
A Cloud-Based Microservices Solution for
Multi-Agent Traffic Control Systems

Chikadibia Ihejimba
The University of Texas at Dallas

Richardson, United States
cki100020@utdallas.edu

Rym Z. Wenkstern
The University of Texas at Dallas

Richardson, United States
rymw@utdallas.edu

ABSTRACT
In this paper, we present MATS-Cloud, a cloud-based microservices
architecture designed formulti-agent-based Traffic Control Systems
(TCS). This architecture facilitates decentralized control, real-time
responsiveness, and dynamic scalability. To validate our approach,
we have transitioned DALI, a multi-agent collaborative TCS, from
its current server-based architecture to the cloud, implementing
this new architecture. Experimental results demonstrate significant
improvements in latency reduction and system adaptability when
compared to the traditional server-based model.

KEYWORDS
Multi-Agent Traffic Control Systems; Intelligent Transportation
Systems; Cloud-Native; Microservices; Serverless

ACM Reference Format:
Chikadibia Ihejimba and Rym Z. Wenkstern. 2024. A Cloud-Based Microser-
vices Solution for Multi-Agent Traffic Control Systems. In Proc. of the 23rd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Traffic congestion is a rising concern in urban areas across the globe,
resulting in longer commute times, decreased productivity, and
increased air pollution due to greenhouse gas emissions from idling
vehicles. As a result, the development of effective Traffic Control
Systems (TCS) has gained increasing significance, aligning with the
Sustainable Development Goals (SDGs) [5, 22], particularly SDG
11, which underscores the importance of sustainable urbanization
and the promotion of safe, inclusive, and resilient cities.

Over the years, the literature has seen numerous papers address-
ing agent-based Traffic Control Systems [1–4, 7, 13, 20, 21, 24, 39,
41]. However, the primary emphasis in Multi-Agent Traffic control
System (MATS) research has been on traffic control algorithms,
often neglecting the challenges associated with deployment. As
a result, due to the extremely limited number of real-world im-
plementations of MATS, most traffic lights are still managed by
intersection controllers directly or indirectly connected to a higher-
level central traffic management unit [26, 30, 37, 38]. In the US, the
transportation community has recognized the much-needed con-
cepts of distribution, intelligence, autonomy, and collaboration, but

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

only a few very MATSs have been successfully deployed [32, 36],
and their implementations have predominantly utilized conven-
tional server-based architectures.

This paper introduces MATS-Cloud, a novel cloud-native ar-
chitecture for multi-agent TCS. We present MATS-Cloud’s archi-
tecture and discuss its implementation through DALI [33–36], a
multi-agent, collaborative traffic control system currently operating
in the US. In DALI, an agent that serves as the ’brain’ of a controller
executes in a server-based infrastructure and connects to its con-
troller via VPN, all while maintaining constant communication with
other agents through direct links. With the loose coupling design
approach adopted for DALI, agents can be deployed on various
devices (e.g., PC, laptop, cell phone, Raspberry Pie) and run either
remotely or be seamlessly integrated into the controller.

Currently, MATS-Cloud’s implementation leverages Amazon
Web Services (AWS), a renowned leader and pioneer in cloud-native
infrastructure solutions. It incorporates the latest cloud technolo-
gies, including cloud-managed serverless computing, Docker con-
tainers, and software-defined networking solutions. Additionally,
it employs a serverless relational database with geo-distributed
read/write clusters and auto-scalability built-in. Experimental re-
sults demonstrate that our cloud-native solution operates smoothly,
scales efficiently, and exhibits lower latency compared to the con-
ventional server-based solution.

The rest of this paper is organized as follows: in Section 2, we
discuss related works and highlight the unique contributions of our
work; in Section 3, we describe the system design, and in Section 4,
we evaluate MATS-Cloud for latency and scalability.

2 RELATEDWORKS
The taxonomy of existing TCSs includes two major categories:
Non-MAS and MAS, and can also be further classified as either non-
cloud-based or cloud-based. Furthermore, cloud-based solutions
can be categorized as non-cloud-native or cloud-native.

A plethora of research-based solutions for TCS algorithms have
been proposed, but in this section, we restrict our discussion to
deployed research systems and commercial systems.

2.1 Non-MAS Solutions
Non-MAS TCSs are traditional traffic management systems utilized
for traffic control purposes. Most conventional TCS in the US are
still server-based. In this section, we focus on non-MAS cloud-based
solutions. Only a very few Non-MAS TCSs are cloud-based.

2.1.1 Non-MAS, Cloud-Based. Solutions include Yunex Traffic [28,
42] and the widely deployed SCATS commercial system[26].

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

889

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Yunex Traffic, a 2021-established Traffic Control System (TCS),
optimizes traffic flow and enhances safety using SCOOT [31, 38] to
process real-time sensor data for queue predictions, informing an
optimizer for timing adjustments. Through its cloud-based Yunex
Symphony, it offers real-time traffic monitoring interfaces. Despite
some decentralized traits, the core decision-making via SCOOT
is centralized, contrasting with the decentralized nature of multi-
agent systems.

The Sydney Coordinated Adaptive Traffic System (SCATS) is
a commercial Traffic Control System (TCS) developed in Sydney,
Australia, that has been in use since the 1970s. SCATS operates
on three levels of hierarchy. The Central Manager manages and
configures the regional servers, and the Region processes TRAFF
data and runs the SCATS algorithm. TRAFF processes the inputs
and provides data to the SCATS core platform, which runs on
servers hosted on the cloud. Despite being cloud-based, SCATS
still faces the constraints of traditional centralized systems due
to the centrality of signal timing decisions. Any issue with the
Central Manager can adversely affect the traffic light networks,
underscoring their limitations.

