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ABSTRACT
Conventional distributed approaches to coverage control may suf-

fer from lack of convergence and poor performance, due to the fact

that agents have limited information, especially in non-convex dis-

crete environments. To address this issue, we extend the approach

of [12] which demonstrates how a limited degree of inter-agent

communication can be exploited to overcome such pitfalls in one-

dimensional discrete environments. The focus of this paper is on

extending such results to general dimensional settings. We show

that the extension is convergent and keeps the approximation ra-

tio of 2, meaning that any stable solution is guaranteed to have a

performance within 50% of the optimal one. The experimental re-

sults exhibit that our algorithm outperforms several state-of-the-art

algorithms, and also that the runtime is scalable.
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1 INTRODUCTION
Coverage control is a fundamental problem in the field ofmultiagent

systems (MAS). The objective of a coverage control problem is to

deploy homogeneous agents to maximize a given objective function,

which basically captures how distant the group of agents as a whole

is from a pre-defined set of Points of Interest (PoI). Coverage control

has a wide range of applications, such as tracking, mobile sensing

networks or formation control of autonomous mobile robots [3].

This work is licensed under a Creative Commons Attribution

International 4.0 License.
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It is known that, even in a centralized context, finding an opti-

mal solution for the coverage problem is an NP-hard problem [13].

Hence, most studies focus on approximate approaches. In distributed

settings, game-theoretical control approaches seek to design agents

that will be incentivized to behave autonomously in a way that is

well-aligned with the designer’s objective. This strategy has proven

to be successful in a number of applications (see, e.g. [5]). The sit-

uation is made more difficult in practice since agents often have

restricted sensing and communication capabilities. Consequently,

agents must make decisions based on local information about their

environment and the other agents. Unfortunately, algorithms based

on local information may suffer from lack of convergence and de-

graded performance due to miscoordination between the agents. As

for the convergence issue, it is known that a move of an agent can

affect the cost of agents outside of the neighborhood, and thus, the

decrease of the global cost cannot be guaranteed locally, especially

in the case of discrete non-convex environment [21]. The degrada-

tion of performance can be explained with a worst-case scenario in

which only a single agent can perceive a large number of valuable

locations within an environment, while a number of other agents

cannot perceive these locations.

Recently, Marden [12] made more precise the connection be-

tween the degree of locality related to the available information and

the achievable efficiency guarantees. He showed that the achievable

approximation ratio depends on the individual amount of informa-

tion available to the agents. Consequently, distributed algorithms

are inevitably subjected to poor worst-case guarantees because of

the locality of the information used to make decisions. If all agents

have full global information as in the case of centralized control,

there exist decentralized algorithms that give a 2 approximation

ratio. Conversely, under limited information (e.g. Voronoi parti-

tions), no such algorithm provides such an approximation ratio.

Rather, the best decentralized algorithm that adheres to these infor-

mational dependencies achieves, at most, an 𝑛 approximation factor,

where 𝑛 is the number of agents. Then, the focus in MAS settings

is on how to design agents that, through sharing a limited amount

of information with neighborhood communications, achieve an

approximation ratio close to 2.
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Indeed, different settings exist depending on the assumed com-

munication model, that is, how information can be shared within

the system in order to potentially coordinate moves:

(1) agents may not communicate any information and can only

be guided by their local perception;

(2) agents may communicate to their neighbors only (where

neighbors can be defined as agents in a limited range, or

connected via a network of communication);

(3) agents may communicate beyond their neighbors, either via

broadcasting, or indirectly via gossip protocols.

Existing game-theoretical approaches can be classified into these

types: classical Voronoi-based best-response approaches fall into ei-

ther (1) or (2), depending on the assumption. Two recent approaches

in type (3) explore different directions. Sadeghi et al. [16] proposed
a distributed algorithm for non-convex discrete settings in which

agents have the possibility to coordinate a move with a single other

agent (meaning that an agent moves and assumes another agent

takes her place simultaneously), possibly beyond their neighbors,

when individual moves are not sufficient. However, the algorithm

sacrifices the approximation ratio for convergence. Another related

distributed approach proposed in [6] is to aim for pairwise opti-

mal partitions (which, they show, are also Voronoi partitions with

the additional property that no pairs of agents can cooperate to

find a better partitioning of their two regions). Again, while their

approach ensures convergence (to good solutions in practice), it

does not come with a guaranteed approximation ratio. In a similar

spirit, Marden [12] allows coordinated moves with several (possi-

bly, beyond two) agents, but only under the restriction that these

agents are within the neighborhood. While this approach achieves a

convergent algorithm with an approximation ratio of 2, by sharing

only the information of the minimum utility among agents, it is

limited in that the only investigated case is the one-dimensional

(line) environment. This severely limits real-world applications.

Other studies rely on different techniques. Distributed constraint

optimization is a natural way to model this problem [22], and sev-

eral standard algorithms can be exploited. However, they do not

offer approximation guarantees either. Finally, it is possible to try

to achieve global optimality by developing approaches akin to sim-

ulated annealing. For example, [1] attains global optimum with

Spatial Adaptive Play (SAP, a.k.a Boltzmann exploration) and uses

random search to escape from the local optimum. However, this

approach suffers from a slow convergence rate when the search

space is large. There is also no discussion about the relationship

between information and efficiency. Note that we focus on the cov-

erage problem, and multiagent path-planning issues [7, 15, 18] are

out of the scope of the paper.

