∈ P(R), the Wasserstein distance between 𝛼 and 𝛽 is defined

as𝑊1 (𝛼, 𝛽) = min𝜋∈Π (𝛼,𝛽 )
∫
R×R |𝑥 −𝑦 |𝑑𝜋, where Π(𝛼, 𝛽) is the set

of probability measures over R ×R whose first marginal is equal to

𝛼 and the second marginal is equal to 𝛽 [29]. For a comprehensive

introduction to Optimal Transport theory, we refer to [41] and [39].

Basic Assumptions. Finally, we layout the basic assumptions of

our framework. In what follows, we tacitly assume that the under-

lying distribution 𝜇 satisfies all the following properties: (i) The

measure 𝜇 is absolutely continuous. We denote with 𝜌𝜇 its density.

(ii) The support of 𝜇 is an interval, which can be bounded or not, and

that 𝜌𝜇 is strictly positive on the interior of the support. (iii) The

density function 𝜌𝜇 is differentiable on the support of 𝜇. (iv) The

probability measure 𝜇 has finite first moment, i.e.

∫
R
|𝑥 |𝑑𝜇 < +∞.

Notice that, according to this set of assumptions, the cumulative

distribution function (c.d.f.) of 𝜇, namely 𝐹𝜇 , is locally bijective.
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3 THE EXTENDED RANKING MECHANISMS
Since our study aims to examine the behaviour of the mechanism

as the number of agents goes to infinity, expressing the problem in

terms of absolute capacities is unsuitable. For this reason, we need

to rephrase the specifics of the𝑚-CFLP in terms of percentages. In

particular, instead of considering a collection of capacities 𝑐 𝑗 ∈ N for

each 𝑗 ∈ [𝑚], we shift our focus to the percentage capacity vector

(p.c.v.) ®𝑞 ∈ (0, 1)𝑚 . Each value 𝑞 𝑗 corresponds to the percentage

of agents that the 𝑗-th facility can accommodate. Given ®𝑞 and a

number of agents 𝑛, we recover the absolute capacity of the 𝑗-th

facility by setting 𝑐 𝑗 =
⌊
𝑞 𝑗 (𝑛 − 1)

⌋
+ 1. Conversely, when we are

given the absolute capacities 𝑐 𝑗 for a given number of agents 𝑛,

the corresponding p.c.v. is 𝑞 𝑗 =
𝑐 𝑗
𝑛 . Without loss of generality, we

assume that the entries of ®𝑞 are ordered non-increasingly.

Mechanism 1 (Extended Ranking Mechanisms (ERMs)). Let
®𝑞 = (𝑞1, . . . , 𝑞𝑚) be a p.c.v.. Given a permutation 𝜋 ∈ S𝑚 and an
non-decreasingly ordered vector ®𝑝 = (𝑝1, . . . , 𝑝𝑚) ∈ [0, 1]𝑚 , that is
𝑝 𝑗 ≤ 𝑝 𝑗+1, the routine of the ERM associated with 𝜋 and ®𝑝 , namely
ERM(𝜋,®𝑝 ) , is as follows: (i) First, we collect the reports of the agents
and order them non-decreasingly. We denote with ®𝑥 the ordered vector
containing the agents’ reports, thus 𝑥𝑖 ≤ 𝑥𝑖+1. (ii) Second, we elicit𝑚
positions on the line by setting 𝑦 𝑗 = 𝑥⌊𝑝 𝑗 (𝑛−1)⌋+1 for every 𝑗 ∈ [𝑚]
and place the facility with capacity 𝑞𝜋 ( 𝑗 ) at𝑦 𝑗 . (iii) Finally, we assign
every agent to the facility closer to the position they reported (break
ties arbitrarily without overloading the facilities).

Notice that, in the routine of the ERM, the vector ®𝑝 plays the

role that ®𝑡 plays in the routine of a Ranking Mechanism. Indeed,

the main difference between the Ranking Mechanisms and our

generalization lies in how the mechanism matches the agents to

the facilities. While the Ranking Mechanisms assign the agents

monotonically from left to right, the ERM assigns every agent to

the facility that is closer to their report. Depending on the pair

(𝜋, ®𝑝) and ®𝑞, however, the matching returned by the ERM might

overload some of the facilities. We say that a couple (𝜋, ®𝑝) induces
a feasible ERM if, for every 𝑛 ∈ N and every ®𝑥 ∈ R𝑛 , the output of
ERM(𝜋,®𝑝 ) is a facility location for the𝑚-CFLP induced by ®𝑞. Given
a p.c.v. ®𝑞, the set of parameters (𝜋, ®𝑝) that induce a feasible ERM
is characterizable through a system of inequalities. For the sake of

simplicity, we first consider the case in which ®𝑝 does not have two

equal entries, that is 𝑝 𝑗 ≠ 𝑝𝑙 for every 𝑗 ≠ 𝑙 .

Theorem 3.1. Given ®𝑞 and ®𝑝 such that 𝑝 𝑗 ≠ 𝑝𝑖 for every 𝑗 ≠ 𝑖 ∈
[𝑚], then ERM(𝜋,®𝑝 ) is feasible if and only if the following system of
inequalities are satisfied

𝑞𝜋 (1) ≥ 𝑝2

𝑞𝜋 (2) ≥ 𝑝3 − 𝑝1
.
.
.

𝑞𝜋 (𝑚−1) ≥ 𝑝𝑚 − 𝑝𝑚−2
𝑞𝜋 (𝑚) ≥ 1 − 𝑝𝑚−1

. (3)

The feasibility of the ERM ensures also its truthfulness.

Theorem 3.2. Given a p.c.v. ®𝑞, any feasible ERM(𝜋,®𝑝 ) is truthful.
Thus it is also truthful in the Bayesian framework.

The truthfulness of any ERM is bound to the fact that every

facility 𝑦 𝑗 can accommodate all the agents between 𝑦 𝑗−1 and 𝑦 𝑗+1.
This constraint limits the set of ®𝑝 for which there exists a 𝜋 ∈ S𝑚
such that ERM(𝜋,®𝑝 ) is feasible.