For research solutions, Zhang and Zhou [43] propose a TCS that
uses a cloud computing platform to execute a bi-level optimization
strategy for signal timing plans. The process is hierarchical, with
Coordinated Control at the top level and Distributed Controls on the
second level. The plans are then communicated to intersection con-
trollers via wireless base stations. The research targeted optimizing
traffic in Beijing, China but was never fully deployed to production.
The solution’s main limitations are the single points of failure at
all levels in the hierarchy.

2.2 MAS Solutions
There are currently a very few deployed MAS solutions for traf-
fic control. In multi-agent TCSs, the intersection controllers are
responsible for defining and optimizing traffic signal timing plans
in real time for their respective intersections, without higher-level
control, supervision, or coordination.

2.2.1 MAS, Non-Cloud Based. The only two documented deployed
MAS solutions are SURTAC[32] and DALI[33–36]. Both systems
are deployed using a server-based architecture.

In SURTAC, the agents run as part of the controller software
which executes using a conventional server-based architecture,
whereas in DALI the agents are decoupled and run on remote
servers.

SURTRAC was developed in 2013 by Smith et al. [29], and com-
mercialized after the pilot deployment of SURTRAC in the East
Liberty neighborhood of Pittsburgh, Pennsylvania. In SURTRAC,
at each intersection, an advanced video camera sends video data
to a video detection unit located in the intersection controller box.
The software component, called SURTRAC Processor, also located
in the intersection controller box, receives the processed data from
the video detection unit and information about incoming vehicles
from the direct intersection neighbors, and uses forward dynamic
programming to calculate signal timing plans. Although efficient,
SURTRAC’s main limitations are the need for expensive hardware
(e.g., advanced cameras, advanced detectors placed on the upstream
end points of entry approaches) and the signal timing planning

done in isolation at the intersection level with information from
direct neighbor controllers.

DALI is a collaborative multi-agent TCS successfully deployed
in 2019 in Richardson, a suburb of Dallas, Texas. In DALI, controller
agents run in a server-based infrastructure and connect to inter-
section controllers via VPN. They continuously communicate and
coordinate with each other through direct links. Unlike SURTRAC,
the decision-making process for a signal-timing change is collab-
orative and involves the feedback of all controller agents affected
by a change. The collaboratively-defined timing strategy not only
improves the traffic flow at the intersection level but also does not
create congestion at downstream intersections. In addition, unlike
SURTRAC, DALI uses existing basic sensors (e.g., inductive loops)
and does not require additional expensive hardware.

Although the multi-agent solutions discussed above offer greater
scalability compared to non-MAS TCSs, they are deployed in non-
cloud environments, which lack on-demand scalability. In addition,
for TCSs with controller agents operating in a server-based setup,
expensive high-speed direct connections are necessary to guarantee
low latency.

2.2.2 MAS, Cloud-Based. Multi-agent TCSs in this category take
the extra step of utilizing cloud-based technologies. Cloud-based
solutions are categorized into non-cloud-native and cloud-native.

MAS, Non-Cloud-Native. Non-cloud-native solutions refer to soft-
ware applications and technologies not specifically designed to run
in a cloud computing environment, often relying on traditional,
monolithic architectures where the application is developed as a
single, indivisible unit but running in the cloud[11].

Although most attempts at TCS cloud implementation [12, 43]
have been non-cloud native approaches, we are not aware of any
non-cloud-native multi-agent TCS. Nevertheless, Li, Chen, & Wang
[19] discuss how to setup and deploy a simulated multi-agent TCS
in the cloud using virtual machines. This model adopts a ’lift and
shift’ approach, encapsulating the application’s four distinct layers—
application, platform, unified source, and fabric—and deploying
them onto virtual machines within the cloud. While this method
facilitates a straightforward migration to the cloud, it retains inher-
ent limitations common to non-cloud solutions, such as restricted
scalability and the presence of single points of failure.

MAS, Cloud Native System. Cloud-native solutions are applica-
tions and services specifically designed for the cloud’s dynamic and
scalable environment, making use of microservices architecture,
containerization, and continuous integration/continuous deploy-
ment (CI/CD) practices [11, 23].

There are currently no MAS, cloud-native systems for traffic
control. Nevertheless, Dahling et al. [8] discuss a cloud-native MAS
platform called cloneMAP intended to facilitate the development
of cloud-native MAS for IoT applications. Technologies such as
Kubernetes, Docker, Cassandra, etcd, and GoLang are used to cre-
ate a deployable cloud Platform as a Service (PaaS) to manage the
software components. Although the proposed platform is geared
toward cloud-based PaaS, the experiments were conducted as sim-
ulations executed on three physical machines, each running four
virtual machines to execute the Kubernetes. No details are provided
on how the solution was implemented in the cloud. In addition,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

890

cloneMap can only be deployed on Kubernetes. Other container
orchestration systems such as Docker Swarm, Hasicorp Nomad,
and Mesos cannot be used.

In this paper, we proposeMATS-Cloud, a novel, generic architecture
designed for the seamless deployment of multi-agent traffic control
systems in the cloud. In addition to the architecture, our contribu-
tion involves leveraging cutting-edge cloud technologies, including
cloud-managed serverless computing [6], Docker containers [9],
and software-defined networking solutions[40]. To validate this
architecture, we re-engineered and redeployed DALI, a multi-agent
TCS, which originally operated on a conventional server-based
architecture. With our solution, DALI, or any multi-agent TCS,
can operate without disruption, scale up and down as needed, and
maintain low latency.