In this paper, we extend the algorithm of [12] to any-dimensional,

non-convex discrete space and compare this approach with the

aforementioned alternative variants of game-theoretical control.

The remainder of this paper is as follows. Section 2 introduces the

model and existing approaches. In Section 3 we detail the algo-

rithm and prove that it guarantees convergence to a neighborhood

optimum solution with an approximation ratio of 2 without any

restriction on the dimensionality of the environment, i.e., the same

guarantee as in the 1D case. Additionally, we propose a scalable

𝑎 𝑏 1 1 𝑐 1 2 2 1

1 2 2 1 𝑓

1 2 1 𝑒 1

𝑑 1 1 2

1 2 3 2 3

2 3 4 3 4

Figure 1: Coverage example with 6 agents: Circles in grey
are agents. A number in a white circle shows the Manhattan
distance to the closest agent.

extension of the algorithm and discuss the computation and com-

munication complexity. Experiments reported in Section 4 indeed

show that our algorithm outperforms existing ones, along with

adhering to the theoretical approximation ratio. Furthermore, the

runtime results confirm the scalability of the proposed algorithm.

2 MODEL
2.1 Coverage Problems
We start with a set of agents N = {1, . . . , 𝑛} and a set of resources

𝐶 = {𝑐1, . . . , 𝑐𝑚}. In a coverage problem, resources are locations (or

points) in a connected metric space. We assume that this is discrete

finite space that is modelled as a connected graph (𝐶, E), where
E is the set of edges that connect two adjacent resources. Though

our approach can be extended to continuous settings, we omit the

detail due to the space limit. We denote the distance between two

resources 𝑎, 𝑏 ∈ 𝐶 as |𝑎 − 𝑏 | that is the length of the shortest path.

An allocation 𝑥 maps each agent 𝑖 in N to a resource (i.e., a

point) in 𝐶 . An allocation is thus defined as a vector of resources

𝑥 = ⟨𝑥𝑖 ∈ 𝐶 |𝑖 ∈ N⟩ where 𝑥𝑖 is the resource assigned to agent 𝑖 .

Note that each agent must be allocated one and only one resource.

An allocation is exclusive i.e., 𝑥𝑖 ≠ 𝑥 𝑗 ∀𝑖, 𝑗 ∈ N such that 𝑖 ≠ 𝑗 . We

denote the set of all possible allocations as X = ×
𝑖∈N
X𝑖 where X𝑖 is

the set of possible positions for agent 𝑖 .

Let 𝑔 : R+ → R+ denote a non-increasing function, 𝑣𝑐 ∈ R+ be
the weight of resource 𝑐 ∈ 𝐶 , and C ⊆ 𝐶 be a partial space. Then,

the objective function for C is defined as follows:

𝐺 (𝑥 ;C) = ∑
𝑐∈C

max

𝑖∈N
𝑣𝑐 𝑔( |𝑥𝑖 − 𝑐 |). (1)

For simplicity, we denote 𝐺 (𝑥) = 𝐺 (𝑥,𝐶). The goal of the cov-
erage problem is then to find an optimal allocation 𝑥∗ ∈ X such

that:

𝑥∗ ∈ argmax

𝑥∈X
𝐺 (𝑥).

(2)

Example 1. Let us then consider the coverage problem depicted in
Figure 1. For the sake of exposure, let us assume that 𝑔(𝑑) = 1/(1+𝑑),
and |·| is Manhattan distance. Agents are identified by letters𝑎, 𝑏, . . . 𝑓 .
The environment is a grid world, where each junction is a resource
(i.e. location). Circled locations are valued 𝑣𝑐 = 1, while the others are
valued 𝑣𝑐 = 0. The locations covered by an agent are represented in
grey and we indicate the name of the agent. For unoccupied locations,
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we indicate on the node the (Manhattan) distance to the closest agent.
Thus, a covered location gives a utility of 1, while a location at a
distance of 1 from the closest agent gives a utility 1/2, and so on. The
depicted allocation 𝑥 has value 𝐺 (𝑥) = 1 + 1 + 1

2
+ · · · = 16.4. It is

clearly sub-optimal. The reader can check that the allocation 𝑥 ′ where
agent 𝑒 has moved one location up would induce 𝐺 (𝑥 ′) ≃ 16.8.

It is well-known that solving optimally this problem is NP-hard

[13]. Nevertheless, thanks to the submodular nature of the objective

function𝐺 , the centralized greedy algorithm which allocates agents

one by one (starting from the empty environment) guarantees

1−1/𝑒 ≈ 63% of optimal [2]. We will use this algorithm as a baseline

for comparison.

2.2 Game-Theoretic Control: Generalities
Since we focus on distributed algorithms, each agent has to make

a choice about her position based on the partial information she

has about the other agents. We thus adopt a game theoretic ap-

proach where each agent computes her best response based on her

individual information [14, 17].