Corollary 3.2.1. Given a p.c.v. ®𝑞 ∈ (0, 1)𝑚 , let us fix ®𝑝 ∈ [0, 1]𝑚 .
Then, if (max𝑗∈[𝑚] 𝑝 𝑗 −min𝑗∈[𝑚] 𝑝 𝑗 ) >

∑
𝑗∈[𝑚] 𝑞 𝑗 − 1, the mech-

anism ERM(𝜋,®𝑝 ) is not feasible for every 𝜋 ∈ S𝑚 .

Finally, we notice that if ®𝑝 has at least two equal entries, not all

the feasible ERMs necessarily satisfy system (3). For example, the

all-median mechanism that places all the facilities at the median

agent is always feasible and truthful.
2
However, depending on ®𝑞, the

vector ®𝑝 = (0.5, . . . , 0.5) may not satisfy system (3) for any 𝜋 ∈ S𝑚 .

Indeed, if 𝑝 𝑗 = 𝑝𝑙 for some indices 𝑗, 𝑙 ∈ [𝑚], we need to consider

all the facilities placed at 𝑥 ⌊𝑝 (𝑛−1) ⌋+1 as if they were a unique

facility whose capacity is the total capacity of the facilities placed at

𝑥 ⌊𝑝 (𝑛−1) ⌋+1. By doing so, we are able to extend Theorem 3.1 and 3.2

to the case in which ®𝑝 has at least two equal entries. In particular,

given ®𝑝 ∈ [0, 1]𝑚 , let ®𝑝′ ∈ [0, 1]𝑚′
be the vector containing all the

different entries of ®𝑝 , then, the mechanism ERM(𝜋,®𝑝 ) is feasible if
and only if the following system is satisfied

∑
𝑙∈[𝑚]; 𝑠.𝑡 . 𝑝𝜋 (𝑙 )=𝑝

′
1

𝑞𝜋 (𝑙 ) ≥ 𝑝′
2∑

𝑙∈[𝑚]; 𝑠.𝑡 . 𝑝𝜋 (𝑙 )=𝑝
′
2

𝑞𝜋 (𝑙 ) ≥ 𝑝′
3
− 𝑝′

1

.

.

.∑
𝑙∈[𝑚]; 𝑠.𝑡 . 𝑝𝜋 (𝑙 )=𝑝

′
𝑚−1

𝑞𝜋 (𝑙 ) ≥ 𝑝′
𝑚′ − 𝑝′

𝑚′−2∑
𝑙∈[𝑚]; 𝑠.𝑡 . 𝑝𝜋 (𝑙 )=𝑝

′
𝑚′ 𝑞𝜋 (𝑙 ) ≥ 1 − 𝑝′

𝑚′−1

.

Lastly, we notice that, except in a few specific cases, the approx-

imation ratio of the Ranking Mechanisms is unbounded. Conse-

quentially, it is impossible to retrieve a bound on the approximation

ratio of any ERM for generic𝑚-CFLPs. Since the classic worst-case

analysis does not give any insight into the performances of the

ERMs, we move our attention to the Bayesian analysis.

4 THE BAYESIAN ANALYSIS OF THE ERMS
In this section, we present our main result, which characterizes the

limit of the Bayesian approximation ratio of any feasible ERM as a

function of ®𝑝 , 𝜋 , 𝜇, and ®𝑞. As a preliminary lemma, we relate the

𝑚-CFLP to a norm minimization problem in the Wasserstein Space.

Lemma 4.1. Given a p.c.v. ®𝑞, let ®𝑥 ∈ R𝑛 be the vector containing
the agents’ reports. Let us fix 𝜇 ®𝑥 := 1

𝑛

∑
𝑖∈[𝑛] 𝛿𝑥𝑖 . Then, it holds

𝑆𝐶𝑜𝑝𝑡 ( ®𝑥) = min

𝜎∈S𝑚

min

𝜁 ∈P𝜎, ®𝑞 (R)
𝑊1 (𝜇𝑛, 𝜁 ), (4)

where P𝜎,®𝑞 (R) is the set of probability measures such that 𝜁 =∑
𝑗∈[𝑚] 𝜁 𝑗𝛿𝑦 𝑗

, where 𝑦1 ≤ 𝑦2 ≤ · · · ≤ 𝑦𝑚 and 𝜁 𝑗 ≤ 𝑞𝜎 ( 𝑗 ) for
every 𝑗 ∈ [𝑚]. Similarly, given a permutation 𝜋 ∈ S𝑚 and a vector
®𝑝 that induce a feasible ERM, it holds

𝑆𝐶𝜋,®𝑝 ( ®𝑥) = min

𝜆 𝑗 ≤𝑞𝜋 ( 𝑗 ) ,
∑

𝑗 ∈ [𝑚]𝜆𝑗 =1
𝑊1 (𝜇𝑛, 𝜆), (5)

where 𝑆𝐶𝜋,®𝑝 ( ®𝑥) is the Social Cost attained by ERM(𝜋,®𝑝 ) on instance ®𝑥 ,
𝜆 =

∑
𝑗∈[𝑚] 𝜆 𝑗𝛿𝑥𝑟 𝑗 , and 𝑟 𝑗 =

⌊
𝑝 𝑗 (𝑛 − 1)

⌋
+ 1.

2
In this case, we do not need to specify which agent is served by which facility nor

𝜋 ∈ S𝑚 , since all the agents and all the facilities are served/located at the same place.
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The proof of Lemma 4.1 consists in showing that, for any given

instance ®𝑥 and given an optimal facility location for the𝑚-CFLP, it

is possible to construct a measure 𝜈 such that𝑊1 (𝜇𝑛, 𝜈) = 𝑆𝐶𝑜𝑝𝑡 ( ®𝑥)
and, vice-versa, given ameasure 𝜈 that minimizes (4), it is possible to

retrieve an optimal facility location problem for the𝑚-CFLP. Since

the𝑚-CFLP admits a solution, problem (4) is well-posed and admits

a solution. By a similar argument, we infer the same conclusions

for problem (5). The connection between the𝑚-CFLP and Optimal

Transport theory highlighted in Lemma 4.1 enables us to exploit

the properties of the Wasserstein distances and to characterize the

limit Bayesian approximation ratio of every feasible ERM.