3 SERVER-BASED AND CLOUD-NATIVE
DESIGNS

The process ofmigrating amulti-agent traffic control system (MATS)
into a cloud-native architecture involves various critical steps, in-
cluding containerization of components and their dependencies,
breaking down the monolithic TCS into microservices, orchestra-
tion, serverless computing, cloud-native data storage solutions,
using a service mesh for networking, and utilizing monitoring and
logging tools such as Datadog and Grafana to analyze and trou-
bleshoot system issues.

In this section we begin by discussing a conventional server-
based architecture used to implement and operate DALI. We then
present MATS-Cloud, a cloud-native architecture designed for mi-
grating any MATS where agents are decoupled from controllers, to
the cloud.

3.1 Server-Based Architecture

Figure 1: Deployment Diagram for the current server-based
implementation of DALI

As shown in Figure 1, DALI is deployed on application servers
running on a server-based data center. The controllers are located
at the traffic intersections, and interactions between controllers
and agents are managed via Virtual Private Network (VPN).

A conventional traffic control process begins with sensors de-
tecting vehicles (Step 1 in Figure 1) and forwarding this data to
the controller for processing (Step 2). Subsequently, the controller
presents this data to the agent to formulate a signal timing plan
(Step 3). To devise a signal timing plan, the agent integrates the
data from the controller, along with historical data housed in the
SQL database (Step 4). Moreover, due to the continuous exchange
of information among the agents (Step 5), shared information such
as detected vehicles and intersection statuses is factored into the
formulation of the timing plans. Upon receipt, the controller exe-
cutes the plan (Step 6) by sending a signal to the traffic lights via
physical wires. This activates the appropriate circuits in the traffic
lights, causing them to change color accordingly.

3.2 The MATS-Cloud Architecture
The decision to migrate a system to the cloud is primarily influ-
enced by two factors: latency [16, 27] and scalability [10, 18].

Latency defined as the duration between a request and the receipt
of a response, is a crucial performance measure for MATS, where
controllers’ agents cooperate to attain shared goals and coordinate
their actions. From a cloud technology perspective, we use AWS
microservices tools and the AWS Fargate serverless container solu-
tion to achieve low latency.

Scalability defined as the system’s ability to handle an increasing
number of requests without decrease in performance, ensures the
system performance is maintained notwithstanding the workload.
For a modern traffic control system, scalability on demand is par-
ticularly vital to dynamically accommodate increased system use
demand and maintain the system’s performance. Our proposed
solution adopts a microservices architecture [14, 15], where a large
application is divided into smaller independent parts, each with its
domain of responsibility. Each service is designed to detect surges
in usage and scale horizontally to accommodate requests.

Our proposed cloud-native architecture shown in Figure 2, uses a
suite of cloud-native technologies, carefully selected to achieve the
features mentioned above as well as security. Such a framework
is necessary for a traffic management system that requires critical
real-time data processing and dynamic decision-making. The three
core components of the architecture include: agents, communication,
and databases.

3.2.1 Agents.

Agent Core. At the heart of the system’s intelligence are the DALI
agents, written in the JAVA programming language. The agents are
housed within Docker containers, which are standalone, executable
packages of software that include everything needed to run an ap-
plication: code, runtime, system tools, system libraries, and settings.
The orchestration of these containers is managed through an ECS
(Elastic Container Service) Cluster, a service provided by AWS that
facilitates the running and management of Docker containers on
a cluster of virtual servers. AWS Fargate, another component of
this architecture, is a compute engine for Amazon ECS that elimi-
nates the need to manage servers or clusters, thereby simplifying

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

891

Figure 2: MATS-Cloud Solution Architecture - Single Region.

the process of running containers. By utilizing AWS Fargate, the
complexities associated with server management, such as server
provisioning or scaling, are removed.

MATS-Cloud Micro-Services. Microservices is an organizational ap-
proach where an application is divided into small, independent
services, each focused on a single functional capability. At the core
of MATS-Cloudmicroservices lies the Agent Services, each depicted
as an individual microservice (see Figure 3). These autonomous,
self-contained services manage various aspects of the agents’ signal
timing planning and traffic data analysis tasks. They operate within
a security group that ensures secure access and functionality. The
microservices interact with the DB cluster to facilitate efficient data
management. Overall, this microservices configuration promotes
high availability and low latency, ensuring optimized performance
for real-time traffic management.

3.2.2 Communications.

Agent API. The agents’ APIs are vital communication components
within the system and are hosted on AWS Fargate (see Figure 3).
Housed within Docker containers, the agents’ APIs are managed by
an Amazon ECS cluster situated within a specifically designated Vir-
tual Private Cloud (VPC). This setup ensures that the agents’ APIs
can reliably process requests and perform tasks in a scalable and
isolated environment. Load balancers distribute incoming network
traffic across the various targets of Docker containers running the
agents’ APIs to ensure high availability and fault tolerance. Security
groups act as virtual firewalls, regulating inbound and outbound
network traffic to the agents’ APIs, thereby enabling secure com-
munication channels.

Agent-to-Agent Communications. These communications are facili-
tated by the agents’ APIs. As mentioned above, to ensure a secure

Figure 3: MATS-Cloud Microservices

and isolated network environment, agents and their APIs are de-
ployed in separate Virtual Private Clouds (VPCs). To enable com-
munication between the agents, a VPC connector is required. This
connector provides a handshake mechanism between the agents
and their APIs.