In the following, −𝑖 will denote the set of agents excluding 𝑖:

−𝑖 = N \ {𝑖}. A partial allocation for a subset of agents 𝑆 ⊆ N will

be denoted as 𝑥𝑆 = {𝑥𝑖 }𝑖∈𝑆 .
This paper will focus on providing each agent 𝑖 with a utility

function of the form 𝑢𝑖 : X → R that will ultimately guide their

individual behavior. In the rest of the paper, we formulate the set

of choices of agent 𝑖 as X𝑖 (𝑥) assuming that it depends on a given

allocation of all agents. For simplicity, we denoteX(𝑥) = ×
𝑖∈N
X𝑖 (𝑥).

When each agent 𝑖 ∈ N selects the position 𝑥𝑖 ∈ X𝑖 (𝑥) that
maximizes her utility given the other agent’s positions 𝑥−𝑖 , the
resulting allocation 𝑥 = ⟨𝑥1 · · · 𝑥𝑛⟩ can be a (pure) Nash equilibrium
such that:

∀𝑖 ∈ N 𝑢𝑖 ((𝑥𝑖 , 𝑥−𝑖 )) ≥ 𝑢𝑖 ((𝑥 ′𝑖 , 𝑥−𝑖 )),∀𝑥
′
𝑖
∈ X𝑖 (𝑥), 𝑥𝑖 ≠ 𝑥 ′

𝑖
. (3)

In general, the efficiency of a Nash equilibrium 𝐺 (𝑥) can be

smaller than the optimal value 𝐺 (𝑥∗). One of the reasons for this
suboptimality is the miscoordination among self-interested agents,

as agents are required to make independent decisions in response

to available information. Other sources of suboptimality come from

the structure of the agents’ utility functions and available choice

sets. The (worst-case, among all instances) ratio between the worst

Nash equilibria and the social optimum is known as the price of

anarchy (PoA) [11]. Here, the choice set X𝑖 could encode physical

constraints on choices, i.e. an agent can only physically choose

among a subset of choices given the behavior of the collective 𝑥 .

Alternatively, the choice set could encode information availability

of the agent, e.g. it is the set of choices for which the agent can

evaluate its utility. Regardless of the interpretation, it is important

to highlight that the structure of the choice sets can significantly

alter the structure and efficiency of the resulting equilibria which

we discuss in the next section.

2.3 Local Information
Several approaches in game theory seek to exploit the fact that

agents typically have limited sensing power and only a local view

of the situation. Marden [12] analyzed how miscoordination among

agents with limited information leads to inefficient Nash equilibria.

To this end, he introduced the concept of information set which is

the set of choices each agent can perceive and compute the resulting

utilities. In this paper, X𝑖 (𝑥) corresponds to the information set

that is the set of locations agent 𝑖 can perceive based on spatial

proximity. With this notion, an allocation is a Nash equilibrium

(Equation 3) if agents are at least as happy as any choice for which

they can evaluate their utility. Observe that the information set

X𝑖 (𝑥) is a state-dependent notion: the local information available

may vary depending on the current allocation 𝑥 .

To model to what extent the information is localized, Marden

defined the following redundancy index associated to the agents’

local information sets {X𝑖 }𝑖∈N :

𝑓 = min

𝑥∈X
min

𝑦∈𝐶
|{𝑖 ∈ N : 𝑦 ∈ X𝑖 (𝑥)}|. (4)

Intuitively, 𝑓 represents the minimum number of agents that

perceive the same resource available for their choice. In particular,

we note that:

• 𝑓 > 0 guarantees that all the locations are always a possible

choice for some agent of the system;

• If there is an allocation 𝑥 where a resource is a possible

choice for only one agent and all other resources are possible

choices for at least one agent, then 𝑓 = 1.

• 𝑓 = 𝑛 is the extreme case of full information access where

all resources are possible choices for all agents.

2.4 Linking Information and Inefficiency
Intuitively, local information can cause distributed systems based

on game-theoretic control to get stuck in an inefficient allocation.

Indeed, some agents who may obtain higher utilities for a resource

may not have access to this information. The redundancy index

hence gives insights into the amount of information available to

the agents and about guarantees on the worst-case ratio.

Marden [12] investigated this interplay, in the broader context

of resource allocation games. The global objective function 𝐺 is

assumed to be monotone submodular i.e., it satisfies the following

conditions:

𝐺 (𝑥𝑇 ) ≥ 𝐺 (𝑥𝑆 ),∀𝑆 ⊆ 𝑇 ⊆ 𝑁 .

𝐺 (𝑥𝑆 ) −𝐺 (𝑥𝑆\{𝑖 } ) ≥ 𝐺 (𝑥𝑇 ) −𝐺 (𝑥𝑇 \{𝑖 } ),∀𝑆 ⊆ 𝑇 ⊆ N ,∀𝑖 ∈ 𝑆.
(5)

and satisfies two further properties. First, the utility of each agent

is greater than her marginal contribution:

𝑢𝑖 (𝑥) ≥ 𝐺 (𝑥) −𝐺 (𝑥−𝑖 ) . (6)

Second, social welfare is less than the global objective:∑
𝑖∈N

𝑢𝑖 (𝑥) ≤ 𝐺 (𝑥) .
(7)

In the later section, we will see that the global objective function

and the utility function of the conventional coverage control both

satisfy these assumptions.