Theorem 4.2. Given the p.c.v. ®𝑞, let ®𝑝 ∈ (0, 1)𝑚 and 𝜋 ∈ S𝑚 be
such that ERM(𝜋,®𝑝 ) is feasible. Then, it holds

lim

𝑛→+∞

E[𝑆𝐶𝜋,®𝑝 ( ®𝑥)]
E[𝑆𝐶𝑜𝑝𝑡 ( ®𝑥)]

=
𝑊1 (𝜇, 𝜈 ®𝑝 )
𝑊1 (𝜇, 𝜈𝑚) , (6)

where 𝜈𝑚 is a solution to the following minimization problem

min

𝜎∈S𝑚

min

𝜁 ∈P𝜎, ®𝑞 (R)
𝑊1 (𝜇, 𝜁 ), (7)

and 𝜈 ®𝑝 is a solution to

min

𝜆 𝑗 ≤𝑞𝜋 ( 𝑗 ) ,
∑

𝑗 ∈ [𝑚] 𝜆 𝑗=1
𝑊1

(
𝜇,

∑︁
𝑗∈[𝑚]

𝜆 𝑗𝛿𝐹 [−1]
𝜇 (𝑝 𝑗 )

)
. (8)

Sketch of the proof. The proof consists of three steps: (i) First,

we show that the expected optimal Social Cost for the 𝑚-CFLP

converges to the objective value of the minimization problem in

(7). (ii) Second, we show that the expected Social Cost of ERM(𝜋,®𝑝 )

converges to the objective value of the minimization problem in

(8). (iii) We combine the two convergence results to retrieve (6).

The limit of the expected optimal Social Cost. Let𝜈𝑚 be such

that𝑊1 (𝜇, 𝜈𝑚) = min𝜎∈S𝑚
min𝜁 ∈P𝜎, ®𝑞 (R)𝑊1 (𝜇, 𝜁 ). From Lemma

4.1, we know that, for every𝑛 ∈ N and for every ®𝑥 ∈ R𝑛 , there exists
a 𝜈 ®𝑥,𝑚 such that 𝑆𝐶𝑜𝑝𝑡 ( ®𝑥) =𝑊1 (𝜇𝑛, 𝜈 ®𝑥,𝑚). By definition of 𝜈𝑚 , we

have that𝑊1 (𝜇, 𝜈𝑚) ≤𝑊1 (𝜇, 𝜈 ®𝑥,𝑚). Since𝑊1 is a distance, it holds

𝑊1 (𝜇, 𝜈𝑚) ≤𝑊1 (𝜇, 𝜈 ®𝑥,𝑚) ≤𝑊1 (𝜇, 𝜇𝑛) +𝑊1 (𝜇𝑛, 𝜈 ®𝑥,𝑚). By rearrang-

ing the terms and by taking the expected value with respect to

the distribution of ®𝑋 , we obtain E[𝑊1 (𝜇, 𝜈𝑚)] −E[𝑊1 (𝜇𝑛, 𝜈 ®𝑥,𝑚)] ≤
E[𝑊1 (𝜇, 𝜇𝑛)]. By a similar argument, we have that𝑊1 (𝜇𝑛, 𝜈 ®𝑥,𝑚) ≤
𝑊1 (𝜇𝑛, 𝜈𝑚) ≤ 𝑊1 (𝜇, 𝜇𝑛) + 𝑊1 (𝜇, 𝜈𝑚), hence E[𝑊1 (𝜇𝑛, 𝜈 ®𝑥,𝑚)] −
E[𝑊1 (𝜇, 𝜈𝑚)] ≤ E[𝑊1 (𝜇, 𝜇𝑛)]. We then infer that

|E[𝑊1 (𝜇, 𝜈𝑚)] − E[𝑊1 (𝜇𝑛, 𝜈 ®𝑥,𝑚)] | ≤ E[𝑊1 (𝜇, 𝜇𝑛)] .
Since the right handside of this inequality converges to 0 as𝑛 goes to

+∞ (see [9]), we infer that lim𝑛→∞ E[𝑊1 (𝜇𝑛, 𝜈 ®𝑥,𝑚)] =𝑊1 (𝜇, 𝜈𝑚),
which concludes the first part of the proof.

The limit of the expected Social Cost of the Mechanism.
The argument used for this part is similar to the one used for the

limit expected optimal Social Cost but more delicate. Indeed, in

this case, the set on which we minimize the Wasserstein distance

does depend on the agents’ report ®𝑥 . In particular, the sets on

which are formulated problem (8) and (5) are, in general, different.

To overcome this issue, we need to define two auxiliary probabil-

ity measures, namely 𝜙 and 𝜓 . Given ®𝑥 ∈ R𝑛 , let 𝜈 ®𝑝 and 𝜈 ®𝑥,®𝑝 be

the solutions to problem (8) and (5), respectively. We define the

measures 𝜙 =
∑

𝑗∈[𝑚] (𝜈 ®𝑥,®𝑝 ) 𝑗𝛿𝑦 𝑗
, where 𝑦 𝑗 is the support of the

measure 𝜈 ®𝑝 . For every 𝑛 ∈ N and every ®𝑥 ∈ R𝑛 , we have that

𝑊1 (𝜇, 𝜈 ®𝑝 ) ≤𝑊1 (𝜇, 𝜙) ≤𝑊1 (𝜇, 𝜇𝑛) +𝑊1 (𝜇𝑛, 𝜈 ®𝑥,®𝑝 ) +𝑊1 (𝜈 ®𝑥,®𝑝 , 𝜙) .We

therefore infer

𝑊1 (𝜇, 𝜈 ®𝑝 ) −𝑊1 (𝜇𝑛, 𝜈 ®𝑥,®𝑝 ) ≤𝑊1 (𝜇, 𝜇𝑛) +𝑊1 (𝜈 ®𝑥,®𝑝 , 𝜙) . (9)