AWSVPC provides a secure and isolated network for this commu-
nication. AWS VPC networking features, including load balancers
and VPC peering, manage traffic routing between agents in dif-
ferent subnets or availability zones, while security groups serve

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

892

as virtual firewalls to control network traffic and ensure secure
communication.

Agent-to-Controller Communications. Communications between
the agents and the traffic controllers at intersections is secured
through a Global Protect Client VPN, with processing being exe-
cuted by the Agent API.

3.2.3 Databases. Our architecture employs two distinct types of
databases to manage different data streams effectively:
(1) Local Data Storage (Agent Knowledge-Base): This database stores

operational data crucial for immediate traffic decision-making
and is designed for high availability and responsiveness to the
agents’ needs.

(2) Collaboration Database Storage (Historical Information): This
database archives historical traffic data, which is used to inform
long-term strategies and enhance system intelligence over time.

The adoption of AWS Aurora Serverless as our database solution is
due to its automatic scalability in response to fluctuating demand,
maintaining cost-efficiency and high performance across varying
workloads.

In addition to the core components of a MATS cloud-native architec-
ture, it is important to address concerns surrounding security and
continuous integration and deployment. These aspects are briefly
discussed in the following sections.

3.2.4 Security and Monitoring. The integration of AWS Secrets
Manager ensures secure credential management, and AWS Cloud-
Watch offers comprehensive monitoring and logging, both of which
are vital for maintaining the system’s security and performance.

AWS Secrets Manager and AWS CloudWatch are integral compo-
nents within the MATS-Cloud solution for security and operational
efficiency. Secrets Manager securely handles sensitive credentials
necessary for system components to interact, mitigating risks asso-
ciated with credential exposure. The database credentials are stored
in Secrets Manager, and the Agents API interacts with the database
using these credentials. CloudWatch provides real-time monitoring
and logging capabilities, ensuring the system’s health and facili-
tating quick responses to any operational issues, thus supporting
overall system performance and stability.

3.2.5 Continuous Integration and Deployment (CI/CD). The CI/CD
pipeline is an essential part of the MATS-Cloud solution, automat-
ing application updates for a seamless development process as
shown in the Figure 2. Starting with code changes in a version
control system such as GitHub, AWS CodeBuild compiles and tests
the code to avoid errors. Successful builds are stored as Docker
images in AWS ECR, ready for AWS CodeDeploy to release the ap-
plication with minimal downtime. Integrated with AWS ECS, this
pipeline ensures high-availability and facilitates the swift, secure
deployment of updates, keeping the application current with the
latest advancements and security standards.

4 IMPLEMENTATION AND EVALUATION
Experimental Results
Using the generic MATS architecture discussed in Section 3.2, we
implemented and deployed DALI-Cloud. This section outlines the

experimental setup used to evaluate the latency and scalability of
DALI-Cloud compared its traditional server-based implementation.
We utilized three observability tools: APIMetrics, DataDog, and
Grafana, to measure various system metrics for each design option.

To assess the performance of our proposed cloud-native solu-
tion, denoted as MATS-Cloud, we conducted multiple experiments
comparing the server-based and cloud native - serverless container
alternatives.

These observability tools played a crucial role in providing in-
sights into system behavior, identifying performance bottlenecks,
and suggesting optimization opportunities. We selected APIMet-
rics, DataDog, and Grafana for their cloud-focused design, real-time
monitoring, and broad metric tracking capabilities [17, 25].
(1) APIMetrics : A tool specialized in real-time API performance,

reliability, and security tracking. Ideal for API-dependent organi-
zations, offering performance testing, monitoring, and reporting.

(2) DataDog : An analytics and monitoring platform, providing
real-time visibility into IT infrastructure, applications, and logs.
Known for performance monitoring, log management, tracing,
and alerting. Cost-effective, user-friendly, and supports multi-
cloud configurations.

(3) Grafana : An open-source observability platform with com-
prehensive features for cloud and microservices monitoring.
Includes end-to-end tracing, root cause analysis, real-user moni-
toring, and cloud/microservices monitoring. Focuses on modern
technologies.

4.1 Data Collection and Monitoring:
For a comprehensive understanding of the performance metrics,
these three monitoring solutions were utilized to compare the
server-based implementation of DALI (referred to as Virtual Ma-
chine in this section) and DALI-Cloud (referred to as Fargate). The
Synthetic Monitoring & Continuous Testing feature of the three
tools (1, 2, & 3) facilitated data recording over a span of 14 days.

4.2 Experiment Setting
The objective of our experimentation was to understand the perfor-
mance differences between the VM and Fargate deployment archi-
tectures. This section delineates the configurations and parameters
used for both implementations and the methodology employed for
data collection.

Application Deployment Database Deployment
Platform: VM Platform: VM
Instances: CPU - 2 cores Instances: CPU - 2 cores
Memory: 4096 MB Memory: 4096 MB
Availability: 3 instances Networking: Within a Virtual Private Network
Networking: Within a Virtual Private Network Storage: Attached 30 GB volume to each instance
Storage: Attached 30 GB volume to each instance Operating System: Windows Server 2022
Operating System: Windows Server 2022

Table 1: Server-Based - Virtual Machine (VM) Configuration

4.3 Latency
Our latency testing methodology involves load, stress, and compo-
nent testing techniques. Load testing simulates high-traffic condi-
tions, stress testing pushes system boundaries, and component test-
ing assesses individual elements. By employing these approaches,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