The following theorem shows how the value of 𝑓 impacts the

efficiency of Nash equilibrium allocations:

Theorem 1 (from [12]). If 𝐺 is a monotone submodular set func-
tion and 𝑢𝑖 satisfies (6) and (7), the worst case efficiency of Nash
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equilibrium 𝑥 is lower bounded by

𝐺 (𝑥) ≥ 𝑓

𝑛+𝑓 𝐺 (𝑥
∗) . (8)

Furthermore, there exists a case such that:

𝐺 (𝑥) = 𝑓
𝑛𝐺 (𝑥

∗) . (9)

Thus, we know that the approximation ratio of a distributed

allocation algorithm can be 2 in the case of full information (𝑓 = 𝑛),

because 𝐺 (𝑥) ≥ 1

2
𝐺 (𝑥∗) in this case (from Equation 8). Also, it is

impossible to guarantee an approximation ratio better than 𝑛 in

case of 𝑓 = 1 (from Equation 9). We will use this result in the later

section to analyze the efficiency of coverage control algorithms.

2.5 Voronoi-Based Control
Most standard approaches for coverage control are based onVoronoi

partitioning [8]. A Voronoi partition divides the space into local

regions for each agent. Formally, for a given allocation 𝑥 , a Voronoi

partitionV𝑖 (𝑥 ;C) of space C is defined as follows:

V𝑖 (𝑥 ;C) = {𝑐 ∈ C|𝑖 = argmin

𝑗∈N
|𝑥 𝑗 − 𝑐 |}.

(10)

When ties occur (i.e., when several agents are at the same minimal

distance from some location), agents are prioritized lexicographi-

cally. Let P = (P1, . . . ,P𝑁 ) denote a partition of the space. In the

rest of the paper, we define the utility function of agent 𝑖 depending

on partition P as follows:

𝑢𝑖 (𝑥,P) =
∑

𝑐∈P𝑖
𝑣𝑐 𝑔( |𝑥𝑖 − 𝑐 |) .

(11)

In this subsection, we assume that the locations an agent can

perceive are limited to those within their Voronoi region, that is

P𝑖 = X𝑖 (𝑥) = V𝑖 (𝑥 ;𝐶). Therefore, the utility function (Equation

11) satisfies the assumptions of Equation 6 and Equation 7. We

also denote the neighborhood of 𝑖 as the agents connected in the

dual Delaunay graph of the Voronoi partition of 𝑖 , i.e., the neigh-

borhood of N𝑖 ⊆ N are the agents 𝑗 ∈ N whose Voronoi region

is connected to the Voronoi region of 𝑖 . Voronoi partition plays

an important role in distributed coverage control because agents

can compute the best responses improving the objective function

locally, with limited communication. The process is just a sequence

of best response updates (in the sense defined above) of the different

agents to compute their next locations in their local Voronoi region.

Once agents are assigned these new locations, Voronoi regions are

updated and the process iterates, until convergence. However, in

the non-convex discrete setting the move of an agent within its

partition can affect not only neighbors, but the whole set of agents

in the worst case [21]. We will see an example later in Figure 5. In

theory, the guarantee of convergence requires avoiding moves that

could impact beyond an agent’s neighbors [16, 21].

Observe that the Voronoi partition induces a redundancy index of

𝑓 = 1 because all the points in Voronoi regionsX𝑖 are available only
for agent 𝑖 . Then, the efficiency 𝐺 (𝑥) can be 1/𝑛 of the optimum

value in the worst case.

Example 2. (Ex. 1, cont.). Figure 2 indicates the Voronoi region
of each agent by coloring the locations in the same color. Recall that
ties are broken lexicographically. Figure 2 gives the corresponding

𝑎 𝑏 1 1 𝑐 1 2 2 1

1 2 2 1 𝑓

1 2 1 𝑒 1

𝑑 1 1 2

1 2 3 2 3

2 3 4 3 4

𝑎 𝑏 𝑐

𝑑

𝑒

𝑓

Figure 2: The environment of Example 1 with Voronoi parti-
tions and the corresponding neighborhood graph

neighboring graph: agent 𝑒 has 3 neighbors {𝑐, 𝑑, 𝑓 }. The utilities of
the agents are as follows: 𝑢𝑎 = 1, 𝑢𝑏 = 1.5, 𝑢𝑐 ≃ 3.2 𝑢𝑑 = 4.2 𝑢𝑒 ≃ 5

and 𝑢𝑓 = 1.5

As mentioned in the introduction, the communication require-

ments of these approaches is very low, as agents never need to

exchange beyond their neighbors in the Delaunay graph (note that

this can also be achieved with a range-limited gossip protocol, as

long as an appropriate motion protocol is designed [6]). In the

next section, we introduce our protocol which assumes agents can

always communicate with their neighbors, and requires them in

addition to build a communication tree to spread a limited amount

of information to facilitate coordination. Going beyond this com-

munication model is left for future work.