Similarly, given ®𝑥 ∈ R𝑛 , we define 𝜓 =
∑

𝑗∈[𝑚] (𝜈 ®𝑝 ) 𝑗𝛿𝑦 ®𝑥,𝑗 , where

{𝑦 ®𝑥,𝑗 } 𝑗∈[𝑚] is the support of 𝜈 ®𝑥,®𝑝 . We then have

𝑊1 (𝜇𝑛, 𝜈 ®𝑥,®𝑝 ) −𝑊1 (𝜇, 𝜈 ®𝑝 ) ≤𝑊1 (𝜇, 𝜇𝑛) +𝑊1 (𝜈 ®𝑝 ,𝜓 ) . (10)

Since the Wasserstein distance is always non negative, we can

combine the estimations in (9) and (10), to obtain

|𝑊1 (𝜇𝑛, 𝜈 ®𝑥,®𝑝 ) −𝑊1 (𝜇, 𝜈 ®𝑝 ) | ≤𝑊1 (𝜇, 𝜇𝑛) +𝑊1 (𝜈 ®𝑝 ,𝜓 ) +𝑊1 (𝜈 ®𝑥,®𝑝 , 𝜙) .
If we take the expectation of both sides of the inequality the in-

equality still holds. Thus, if we show that lim𝑛→∞ E[𝑊1 (𝜈 ®𝑝 ,𝜓 )] =
lim𝑛→∞ E[𝑊1 (𝜈 ®𝑥,®𝑝 , 𝜙)] = 0, we conclude this second step of the

proof since, by [9], we have that lim𝑛→∞ E[𝑊1 (𝜇𝑛, 𝜇)] = 0. Let

us consider E[𝑊1 (𝜈 ®𝑝 ,𝜓 )], the convergence of E[𝑊1 (𝜈 ®𝑥,®𝑝 , 𝜙)] fol-
lows by a similar argument. We notice that 𝜓 and 𝜈 ®𝑝 have dif-

ferent supports, but 𝜓 𝑗 = (𝜈 ®𝑝 ) 𝑗 , thus it holds E[𝑊1 (𝜈 ®𝑝 ,𝜓 )] ≤∑
𝑗∈[𝑚] 𝜓 𝑗E[|𝑦 𝑗 −𝑦 ®𝑥,𝑗 |], where 𝑦 ®𝑥,𝑗 is the 𝑗-th point in the support

of 𝜈 ®𝑥,®𝑝 . By definition of ERM, it holds𝑦 ®𝑥,𝑗 = 𝑥⌊𝑝 𝑗 (𝑛−1)⌋+1. Since the( ⌊
𝑝 𝑗 (𝑛 − 1)

⌋
+1

)
-th order statistics converges to the 𝑝 𝑗 -th quantile

of 𝜇 [16, 30], we have that E[|𝑦 𝑗 − 𝑦 ®𝑥,𝑗 |] → 0 as 𝑛 → ∞, which

concludes the second part of the proof.

Characterizing the Bayesian approximation ratio. To con-

clude, notice that the distance between an absolutely continuous

measure and a discrete measure is always greater than zero, thus

lim𝑛→∞ E[𝑆𝐶𝑜𝑝𝑡 ( ®𝑋 )] > 0. For this reason, we have that the limit

of the ratio is equal to the ratio of the limits, which proves (6). □

Notice that our result applies only to feasible ERM(𝜋,®𝑝 ) , such that

®𝑝 ∈ (0, 1)𝑚 , since, for general measures 𝜇, the values 𝐹
[−1]
𝜇 (0) and

𝐹
[−1]
𝜇 (1) might not be finite. Finally, we notice that the Bayesian

approximation ratio is invariant to positive affine transformation

of 𝜇. In particular, the limit of the Bayesian approximation ratio

remains the same across all the Gaussian-distributed populations.

Corollary 4.2.1. Let ®𝑞 be a p.c.v. and let𝑋 be the random variable
associated with 𝜇. Given 𝛼 > 0 and 𝛽 ∈ R, let 𝜇𝛼,𝛽 be the probability
distribution associated with 𝛼𝑋 + 𝛽 . Then, the asymptotical Bayesian
approximation ratio of any feasible ERM is the same regardless of
whether the agent type is distributed according to 𝜇 or 𝜇𝛼,𝛽 .

5 HOW TO SELECT AN OPTIMAL ERM
As shown in Theorem 4.2, the limit Bayesian approximation ratio of

any ERM hinges upon 𝜇, ®𝑞, 𝜋 , and ®𝑝 . While 𝜇 and ®𝑞 are beyond the

control of themechanism designer, both 𝜋 and ®𝑝 serve as parameters

that can be tuned depending upon 𝜇 and ®𝑞. In this section, we study

how to determine an optimal ERM tailored to 𝜇 and ®𝑞. Given 𝜇 and

®𝑞, we say that a feasible ERM(𝜋,®𝑝 ) is optimal if

lim

𝑛→∞
𝐵𝑎𝑟

(
ERM(𝜋,®𝑝 )

)
≤ lim

𝑛→∞
𝐵𝑎𝑟

(
ERM(𝜋

′,®𝑝′ ) )
for any other feasible ERM(𝜋

′,®𝑝′ )
. The main result of the section

assesses that an optimal ERM exists and characterizes its parameters

(𝜋, ®𝑝) as the solution to a suitable minimization problem.
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Theorem 5.1. Given 𝜇 and a p.c.v. ®𝑞, there always exist a tuple
(𝜋, ®𝑝) whose associated ERM, that is ERM(𝜋,®𝑝 ) , is optimal. Moreover,
the couple (𝜋, ®𝑝) is a solution to the following minimization problem

min

𝜋∈S𝑚

min

®𝑝∈ (0,1)𝑚
𝑊1

(
𝜇,

∑︁
𝑗∈[𝑚]