893

DN
S l
oo
ku
p t
im
e

TC
P C

on
ne
cti
on
tim
e

SS
L h
an
dsh

ak
e t
im
e

Ne
tw
ork

tim
e

Up
loa
d t
im
e

Pro
ces
sin
g t
im
e

Do
wn
loa
d t
im
e

Se
rve
r t
im
e

To
tal
tim
e

0

200

400

600

800

1,000

15
.4
1

32
.4
8

0

47
.8
9

6
·1
0−

2

49
1.
03

73
.3
4

52
6 62

3.
09

15
.7
5

32
.4
7

0

48
.2
2

6
·1
0−

2

23
8.
13

29
.8
9

26
8.
08

31
6.
3

Latency Components

Ti
m
e
(m

s)
VM
Fargate

Figure 4: Average Latency Per Metric

Application Deployment Database Deployment
Clusters: Three instances of type t2.medium Service: Amazon Aurora (compatible with MySQL 8)
Task Definition: Networking: Located within the same VPC as the application
- Memory: 4096 MB Engine: Serverless
- CPU: 2048 units ACUs (Aurora Capacity Units): Min. of 8 and a max. of 64
Container Definition:
- CPU: 2048 units
- Memory: 4096 MB
Networking: Positioned within a VPC

Table 2: Serverless Container-Based - Fargate Configuration

we aim to evaluate system performance under diverse operational
circumstances, preemptively identify potential issues, and optimize
system performance.

We used APIMetrics, Datadog, and Grafana for synthetic mon-
itoring of application latency over a 14-day period. These tests
covered various aspects of application latency, including authen-
tication, traffic signal timing planning, and controller sensor data
retrieval. Geographic diversity was considered, helping identify
regional latency anomalies.

For all the evaluations discussed in the remainder of this sec-
tion, the latency metrics collected included dns lookup time, tcp
connection time, ssl handshake time, network time, upload time, pro-
cessing time, download time, server time, and total time, measured
in milliseconds.

4.3.1 Evaluation of Average Latency per Metric. To evaluate
the average latency per metric, we aggregated data from all the
three observability tools and calculated the average time in millisec-
onds for each latency metric. The analysis of latency components
between VM and Fargate, shown in Figure 4, revealed comparable
values for dns lookup time, tcp connection time, and network time
across both environments.

Notable disparities were observed in processing time, with VM
exhibiting a higher duration, contributing to its overall elevated
latency compared to Fargate. Additionally, VM’s download time
surpassed Fargate’s, further widening the latency gap.

Fargate consistently showed lower total latency compared to
VM, with the impact of processing time and server time being more
pronounced in the VM environment.

4.3.2 Evaluation of Latency using APIMetrics, DataDog and
Grafana. Comparing latency metrics from APIMetrics, Datadog,
and Grafana, instead of relying solely on one, is essential for a com-
prehensive understanding of system performance. It offers diverse
insights through specialized monitoring capabilities, ensures the
reliability of analysis findings through cross-tool validation, and
identifies the strengths and weaknesses of each tool. Figure 5 shows
the average latency comparison across the three tools.

Figure 5: Average Latency Comparison for APIMetrics, Data-
Dog, and Grafana

Central Tendencies. Fargate exhibits a consistent mean latency of
approximately 259.74 ms across Grafana, APIMetrics, and DataDog
datasets, compared to VM which has a mean latency of 399.78
ms. Additionally, Grafana displays a higher median latency for
Fargate compared to APIMetrics and DataDog, signifying favorable
performance consistency.

Tool-agnostic Consistency. Across different metrics tools, Fargate
consistently outperforms VM in latency metrics, reinforcing the
robustness of Fargate’s performance metrics.

The histogram analysis provides a granular insight into VM and
Fargate performance, endorsing Fargate’s consistently favorable

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

894

latency metrics. The alignment of observations among different
tools positions Fargate as an efficient cloud service option.

4.3.3 Evaluation ofAverage Latency over Time. We conducted
a 14-day latency analysis, focusing on maximum, minimum, and
average latency metrics, to compare DALI-Cloud (Fargate) with the
server-based solution (VM). We chose APIMetrics for the metrics
data because of its capability to capture and log each metric com-
ponent in a granular and detailed manner by seconds, making it
suitable for analyzing average daily latency over time.

Figures 6, 7, and 8 show the trend for daily maximum, minimum,
and average latency.

Figure 6: Maximum Latency Over a 14-Day Period

Figure 7: Minimum Latency Over a 14-Day Period

Figure 8: Average Latency Over a 14-Day Period

Maximum Latency. The analysis in Figure 6 reveals that VM
consistently displays higher maximum latency when compared to
Fargate. Notably, both VM and Fargate encounter latency spikes
aroundDay 9, indicating a shared performance characteristic during
this period, which could suggest that they encountered a common
issue or demand spike that affected their performance.

Minimum Latency. As shown in Figure 7, throughout the analysis
period, Fargate consistently maintains lower minimum latency.
Despite the lower values in Fargate, both VM and Fargate exhibit
stable minimum latency. This stability suggests reliable baseline
performance from both environments when operating at their most
efficient state, assuming identical configurations.

Average Latency. The trend in Figure 8 shows VM with a higher
average latency than Fargate consistently. Although both VM and
Fargate experience spikes in average latency, Fargate demonstrates
a relatively stable average latency, suggesting a more steady per-
formance in comparison to VM.

In summary, over the span of 14 days, a comparative analysis
of VM and Fargate revealed notable performance distinctions. Far-
gate consistently outshone VM by exhibiting lower variability in
latency metrics, thereby confirming its more stable and reliable
performance. Unlike VM, which encountered latency spikes, Far-
gate maintained a steady latency, further emphasizing its superior
performance. Additionally, Fargate held a distinctive advantage
by maintaining a lower average latency and achieving the lowest
latency metrics, which indicates its optimal performance.