3 A NEIGHBORHOOD OPTIMAL ALGORITHM
To address the inefficiency issue of coverage control through inter-

agent communication, we extend the solution for 1-dimensional

space [12] to general settings by making agents share additional

information.

3.1 Key Notions
The idea of the algorithm is to incrementally compute an allocation

𝑥 based on a partition P, which is not necessarily a Voronoi parti-

tion. Note that the neighborhood N𝑖 (P) is also defined over P, as
the set of agents that have partitions adjacent to P𝑖 . The algorithm
is anytime and updates a solution (𝑥,P) for each iteration.

We follow [12] and define the maximum gain in 𝐺 when adding

𝑘 new agents into space C, as:

𝑀𝑘 (𝑥, C) = max

𝑦1,...,𝑦𝑘 ∈C
𝐺 (𝑦1, . . . , 𝑦𝑘 , 𝑥 ;C) −𝐺 (𝑥 ;C), (12)

where this best allocation of the 𝑘 new agents is denoted as follows:

𝐵𝑘 (𝑥, C) = argmax

𝑦1,...,𝑦𝑘 ∈C
𝐺 (𝑦1, . . . , 𝑦𝑘 , 𝑥 ;C) −𝐺 (𝑥 ;C) .

(13)

Note that determining the locations 𝑦1, . . . 𝑦𝑘 maximizing Equa-

tion 13 is actually an NP-hard problem since it consists in general

in solving a multiagent coverage problem.

We denote P𝑖 𝑗 = P𝑖 ∪ P𝑗 . Informally, we say that an allocation

is neighborhood optimal when no coalition of agents within the

same neighborhood could reallocate themselves in a way which

would improve the global objective, and would not benefit enough

from accommodating a third agent in their combined regions. We
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will make these notions precise below. But before going into the

details, we state our main result:

Theorem 2 (Convergence with Performance guarantee).

Under our communication model, Algorithm 1 terminates in a neigh-
borhood optimum allocation. Its approximation ratio is 2.

Note that this approximation ratio of 2 is equal to the lower

bound predicted by Equation 8 in case of full information (𝑓 = 𝑛).

In our case it is achieved by only requiring agents to communicate

beyond their neighborhood (i) the utility and location of the worst-

off agent, and (ii) the identity of the agent which would contribute

the most to the global objective by adding an agent in her region. In

case of ties a deterministic choice mechanism is used, for instance

based on agents’ id. Hence, the following notations will be useful:

𝑖+
max
(𝑥,P) = argmax

𝑖∈N
𝑀1 (𝑥𝑖 ;P𝑖 ) 𝑉 (𝑥,P) = max

𝑖∈N
𝑀1 (𝑥𝑖 ;P𝑖 )

𝑖min (𝑥,P) = argmin

𝑖∈N
𝑢𝑖 (𝑥 ;P) 𝑢min (𝑥,P) = min

𝑖∈N
𝑢𝑖 (𝑥 ;P)

Example 3. (Ex. 1, cont.). We have 𝑖min = 𝑎, since 𝑢𝑎 = 1. Fur-
thermore, the agents which would contribute to 𝐺 (𝑥) the most from
adding a single agent within their regions are agents 𝑒 and 𝑑 . For
instance, adding an agent (depicted as ’+’) would induce 𝐺 of 6.5 in
her region, thus 𝑀1 (𝑥𝑒 ,P𝑒 ) ≃ 6.5 − 5 = 1.5 (See Figure 3 for the
illustration). We assume 𝑖+

max
= 𝑑 by lexicographic tie-breaking.

2

2 1

1 𝑒 1

1 1

1 +

2 1

Figure 3: Agent 𝑒 would contribute to𝐺 (𝑥) the most from the
addition of an agent (depicted as ‘+’) in her region

3.2 High Level Description of the Algorithm
The principle of our algorithm follows [12], but is adapted to the 2D

setting. Essentially, the idea is for neighboring agents to compare

what they would gain by optimizing over their combined regions,

or by optimizing over their combined regions with a third agent

(which is necessarily at least as good). When the difference between

these two situations is significant enough (larger than the utility of

the worst-off agent), the decision is to make room for a third agent.

This way, the space left open can eventually be filled.

As mentioned before, agents will communicate a limited amount

of information. Spreading the information of 𝑖min and 𝑖+
max

within

the system can be achieved by standard distributed algorithms, eg.

flooding and gossip protocols [19]. At the end of this process, a

communication spanning tree is built. Figure 4 shows a communi-

cation tree obtained for Example 1. In our algorithm, interaction

𝑎

1

𝑏

1.5

𝑐

3.2

𝑑

4.2

𝑒

5

𝑓

1.5

𝑎 𝑏 𝑐

𝑑

𝑒

𝑓

Figure 4: (Left): the neighborhood graph in Example 1. The
numbers represent utilities. (Right): a communication tree
in convergence. In this case, agent ‘a’ is 𝑖min and therefore
the root of the tree.

takes place in the neighborhood defined by such communication

trees, which are updated when required. In the following we denote

by parent(i,P) the parent of agent 𝑖 , by neigh(𝑆,P) the neighbors
of a set of agents 𝑆 , and by 𝐸 (P) the set of all pairs of neighboring
agents. All these notions are understood as restricted to the current

communication tree (in its undirected version for the notion of

neighborhood).