𝜂 𝑗𝛿𝐹 [−1]
𝜇 (𝑝 𝑗 )

)
(11)

such that 𝑝 𝑗+1 − 𝑝 𝑗−1 ≤ 𝑞𝜋 ( 𝑗 ) for 𝑗 = 2, . . . ,𝑚 − 1,

𝑝1 ≤ 𝑞𝜋 (𝑞) , and 𝑝𝑚 ≤ 1 − 𝑞𝜋 (𝑚) ,

where𝜂1 = 𝐹𝜇

(
𝐹
[−1]
𝜇 (𝑝2 )+𝐹 [−1]

𝜇 (𝑝1 )
2

)
,𝜂 𝑗 = 𝐹𝜇

(
𝐹
[−1]
𝜇 (𝑝 𝑗+1 )+𝐹 [−1]

𝜇 (𝑝 𝑗 )
2

)
−

𝐹𝜇

(
𝐹
[−1]
𝜇 (𝑝 𝑗 )+𝐹 [−1]

𝜇 (𝑝 𝑗−1 )
2

)
for 𝑗 = 2, . . . ,𝑚 − 1, and 𝜂𝑚 = 1 − 𝜂𝑚−1.

Notice that the limit Bayesian approximation ratio of the optimal

ERM does not necessarily converge to 1, as the next example shows.

Example 1. Let 𝜇 be the uniform distribution U[0, 1] and let
®𝑞 = (0.8, 0.4) be a p.c.v.. Since 𝜇 is symmetric, one of the solutions
to problem (7) is 𝜈2 = (0.4)𝛿0.2 + (0.6)𝛿0.7 (the other one is 𝜈 ′

2
=

(0.6)𝛿0.3 + (0.4)𝛿0.8). However, by Corollary 3.2.1, there does not exist
a permutation 𝜋 ∈ S𝑚 such that ERM( (0.2,0.7),𝜋 ) is feasible. Thus, by
Theorem 4.2, no feasible ERM is such that lim𝑛→∞ 𝐵𝑎𝑟 (ERM(𝜋,®𝑝 ) ) = 1.

We now characterize the optimal ERM in two specific cases.

In the first one, the total capacity of the facilities is the same as

the number of agents. In the second one, we need to place two

capacitated facilities and 𝜇 is a uniform distribution.

5.1 The No-Spare Capacity Case
In the no-spare capacity case, the total capacity of the facilities

matches the number of agents, thus

∑
𝑗∈[𝑚] 𝑞 𝑗 = 1. Due to Corol-

lary 3.2.1, we have that the only feasible ERMs are the ones for

which it holds 𝑝 𝑗 = 𝑝 ∈ [0, 1] for every 𝑗 ∈ [𝑚]. Thus, owing to

the properties of the𝑊1 distance and to Lemma 4.1, the optimal

ERM is the all-median mechanism, i.e. ERM(𝐼𝑑,(0.5,...,0.5) ) .

Theorem 5.2. In the no-spare capacity case, the optimal ERM is
unique and is the all-median mechanism.

When the agents are distributed following a uniform distribu-

tion, that is 𝜇 = U[0, 1], we can express the limit Bayesian ap-

proximation ratio of the all-median mechanism as a function

of ®𝑞. Indeed, since ∑
𝑗∈[𝑚] 𝑞 𝑗 = 1, any solution to problem (7)

separates the interval [0, 1] into 𝑚 intervals whose length is 𝑞 𝑗 .

Notice that the order in which [0, 1] is divided is irrelevant. Fur-

thermore, the facility is placed at the median of such interval,

thus the objective value of (7) is
1

4

∑
𝑗∈[𝑚] 𝑞

2

𝑗
. By Theorem 4.2,

the limit Bayesian approximation ratio of the all-median mech-

anism is lim𝑛→∞ 𝐵𝑎𝑟 (all-median) = (∑𝑗∈[𝑚] 𝑞
2

𝑗
)−1, since the

asymptotic cost of placing all the facilities at the median point is∫
1

0
|𝑥 − 0.5|𝑑𝑥 = 1

4
. Notice that the limit Bayesian approximation

ratio gets closer to 1 as the values of ®𝑞 become concentrated at one

index. Conversely, if all the facilities have the same capacity
1

𝑚 ,

we have that the Bayesian approximation ratio of the all-median

becomes the largest possible, that is lim𝑛→∞ 𝐵𝑎𝑟 (ERM(𝜋,®𝑝 ) ) =𝑚.

Comparing the Ranking Mechanisms with the ERMs. To the best

of our knowledge, the only other truthful mechanisms capable of

placing more than 2 facilities in the no-spare capacity case are the

Ranking Mechanisms [5]. To close the section, we show that the

all-median mechanism is also the asymptotically best possible

Ranking Mechanism. Indeed, by [5], we know that a truthful Rank-

ing Mechanism either (i) puts all the facilities at the same position

or (ii) places all the facilities at two adjacent agents’ reports, namely

𝑥𝑡 and 𝑥𝑡+1. However, not all the values of 𝑡 are feasible, as it must

exist 𝐽 ′ ⊂ [𝑚] such that 𝑡 =
∑

𝑗∈ 𝐽 ′ 𝑐 𝑗 . Owing to Theorem 5.2, in

case (i), the best possible mechanism is the all-medianmechanism.

In case (ii) the limit Bayesian approximation ratio of any mecha-

nism is either equal or higher (see Appendix C). Indeed, consider a

population distributed as a Uniform distribution, i.e. 𝜇 = U[0, 1],
and ®𝑞 = ( 1

3
, 1
3
, 1
3
), and the Ranking Mechanism that places 𝑞1 at

𝑥⌊ 𝑛−1
3
⌋+1 and the other two facilities at 𝑥⌊ 𝑛−1

3
⌋+2. Since every agent

is assigned to its closest facility, it is possible to adapt Lemma 4.1

and Theorem 4.2 and show that the limit of the expected Social Cost

of the mechanism is𝑊1 (𝜇, 𝛿 1

3

) = 5

18
. Hence, the limit Bayesian ap-

proximation ratio of the considered Ranking Mechanism is ∼ 3.33,

while lim𝑛→∞ 𝐵𝑎𝑟 (all-median) = 3.