4.4 Scalability
Our methodology for scalability testing encompasses load testing,
stress testing, capacity testing, and horizontal scalability testing.
Similar to latency testing, our strategy for scalability testing is
comprehensive, integrating load and stress testing with the added
dimension of capacity and horizontal scalability testing.

4.4.1 Evaluation of Scalability over Time. We conducted a
14-day scalability analysis focused on total time to compare the
DALI-Cloud (Fargate) with the server-based solution (VM). We
relied on metrics data from all the three tools. Figure 9 provide
insights into scalability timing metrics across the three metrics
tools.

Figure 9: Time Series analysis of Total Time for APIMetrics,
DataDog, and Grafana

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

895

The time series analysis showcases VM’s response time fluctua-
tions, possibly due to varying workloads or system inefficiencies,
while Fargate exhibits consistent performance, hinting at resilience
under diverse load conditions. This consistency positions Fargate
as a preferable option for scalability.

4.4.2 Evaluation of Scalability using APIMetrics, DataDog
and Grafana. Comparing scalability metrics across APIMetrics,
Datadog, and Grafana is crucial for understanding system perfor-
mance. It ensures analysis reliability through cross-tool validation
and identifies each tool’s strengths andweaknesses. Table 3 presents
the mean, median, and max scalability comparison among these
tools.

Scalability assesses a system’s ability to handle increased loads
without performance degradation. Latency, measured as request
processing time, is a key indicator of scalability. Consistent low
latency under heavy loads signifies good scalability, while latency
spikes may indicate issues.

We compare scalability between VM and Fargate using response
time data as shown in Table 3.

Tool Env. Mean (ms) Median (ms) Max (ms)
APIMetrics.IO VM 771.59 690.67 4572.32
DataDog VM 326.12 258.13 1990.65
Grafana VM 324.76 257.27 1998.24
APIMetrics.IO Fargate 489.59 434.18 3565.12
DataDog Fargate 237.27 190.00 885.72
Grafana Fargate 239.87 190.95 1193.26

Table 3: Metrics Tools Comparison

Central Tendencies. The analysis indicates a slight monitoring
impact with Fargate’s average response time from APIMetrics being
489.59 ms, marginally higher than that observed on DataDog and
Grafana. On the other hand, VM’s median response time, as noted
via Grafana, demonstrates a steady performance, only slightly lag-
ging behind APIMetrics while outperforming DataDog. Overall, the
data from all tools reveal similar trends, suggesting that Fargate
deployments offer better scalability than VM deployments.

Tool-specific Insights. Across different metrics tools, Fargate con-
sistently surpasses VM in scalability metrics, displaying narrower
and more focused response time distributions. The convergence of
findings across these tools reinforces Fargate’s superior scalability
attributes.

With its consistent and favorable metrics affirmed by various
tools, Fargate stands out as an efficient cloud service platform with
respect to scalability, making it a viable choice for modern multi-
agent TCS deployments.

4.4.3 Evaluation of Failure Rate over Time. To strengthen our
argument in favor of the DALI-Cloud (Fargate) over the server-
based (VM) approach, we analyze daily failure rate trends over 14
days. We focused on the metrics data from APIMetrics due to its
ability to capture and log the failure rates in a granular and detailed
manner.

As shown in Figure 10, Fargate excels by displaying lower rates,
which underscores its reliability, especially under high loads. Con-
versely, VM showcases slightly elevated failure rates, signaling
occasional challenges in request handling.

Figure 10: Daily Failure Rate Over a 14-Day Period

In summary, Fargate consistently outperforms VM in terms of
scalability, evidenced by lower failure rates and higher daily request
processing. Moreover, Fargate maintains stable server times across
varying loads, indicating a level of processing proficiency. This
proficiency extends to request handling where Fargate registers
fewer errors, further consolidating its position as a more scalable
solution in comparison to VM.

5 CONCLUSION
In this paper we presented MATS-Cloud, a generic architecture for
the deployment of multi-agent traffic control systems (MATS) in the
cloud, using AWS technologies. We implemented and deployed this
architecture for DALI, a MATS currently operating using a server-
based architecture. We utilized three observability tools, namely
APIMetrics, DataDog, and Grafana, to evaluate DALI-Cloud and its
server-based implementations. Experimental results highlighted the
cloud implementations’ effective latency mitigation for real-time
traffic control and dynamic scalability ensuring responsiveness in
high-demand scenarios.

Although the presented architecture was defined with AWS in
mind, most components have their counterparts in other public
cloud platforms. Our future work includes investigating an agnostic
architecture that can accommodate Google Cloud Platform and
Microsoft Azure, and exploring multi-cloud hybrid solutions.

ACKNOWLEDGMENTS
We thank the MAVS (Multi-Agent and Visualization Systems) re-
search team at UT Dallas for their dedication to the success of the
DALI project.

Our deepest appreciation goes to Dr. Behnam Torabi, whose
guidance and expertise in DALI were invaluable in overcoming
challenges associated with the design of MATS-Cloud.

We also express our gratitude to the City of Richardson, Texas,
for their instrumental partnership and support, which played a
significant role in our research and deployment efforts.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

896

REFERENCES
[1] Sisay Tadesse Arzo, Zeinab Akhavan, Mona Esmaeili, Michael Devetsikiotis,

and Fabrizio Granelli. 2022. Multi-agent-based traffic prediction and traffic
classification for autonomic network management systems for future networks.
Future Internet 14, 8 (2022), 230.