As in [12], it is useful to classify the solution (𝑥,P) into 4 states.

First, the solution space is divided into the following two states 𝑍1
and 𝑍2, by checking if 𝑖+

max
would gain more from adding an agent

in her region:

𝑍1 ={(𝑥,P)|𝑉 (𝑥,P) > 𝑢min (𝑥,P)}, (14)

𝑍2 ={(𝑥,P)|𝑉 (𝑥,P) ≤ 𝑢min (𝑥,P)}. (15)

In 𝑍2, no single agent would contribute enough from accommo-

dating 𝑖min. Next the solutions in𝑍2 are further classified depending

on whether integrating a further agent in the neighborhood of two

agents could induce a significant enough marginal gain. In the

following state 𝑍3, it is not the case:

𝑍3 ={(𝑥,P) ⊆ 𝑍2 |
𝑀3 (∅,P𝑖 𝑗 ) −𝑀2 (∅,P𝑖 𝑗 ) ≤ 𝑢min (𝑥,P), ∀(𝑖, 𝑗) ∈ 𝐸 (P)} (16)

Equation 16 means that the gain in the neighborhood optimum by

accommodating 𝑖min in P𝑖 𝑗 cannot be larger than 𝑢min.

Lastly, a solution is classified as state 𝑍4 if neighborhood opti-

mality [20] is achieved for all agents. 𝑍4 is the terminal state that is

reached from a solution in 𝑍3 if it satisfies the following condition:

𝑍4 ={(𝑥,P) ⊆ 𝑍3 |
𝑢𝑖 (𝑥,P) + 𝑢 𝑗 (𝑥,P) = 𝑀2 (∅,P𝑖 𝑗 ), ∀(𝑖, 𝑗) ∈ 𝐸 (P)} (17)

Example 4. (Ex. 1, cont.) The allocation 𝑥 depicted is in state 𝑍1
since 𝑉 (𝑥,P) = 1.5 > 1 = 𝑢𝑎 , with 𝑖min = 𝑎.

Given this classification, we propose a distributed algorithm

returning an equilibrium solution (𝑥,P). The algorithm is summa-

rized in Algorithm 1. Firstly, all agents initialize P𝑖 with a Voronoi

partition based on geodesic distances [9] (Line 2). As far as the

state is not 𝑍4, agents build a communication tree and share the

necessary information, 𝑢min, 𝑥𝑖min
and 𝑖+

max
based on a consensus

algorithm via neighborhood communication. (Lines 3-5).
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Algorithm 1 Neighborhood optimum algorithm

1: procedure 𝑥 =NeighborOpt(𝑥, C)
2: P𝑖 = V𝑖 (𝑥 ;C), ∀𝑖 ∈ N
3: while (𝑥,P) ∉ 𝑍4 do
4: Build communication tree

5: Communicate 𝑢min (𝑥,P), 𝑥𝑖min
(𝑥,P) and 𝑖+

max
(𝑥,P)

6: if (𝑥,P) ∈ 𝑍1 then
7: 𝑖 ← 𝑖+

max

8: else
9: pick 𝑖 ∈ N
10: 𝑗 ← 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖,P)
11: if 𝑖min (𝑥,P) = 𝑗 or
12: 𝑀3 (∅,P𝑖 𝑗 ) −𝑀2 (∅,P𝑖 𝑗 ) ≤ 𝑢min (𝑥,P) then
13: 𝑥{𝑖, 𝑗 } ← 𝐵2 (∅,P𝑖 𝑗 ) (Step a)
14: P𝑘 ←V𝑘 (𝑥 ′,P𝑖 𝑗 ), ∀𝑘 ∈ {𝑖, 𝑗}
15: else
16: Consider a virtual agent 𝑙 (Step b)
17: 𝑥 ′ ← 𝐵3 (∅,P𝑖 𝑗 )
18: P′

𝑘
←V𝑘 (𝑥 ′,P𝑖 𝑗 ), ∀𝑘 ∈ N ′𝑖 = {1, 2, 3}

19: 𝑖min = argmin

𝑘∈𝑛𝑒𝑖𝑔ℎ ({𝑖, 𝑗 },P)
|𝑥 𝑗 − 𝑥𝑖min

|

20: 𝑘𝑙 = argmin

𝑘∈𝑛𝑒𝑖𝑔ℎ (𝑖min
,P)∩N′

𝑖

|𝑥 ′
𝑘
− 𝑥𝑖min

|, 𝑥𝑙 ← 𝑥 ′
𝑘𝑙

21: 𝑥{𝑖, 𝑗 } ← 𝑥 ′ \ {𝑥𝑙 }
22: 𝑖+ ← argmin

𝑘∈𝑛𝑒𝑖𝑔ℎ (𝑙,P)∩{𝑖, 𝑗 }
|𝑥 𝑗 − 𝑥𝑙 |, P𝑖+ ← P𝑖+ ∪ P𝑙

23: Return (𝑥,P)

If the algorithm is in state 𝑍1, the agent 𝑖
+
max

is picked (Line 9),

otherwise a random agent is picked. Note that in a distributed

fashion, this could be done for instance by sharing ‘done/undone’

status and agent IDs, to pick up the ‘undone’ agent with the smallest

ID. Alternatively, agents could probabilistically move (probability

𝛼) or not (probability 1 − 𝛼). Agent 𝑖 retrieves her parent (denoted
𝑗 ) in the current communication tree. The activated agent 𝑖 then

checks whether the combined regions could accommodate another

agent (Line 12).