5.2 Placing two capacitated facilities for a
uniform population.

In this section, we retrieve the optimal ERMs when 𝜇 = U[0, 1]
and𝑚 = 2. For the sake of simplicity, we divide the discussion into

three steps. First, we demonstrate that both permutations inS2 yield

equally optimal ERMs. Second, we explicit the objective function of

problem (11) as a function of ®𝑝 and compute its derivatives. Lastly,

we retrieve the optimal ERM for any given ®𝑞 using Lagrangian

multipliers. In Appendix B, we show how to generalize this process

to the case in which 𝜇 is symmetric and other relevant frameworks.

First, notice that, since 𝐹
[−1]
U[0,1] (𝑝) = 𝑝 for every 𝑝 ∈ [0, 1], the

objective value of problem (11) boils down to

W(®𝑝) :=𝑊1

(
𝜇,
𝑝1 + 𝑝2

2

𝛿𝑝1 +
(
1 − 𝑝1 + 𝑝2

2

)
𝛿𝑝2

)
.

Step 1. Since 𝑚 = 2, S2 = {𝐼𝑑, 𝜃 }, where the permutation 𝐼𝑑

is such that 𝐼𝑑 (𝑖) = 𝑖 , and 𝜃 switches 1 and 2. First, we show if

(𝐼𝑑, ®𝑝) satisfies system (3), there exists a vector ®𝑝′ such that (𝜃, ®𝑝′)
satisfies (3) andW(®𝑝) = W(®𝑝′). Given ®𝑝 = (𝑝1, 𝑝2), let us define
®𝑝′ = (𝑝′

1
, 𝑝′

2
) = (1 − 𝑝2, 1 − 𝑝1). If (𝐼𝑑, ®𝑝) satisfies system (3), we

have that 𝑝2 ≤ 𝑞𝐼𝑑 (1) = 𝑞1 and 1 − 𝑝1 ≤ 𝑞𝐼𝑑 (2) = 𝑞2. It is then easy

to see that 𝑝′
2
= 1 − 𝑝1 ≤ 𝑞2 = 𝑞𝜃 (1) and, likewise 1 − 𝑝′

1
≤ 𝑞𝜃 (2) .

Thus, (𝜃, ®𝑝′) satisfies (3). Finally, due to the symmetry of 𝜇 with

respect to 0.5, we have that W(®𝑝) = W(®𝑝′). Therefore, for both
𝐼𝑑 and 𝜃 , there exists a vector ®𝑝 that induces an optimal ERM.

Step 2. Let us fix 𝜋 = 𝐼𝑑 . Due to the properties of the optimal

transportation plan on the line [39], have thatW(®𝑝) =
∫
1

0
min{|𝑥−

𝑝1 |, |𝑥 − 𝑝2 |}𝑑𝑥 , thus W(®𝑝) =
𝑝2

1

2
+ (1−𝑝2 )2

2
+ (𝑝2−𝑝1 )2

4
. From a

simple computation, we infer that the objective function W(®𝑝) is
differentiable and retrieve the formula of its gradient as ∇W(®𝑝) =
1

2

(
3𝑝1 − 𝑝2, 3𝑝2 − 2 − 𝑝1

)
. Notice that the set of points on which

the first derivative of W nullifies is the line 𝑝2 = 3𝑝1, while the

set of points on which the second derivative of W nullifies is

𝑝2 =
1

3
(𝑝1 + 2), thus ∇W(®𝑝) = (0, 0) if and only if ®𝑝 = (0.25, 0.75).

Step 3. Lastly, to detect an optimal ERM, we need to implement

the feasibility constraints described in Theorem 3.1. From Step 1,

we focus on the set of constraints induced by 𝐼𝑑 ∈ S𝑚 . In this case,
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we have that ®𝑝 must satisfy the following constraints (i) 𝑝2 ≤ 𝑞1,

(ii) 1 − 𝑝1 ≤ 𝑞2 that is 1 − 𝑞2 ≤ 𝑝1, and (iii) 𝑝1 ≤ 𝑝2. Thus the set

of feasible ®𝑝 is a triangle, namely 𝑇 ( ®𝑞), whose vertexes are (𝑞1, 𝑞1),
(1−𝑞2, 1−𝑞2), and (1−𝑞2, 𝑞1). Finally, we retrieve the best vector ®𝑝
depending on the value of ®𝑞. First, notice that if (0, 25, 0.75) ∈ 𝑇 ( ®𝑞),
i.e. if and only if 𝑞1, 𝑞2 ≥ 0.75, then the minimum is attained in

®𝑝 = (0, 25, 0.75) as it is the only point in which the gradient ∇W
nullifies and the Hessian matrix is positive definite. For all the other

values of ®𝑞, we need to search the minimum over the boundary of

𝑇 ( ®𝑞), since the gradient is never null on the interior of 𝑇 ( ®𝑞). First,
notice that the minimum cannot lay in the segment connecting

the vertexes (1 − 𝑞2, 1 − 𝑞2) and (𝑞1, 𝑞1). In this case, we have that

∇W(®𝑝) = 1

2
(2𝑝, 2𝑝 − 2), hence the gradient is never perpendicular

to the line 𝑝1 = 𝑝2. We then need to search for the minimum in the

sets {(1−𝑞2, 𝑡) s.t. 𝑡 ∈ [1−𝑞2, 𝑞1]} and {(𝑡, 𝑞1) s.t. 𝑡 ∈ [1−𝑞2, 𝑞1]}.

Theorem 5.3. Let ®𝑞 be a p.c.v. such that 𝑞2 ≤ 𝑞1, then an optimal
ERM for a uniformly distributed population is induced by (𝐼𝑑, ®𝑝)
where (i) ®𝑝 = (0.25, 0.75) if 𝑞2 ≥ 0.75, (ii) ®𝑝 = (1 − 𝑞2, 𝑞1) if
3𝑞2 − 2 − 𝑞1 ≤ 0, and (iii) ®𝑝 = (1 − 𝑞2, 1 − 𝑞2

3
) otherwise.