[2] Michael Balmer, Nurhan Cetin, Kai Nagel, and Bryan Raney. 2004. Towards
truly agent-based traffic and mobility simulations. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems,
2004. AAMAS 2004. IEEE, 60–67.

[3] Ana LC Bazzan and Franziska Klügl. 2014. A review on agent-based technology
for traffic and transportation. The Knowledge Engineering Review 29, 3 (2014),
375–403.

[4] Saumya Bhatnagar, Francesco Percassi, Rongge Guo, Mauro Vallati, Lee Mc-
Cluskey, and Keith McCabe. 2023. Automated Planning for Generating and
Simulating Traffic Signal Strategies. In 32nd International Joint Conference on
Artificial Intelligence. International Joint Conferences on Artificial Intelligence.

[5] Jonathan J Buonocore, Ernani Choma, Aleyda H Villavicencio, John D Spengler,
Dinah A Koehler, John S Evans, Jos Lelieveld, Piet Klop, and Ramon Sanchez-Pina.
2019. Metrics for the sustainable development goals: renewable energy and
transportation. Palgrave Communications 5, 1 (2019).

[6] Gustavo André Setti Cassel, Vinicius Facco Rodrigues, Rodrigo da Rosa Righi,
Marta Rosecler Bez, Andressa Cruz Nepomuceno, and Cristiano André da Costa.
2022. Serverless computing for Internet of Things: A systematic literature review.
Future Generation Computer Systems 128 (2022), 299–316.

[7] Kuei-Hsiang Chao, Ren-Hao Lee, andMeng-HuiWang. 2008. An intelligent traffic
light control based on extension neural network. In Knowledge-Based Intelligent
Information and Engineering Systems: 12th International Conference, KES 2008,
Zagreb, Croatia, September 3-5, 2008, Proceedings, Part I 12. Springer, 17–24.

[8] Stefan Dähling, Lukas Razik, and Antonello Monti. 2021. Enabling scalable and
fault-tolerant multi-agent systems by utilizing cloud-native computing. Au-
tonomous Agents and Multi-Agent Systems 35 (2021), 10.

[9] Docker. 2022. Docker overview | Docker Documentation. http://tiny.cc/docker.
(Accessed on 09/30/2023).

[10] dzone. 2022. Scalability and High Availability - DZone Refcardz. https://dzone.
com/refcardz/scalability. (Accessed on 09/30/2023).

[11] Dennis Gannon, Roger Barga, and Neel Sundaresan. 2017. Cloud-native applica-
tions. IEEE Cloud Computing 4, 5 (2017), 16–21.

[12] Nihal Gaouar and Mohamed Lehsaini. 2021. A cloud computing based intel-
ligent traffic control system for vehicular networks. In Proceedings of the 4th
International Conference on Networking, Information Systems & Security. 1–5.

[13] Harsh Goel, Yifeng Zhang, Mehul Damani, and Guillaume Sartoretti. 2023. Social-
Light: Distributed Cooperation Learning towards Network-Wide Traffic Signal
Control. arXiv preprint arXiv:2305.16145 (2023).

[14] Google. 2022. What Is Microservices Architecture?| Google Cloud. http://tiny.cc/
micro-services. (Accessed on 09/30/2023).

[15] Rowan Haddad. 2022. Monolith vs Microservices Architecture: How to Migrate
with Feature Flags. https://www.abtasty.com/blog/migrating-from-monolith-to-
microservices//. (Accessed on 09/30/2023).

[16] Sujatha Krishanmoorthy, Zhangyu Wei, Yihuai Zhang, Hao Jin, and Hao Dong.
2020. A Study on Optimization of Network latency and Pocket loss Rate. In IOP
Conference Series: Materials Science and Engineering, Vol. 937. IOP Publishing,
012054.

[17] Łukasz Kufel. 2016. Tools for distributed systems monitoring. Foundations of
computing and decision sciences 41, 4 (2016), 237–260.

[18] Sebastian Lehrig, Hendrik Eikerling, and Steffen Becker. 2015. Scalability, elastic-
ity, and efficiency in cloud computing: A systematic literature review of defini-
tions andmetrics. In Proceedings of the 11th international ACM SIGSOFT conference
on quality of software architectures. 83–92.

[19] ZhenJiang Li, Cheng Chen, and KaiWang. 2011. Cloud computing for agent-based
urban transportation systems. IEEE intelligent systems 26, 1 (2011), 73–79.

[20] Junfan Lin, Yuying Zhu, Lingbo Liu, Yang Liu, Guanbin Li, and Liang Lin. 2023.
DenseLight: Efficient Control for Large-scale Traffic Signals with Dense Feedback.
arXiv preprint arXiv:2306.07553 (2023).

[21] Yiling Liu, Guiyang Luo, Quan Yuan, Jinglin Li, Lei Jin, Bo Chen, and Rui Pan.
2023. GPLight: grouped multi-agent reinforcement learning for large-scale traffic

signal control. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence. 199–207.

[22] United Nations. [n.d.]. THE 17 GOALS | Sustainable Development. https://sdgs.
un.org/goals. (Accessed on 10/06/2023).

[23] Newrelic. 2022. Cloud Native Is the New Normal: Is Your Environment Optimized
for Success? https://newrelic.com/sites/default/files/2021-08/cloud-native-is-
new-normal.pdf. (Accessed on 09/30/2023).

[24] Johannes Nguyen, Simon T Powers, Neil Urquhart, Thomas Farrenkopf, and
Michael Guckert. 2021. An overview of agent-based traffic simulators. Trans-
portation research interdisciplinary perspectives 12 (2021), 100486.