• Step a: If P𝑖 𝑗 cannot accommodate another agent or 𝑖min

belongs to this neighborhood, agent 𝑖 computes a neighbor-

hood optimum for the pair of agents (𝑖, 𝑗) and the allocation

is implemented (Line 13).

• Step b: If P𝑖 𝑗 can accomodate another agent, it computes

new locations 𝑥 ′ for agents 𝑖 and 𝑗 , together with an addi-

tional agent 𝑙 (Line 17). Then, the algorithm computes a new

partition for these 3 agents by splitting P𝑖 𝑗 based on the

new locations 𝑥 ′ (Line 18). To allocate the new partition, the

algorithm finds the agent 𝑖min ∉ {𝑖, 𝑗} that is the closest to
𝑖min in the communication tree. Then the partition closest to

𝑖min and adjacent to P𝑖min

is allocated to 𝑙 first (Line 20). The

other partitions are allocated to 𝑖 and 𝑗 , for example by an

optimal matching algorithm so as to minimize the moves of

the agents (Line 21 [4]). Lastly, P𝑙 is merged to the partition

of the agent 𝑖+ that is the closest and adjacent to 𝑙 (Line 22).

In both cases, agents allocate the partition to avoid collisions after

they redevide the neighborhood. Note that the algorithm updates

𝑎

1

2

2 1 𝑑

3 2 1 𝑐

4 3 2 1 𝑏

2

1

𝑎

1 1 𝑑

2 2 1 𝑐

3 3 2 1 𝑏

2

1

𝑎

1 1 𝑑

3 2 1 𝑐

4 3 2 1 𝑏

Figure 5: A pathological non-convex discrete example. Dif-
ferent from grid spaces, nodes are connected by edges. Left:
Voronoi partition. Middle: A move of agent 𝑎 changes parti-
tions outside of the neighborhood. Right: Changes in P are
confined inside the neighborhood.

𝑎 𝑏 1 3 2 3 4 2 1

1 2 2 1 𝑓

𝑐 1 1 𝑒 1

1 1 1 2

1 𝑑 1 2 3

2 1 2 3 4

Figure 6: After step b, 𝑐 and 𝑑 have reallocated themselves
in P𝑐 ∪ P𝑑 assuming a third agent would join, leaving the
empty position (unfilled) as close as possible from 𝑎 (𝑖min)

the partition P𝑗 of only neighbors (𝑖, 𝑗) ∈ 𝐸 and does not affect the

other agents outside of (𝑖, 𝑗) (Figure 5). This avoids issues with the

convergence of the algorithm in non-convex discrete settings, as

discussed in [21].

Let us illustrate this step on our example (Figure 6). For instance,

assuming 𝑑 is picked as the 𝑖+
max

agent, this agent interacts with

𝑐 , her parent in the communication graph. Upon evaluating the

optimal partition with a third agent, they assess that the gain is

higher than 𝑢min. As a result, they move and make room for a third

agent. As discussed before, note that the region is not updated with

respect to that of agent 𝑏 at this stage.

Due to the space limitation, the complete proof of Theorem 2 is

in the supplementary material [10]. It follows the line of reasoning

described in [12] but adapted to our setting. Briefly, it proves that

the following potential function always increases for each iteration

of the algorithm. Since the solution space is finite or compact, then

the algorithm terminates.

𝜙 (𝑥,P) = ∑
𝑖∈N

𝑢𝑖 (𝑥,P) + [𝑉 (𝑥,P) − 𝑢min (𝑥,P)] . (18)

Also, the proof sketch of the approximation ratio is as follows.

Because of the submodularity of𝐺 and Equation 16, adding agents in

optimal allocation 𝑥∗ to the same number of agents allocated by the

algorithm does not make 𝐺 double. Formally, 𝐺 (𝑥∗) ≤ 𝐺 (𝑥, 𝑥∗) ≤
2𝐺 (𝑥).
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3.3 Special Case
It is interesting to observe that the algorithm provides an optimal

solution in the special case where there are exactly as many points

of interest as agents. Let C+ ⊆ 𝐶 be a set of all important points

such that 𝑣𝑐 = 1, ∀𝑐 ∈ C+. Then other points are less important

as 𝑣𝑐′ ≪ 1, ∀𝑐′ ∈ 𝐶 \ C+. The algorithm guarantees an optimal

solution when agents can cover all the important points as follows.

Theorem 3. If 𝑁 = |C+ |, Algorithm 1 converges to an optimal
solution.

Proof. Note that each agent is allocated to a point 𝑐 ∈ C+ in an

optimal solution. Now let us assume that the algorithm converges

to a sub-optimal solution (𝑥,P). In this case, some agents including

𝑖min do not have any points 𝑐 ∈ C+ in their partitions, due to the

neighborhood optimality. Then, there is at least one agent 𝑖 whose

partition P𝑖 includes more than two points in C+. This violates the
condition (15), which must be satisfied in the convergent state 𝑍4.