Lastly, we compare the performances of an optimal ERM and the

Extended Endpoint Mechanism (EEM), introduced in [5].

Bayesian Analysis of the EEM. The EEM is a truthful mecha-

nism that can locate any two capacitated facilities. The routine

of the EEM is as follows. Given ®𝑥 = (𝑥1, . . . , 𝑥𝑛) a vector contain-
ing the agents’ reports ordered non-decreasingly, we define 𝐴1 ={
𝑥𝑖 s.t. |𝑥𝑖 − 𝑥1 | ≤ |𝑥1−𝑥𝑛 |

2

}
and 𝐴2 =

{
𝑥𝑖 s.t. |𝑥𝑖 − 𝑥𝑛 | > |𝑥1−𝑥𝑛 |

2

}
.

Depending on the cardinality of the sets𝐴𝑖 and the capacities of the

facilities, the EEM determines the positions of the facilities follow-

ing one of six possible routines (see Appendix C). To analyze the

convergence of the Bayesian approximation ratio of the EEM we

need to study all the costs of all the six possible outcomes, weight

them by the likelihood of them occurring, and take the limit for 𝑛

goes to +∞.
3
For instance, let us consider Example 1. In this case,

we have that, as the number of agents increases, the EEMwill either

(1) place the facility with capacity 𝑞2 at 𝑦1 = 𝑥1 and the other facil-

ity at 𝑦2 = 2𝑥𝑛−(⌊𝑞1 (𝑛−1) ⌋+1) − 𝑥1 with probability 0.5 or (2) place

the facility with capacity 𝑞2 at 𝑦2 = 𝑥𝑛 and the other facility at

𝑦1 = 2𝑥 ⌊𝑞1 (𝑛−1) ⌋+2 −𝑥𝑛 with probability 0.5. Since 𝜇 = U[0, 1], we
have that𝑥1 → 0,𝑥𝑛 → 1,𝑥𝑛−⌊𝑞2 (𝑛−1) ⌋+2 → 𝐹

[−1]
𝜇 (1−𝑞2) = 1−𝑞2,

and 𝑥 ⌊𝑞2 (𝑛−1) ⌋+1 → 𝐹
[−1]
𝜇 (𝑞2) = 𝑞2. In particular, the limit ex-

pected Social Cost of the mechanism is then
1

2
𝑊1 (𝜇, 𝑞2𝛿2𝑞2−1 +

(1 − 𝑞2)𝛿1) + 1

2
𝑊1 (𝜇, (1 − 𝑞2)𝛿0 + 𝑞2𝛿2−2𝑞2 ). Since 𝜇 is symmetric

with respect to
1

2
, we have that 𝑊1 (𝜇, 𝑞2𝛿2𝑞2−1 + (1 − 𝑞2)𝛿1) =

𝑊1 (𝜇, (1 − 𝑞2)𝛿0 + 𝑞2𝛿2−2𝑞2 ) =
(1−𝑞2 )2

2
+ 𝑞2 (2−3𝑞2 )

2
= 0.34, hence

the limit Bayesian approximation ratio of the EEM is ∼ 2.62. By The-

orem 5.3, the optimal ERM is the one induced by ®𝑝 = (0.6, 0.8), thus
its limit Bayesian approximation ratio is ∼ 1.62. The sub-efficiency

of the EEMwith respect to an optimal ERM is due to the fact that the

EEM places both the facilities outside the interval (𝑥1, 𝑥𝑛), which,
in the limit, leads to a loss of efficiency. Moreover, it is worth to

notice that the convergence of the expected Social Cost of the EEM

depends on the convergence of the first or last order statistic.

3
Since the EEM cannot be phrased as an ERM, we cannot rely on Theorem 4.2.

6 NUMERICAL EXPERIMENTS
In this section, we complement our theoretical study of the ERMs by

running several numerical experiments. Indeed, most of our results

pertain to the limit analysis of the mechanism. For this reason, we

want to test two aspects of the ERMs. First, we want to compare the

Bayesian approximation ratio of the ERMs with the Bayesian ap-

proximation ratios of other truthful mechanisms when the number

of agents 𝑛 is small. Since the Ranking Mechanisms are a subset of

the ERMs and have been discussed in Section 5.1, we only consider

the EEM and, when possible, the IG. Second, wewant to evaluate the

convergence speed of the Bayesian approximation ratio of ERM(𝜋,®𝑝 ) .
More specifically, we want to assess how close the Bayesian approx-

imation ratio of an ERM and the limit detected in Theorem 4.2 are

when the number of agents is small. We run our experiments for

different distributions 𝜇 and percentage capacity vector ®𝑞. All the
experiments are performed in Matlab 2023a on macOS Monterey

system with Apple M1 Pro CPU and 16GB RAM. The code is avail-

able on https://anonymous.4open.science/r/Bayesian-CFLP-38D5/.

Experiment setup. Throughout our experiments, we sample the

agents’ positions from three probability distributions: the uniform

distribution U[0, 1], the standard normal distribution N(0, 1), and
the exponential distribution Exp(1). Owing to Corollary 4.2.1, we do
not consider other parameter choices since testing the mechanisms

over the standard Gaussian distribution is the same as testing over

N(𝔪, 𝜎2). To compare the ERMs to other mechanisms, we limit our

tests to cases in which𝑚 = 2, as all the known truthful mechanisms

different from the Ranking Mechanisms operate only under this

restriction. We consider different percentage capacity vectors ®𝑞 ∈
(0, 1)2. Specifically, we consider balanced capacities ®𝑞 = (𝑞, 𝑞) and
unbalanced capacities ®𝑞 = (𝑞1, 𝑞2), 𝑞1 ≠ 𝑞2. For the case of balanced

capacities, we set 𝑞 = 0.7, 0.8 and 0.9. For the case of unbalanced

capacities, we consider the slightly unbalanced capacities i.e. ®𝑞 =

(0.85, 0.75), and extremely unbalanced capacities i.e. ®𝑞 = (0.8, 0.4),
(0.85, 0.35). As benchmark mechanisms, we consider the EEM [5]

and, when possible, the IG [42].