[25] Ayman Noor, Devki Nandan Jha, Karan Mitra, Prem Prakash Jayaraman, Arthur
Souza, Rajiv Ranjan, and Schahram Dustdar. 2019. A framework for monitoring
microservice-oriented cloud applications in heterogeneous virtualization envi-
ronments. In 2019 IEEE 12th international conference on cloud computing (CLOUD).
IEEE, 156–163.

[26] NSW. 2022. SCATS. https://www.scats.nsw.gov.au. (Accessed on 09/30/2023).
[27] Katia Obraczka and Fabio Silva. 2000. Network latency metrics for server prox-

imity. In Globecom’00-IEEE. Global Telecommunications Conference. Conference
Record (Cat. No. 00CH37137), Vol. 1. IEEE, 421–427.

[28] Diego Salzillo-Arriaga, Martin Hartmann, and Felipe Gonçalves-Martins. 2022.
Environmental Traffic Management: Technology Scenarios and Outlook. (June
2022).

[29] Stephen Smith, Gregory Barlow, Xiao-Feng Xie, and Zachary Rubinstein. 2013.
Smart urban signal networks: Initial application of the surtrac adaptive traffic
signal control system. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 23. 434–442.

[30] TRL Software. 2022. TRANSYT - TRL Software. https://tinyurl.com/ttransyt.
(Accessed on 09/30/2023).

[31] Aleksandar Stevanovic, Cameron Kergaye, and Peter T Martin. 2009. Scoot
and scats: A closer look into their operations. In 88th Annual Meeting of the
Transportation Research Board. Washington DC.

[32] Rapid Flowt Tech. 2022. Surtrac: Intelligent Traffic Signal Control System. https:
//miovision.com/surtrac. (Accessed on 09/30/2023).

[33] Behnam Torabi, Rym Z Wenkstern, and Robert Saylor. 2018. A self-adaptive
collaborative multi-agent based traffic signal timing system. In 2018 IEEE Inter-
national Smart Cities Conference (ISC2). IEEE, 1–8.

[34] BehnamTorabi, RymZWenkstern, and Robert Saylor. 2020. A collaborative agent-
based traffic signal system for highly dynamic traffic conditions. Autonomous
Agents and Multi-Agent Systems 34, 1 (2020), 1–24.

[35] Behnam Torabi and Rym Zalila-Wenkstern. 2020. DALI: An Agent-Plug-In
System to" Smartify" Conventional Traffic Control Systems. In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems.
2120–2122.

[36] Behnam Torabi, Rym Zalila-Wenkstern, Robert Saylor, and Patrick Ryan. 2020.
Deployment of a Plug-InMulti-Agent System for Traffic Signal Timing. In Proceed-
ings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems. 1386–1394.

[37] Transmax. 2022. Traffic Services – Transmax. https://tinyurl.com/Transmaxt.
(Accessed on 09/30/2023).

[38] trlsoftware. 2022. SCOOT® - TRL Software. https://tinyurl.com/tscoot. (Accessed
on 09/30/2023).

[39] Phuriwat Worrawichaipat, Enrico H Gerding, Ioannis Kaparias, and Sarvapali
Ramchurn. 2023. Multi-agent Signalless Intersection Management with Dy-
namic Platoon Formation. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems. 1542–1550.

[40] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie.
2014. A survey on software-defined networking. IEEE Communications Surveys
& Tutorials 17, 1 (2014), 27–51.

[41] Yutong Ye, Yingbo Zhou, Jiepin Ding, Ting Wang, Mingsong Chen, and Xiang
Lian. 2023. InitLight: initial model generation for traffic signal control using
adversarial inverse reinforcement learning. In IJCAI.

[42] Yunex. [n.d.]. Yunex Traffic - Uniting what’s next in traffic. https://www.
yunextraffic.com/. (Accessed on 10/09/2023).

[43] Yongnan Zhang and Yonghua Zhou. 2018. Distributed coordination control of
traffic network flow using adaptive genetic algorithm based on cloud computing.
Journal of Network and Computer Applications 119 (2018), 110–120.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

897

http://tiny.cc/docker
https://dzone.com/refcardz/scalability
https://dzone.com/refcardz/scalability
http://tiny.cc/micro-services
http://tiny.cc/micro-services
https://www.abtasty.com/blog/migrating-from-monolith-to-microservices//
https://www.abtasty.com/blog/migrating-from-monolith-to-microservices//
https://sdgs.un.org/goals
https://sdgs.un.org/goals
https://newrelic.com/sites/default/files/2021-08/cloud-native-is-new-normal.pdf
https://newrelic.com/sites/default/files/2021-08/cloud-native-is-new-normal.pdf
https://www.scats.nsw.gov.au
https://tinyurl.com/ttransyt
https://miovision.com/surtrac
https://miovision.com/surtrac
https://tinyurl.com/Transmaxt
https://tinyurl.com/tscoot
https://www.yunextraffic.com/
https://www.yunextraffic.com/

	Abstract
	1 Introduction
	2 Related Works
	2.1 Non-MAS Solutions
	2.2 MAS Solutions

	3 Server-Based and Cloud-Native Designs
	3.1 Server-Based Architecture
	3.2 The MATS-Cloud Architecture

	4 Implementation and Evaluation
	4.1 Data Collection and Monitoring:
	4.2 Experiment Setting
	4.3 Latency
	4.4 Scalability

	5 Conclusion
	Acknowledgments
	References