Experiment results – Comparison with the EEM and the IG. We

first consider the case of balanced capacities ®𝑞 = (𝑞, 𝑞), in which

we are able to compare the Bayesian approximation ratio of three

different mechanisms for the 𝑚-CFLP: the EEM, the IG, and the

ERMs. Regardless of the distribution, we consider the optimal ERM

with respect to the uniform distribution, i.e. ERM(𝜋,®𝑝 ) , with 𝜋 = 𝐼𝑑

and ®𝑝 = (max{0.25, 1 − 𝑞},min{0.75, 𝑞}). Figure 1 (and Table 1 in

Appendix D) shows the average and the 95% confidence interval

(CI) of Bayesian approximation ratio for 𝑛 = 10, 20, 30, 40, 50. Each

average is computed over 500 instances. We observe that, in most

cases, the ERM achieves the lowest Bayesian approximation ratio

comparing to the other two mechanisms. When 𝑞 = 0.7, the ERM is

still better than the EEM but slightly worse than the IG. However,

the empirical Bayesian approximation ratio of the ERM and IG

converges to the same value as the number of agents increases.

Next, we consider the case of unbalanced capacities, where

𝑞1 ≠ 𝑞2, specifically ®𝑞 = (0.85, 0.75), (0.8, 0.4), (0.85, 0.35). Since
the IG requires the two capacities to be identical, we compare only

the ERM and the EEM. Amongst the possible ERMs, we select the

one optimal with respect to the Uniform distribution, obtained via
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Figure 1: The Bayesian approximation ratio of ERM, IG, and
EEM in the balanced case, i.e. 𝑞1 = 𝑞2 for 𝑛 = 10, 20, . . . , 50.
Every column contains the results for different vector ®𝑞. The
first row contains the results for the Uniform distribution,
the second row the results for the Gaussian distribution, and
the third one the results for the Exponential distribution.

Figure 2: The Bayesian approximation ratio of ERM and EEM
in the unbalanced case, i.e. 𝑞1 ≠ 𝑞2 for 𝑛 = 10, 20, . . . , 50. Every
column contains the results for a different vector ®𝑞. The first
row contains the results for the Uniform distribution. The
second row contains the results for the Gaussian distribution.

Theorem 5.3. Thus the parameters of ERM(𝜋,®𝑝 ) are (i) 𝜋 = 𝐼𝑑 for

every ®𝑞 and (ii) ®𝑝 = (0.25, 0.75) for ®𝑞 = (0.85, 0.75), ®𝑝 = (0.6, 0.8)
for ®𝑞 = (0.8, 0.4), and ®𝑝 = (0.65, 0.85) for ®𝑞 = (0.85, 0.35). In this

case, we consider only symmetric probability distributions, i.e. the

Gaussian and the Uniform distribution. Figure 2 (and Table 2 in

Appendix D) shows the average and the 95% CI of Bayesian ap-

proximation ratio computed over 500 instances. Whenever 𝑛 ≥ 20,

the ERM has a much lower approximation ratio. Notice that when

®𝑞 = (0.75, 0.85), the ERM is optimal in both cases, and its limit

Bayesian approximation ratio is 1. Indeed, the Bayesian approxima-

tion ratio of the ERM is almost equal to 1 for every 𝑛 ≥ 10 and gets

closer as 𝑛 increases, however the Bayesian approximation ratio of

the EEM is always ≥ 1.79 and gets worse as 𝑛 increases.

Figure 3: The relative error of ERM for 𝑛 = 10, 20, . . . , 50 for
the Uniform and Gaussian distributions. The first row shows
the results for the balanced case while the second row shows
the results for unbalanced case.

Experiment results – Convergence speed of the limit Bayesian ap-
proximation ratio. Lastly, we test how close the Bayesian approxima-

tion ratio of the ERM is to the limit detected in Theorem 4.2. That is,

we calculate the relative error as 𝑒𝑟𝑟𝑟𝑒𝑙 =
empirical 𝐵𝑎𝑟 −limit of 𝐵𝑎𝑟

limit of 𝐵𝑎𝑟
.

Figure 3 (and Table 3 in Appendix D) show the relative error for the

six cases. Each average is computed over 500 instances. We observe

that the relative error decreases as the number of agents increases,

regardless of the distribution or the p.c.v. ®𝑞. Moreover, in all cases

but ®𝑞 = (0.8, 0.4), (0.85, 0.35), the relative errors of the ERM are less

than 0.05 as long as 𝑛 ≥ 20, which validates Theorem 4.2 as a tool

to predict the Bayesian approximation ratio for small values of 𝑛.

In other cases, we observe a slower convergence, as the percentage

error is slightly larger and its highest value is 0.33.

7 CONCLUSION AND FUTUREWORKS
In this paper, we introduced the Extended Ranking Mechanisms,

a generalization of Ranking Mechanisms introduced in [5]. After

establishing the conditions under which ERMs remain truthful, we

characterized the limit Bayesian approximation ratio of truthful

ERM in terms of the probability distribution 𝜇, the p.c.v. ®𝑞, and
the mechanism’s parameters, namely 𝜋 and ®𝑝 . We have shown

that, given 𝜇 and ®𝑞, there exists an optimal ERM and characterized

it via a minimization problem, which we solved in two relevant

frameworks. Lastly, we conducted extensive numerical experiments

to validate our findings, from which we inferred that a well-tuned

ERM consistently outperforms all other known mechanisms.

For future works, we aim to extend our studies to include other

relevant metrics, such as the Maximum Cost or the 𝑙𝑝 -costs. An-

other interesting extension would be to extend the ERMs to handle

problems in higher dimensions using the decomposition proposed

in [3]. Lastly, we plan to study the connections between the Optimal

Transportation problem and other Mechanism Design problems.
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