This is a contradiction. □

Even though the problem itself is no longer difficult in that

case, it is noteworthy that the strategy employed in our algorithm

guarantees optimality.

3.4 Communication Requirements
As shown in Theorem 2, the algorithm achieves the approximation

ratio of 2, by communicating the minimum degree of information,

𝑢min, 𝑖
+
max

and 𝑥𝑖min
. The agent with the maximal gain from an

additional agent in her region 𝑖+
max

is used to focus on the area to

be reallocated in Algorithm 1. It is convenient to use it, but we note

that it is not strictly required to make the algorithm work (see for

instance [12]). The minimum utility, on the other hand, 𝑢min is the

key to proving the approximation ratio based on Equation 16. The

location 𝑥𝑖min
is required to extend the algorithm for 1-dimensional

setting in [12] to more general settings.

As for the communication complexity of the algorithm, we start

by bounding the convergence rate, which is the number of iter-

ations before convergence. Let 𝑑max be the upper bound of the

distance between any two points in the environment 𝐶 , and Δ𝑣
be the resolution limit of the weight 𝑣𝑐 . In the case of discrete set-

tings, the potential function 𝜙 (𝑥,P) consists of the elemental term

𝑣𝑐 𝑔( |𝑥𝑖 −𝑐 |) and then the improvement in the potential function for

each iteration is lower bounded by 𝜖 = Δ𝑣 · 𝑔(𝑑max). (In the case of

continuous settings, we can regard 𝜖 as the agents’ resolution limit

of utility). Note that the convergence of the algorithm is guaranteed

by Theorem 2. For each iteration, Algorithm 1 checks if the poten-

tial function can be improved or not. Before convergence, at least

one out of 𝑛 agents improves the potential function. Then the con-

vergence rate 𝛼 is bounded as 𝛼 ≤ 𝑛[𝜙 (𝑥∗,P∗) −𝜙 (𝑥,P)]/𝜖 , where
(𝑥,P) and (𝑥∗,P∗) are the initial allocation and the allocation after

convergence, respectively.

Furthermore, for each iteration, the agents build the communi-

cation tree, share the global information, share their private infor-

mation to compute a neighborhood optimum, and finally share the

neighborhood optimum solution. Depending on the exact algorithm

used to build the communication tree, the communication burden

may vary, but it can be done in O(𝑛2). The communications to

share the global information requires at most O(𝑛2) messages.

4 EXPERIMENTS
In order to validate the practical efficiency and scalability of our

approach, we ran several simulations. First, we evaluate the effi-

ciency with small graphs, then we evaluate the scalability with

larger graphs.

In what follows, the nodes in an environment graph are classified

into two groups, which are 𝑐 ∈ C+ with 𝑣𝑐 = 1 and 𝑐′ ∈ 𝐶 \ C+
with 𝑣𝑐′ ≪ 1. Nodes in C+ and the initial position of agents are

allocated uniformly at random in the environment graph. We run

32 simulations for each experiment. All the error bars in the figures

show 95% confidence intervals. Note that the environment can be

any dimensional space, even though all the graphs are projected

into 2D figures. All the numerical results are summarized in Table 1.

As for the implementation, we use Python 3.8.12, RedHat Enterprise

Linux Server release 7.9 and Intel Xeon CPU E5-2670 (2.60 GHz), 192

GB memory to run the experiments. The random number generator

is initialized by numpy.random.seed at the beginning of the main

code, with different seeds for each run of the simulation.

Comparison. The neighborhood optimal approach proposed in

Section 3.1, coined in the following as NBO, is compared to the

following algorithms:

• (VVP) the vanilla distributed covering algorithm based on

Voronoi partitioning, as described in Section 2.5.

• (SOTA) the algorithm of Sadeghi et al. [16]. In a nutshell,

for a given agent 𝑖 , the algorithm first tries to perform indi-

vidual moves to maximize the (local) social welfare of her

neighborhood, as defined by the Voronoi partitioning. If no

such move is improving, it considers coordinated moves

with a single other agent 𝑗 , in the sense that 𝑖 would move

and 𝑗 would take the place of agent 𝑖 . The algorithm first

considers neighbors, and then (via neighborhood communi-

cation), may consider agents further away. However, these

coordinated moves only involve two agents at most.

• (CGR) the centralized greedy algorithm that allocates agents

one by one starting from the empty environment. Recall that

this algorithm guarantees a performance of 1 − 1/𝑒 ≈ 63%

of the optimal solution.

We evaluate the performance of the algorithms above with dif-

ferent shapes of the environments (Figure 7). In addition to these

shapes, we also use the small bridge setting and OR library dataset

shown in [21]. More details about the shapes and the way instances

are generated are available in the supplementary material.

4.1 Efficiency
First, we evaluate the efficiency of the proposed neighborhood

optimum algorithm, by comparing its solution with the optimal one

and with solutions returned by VVP, SOTA and CGR. The efficiency

is measured as the ratio 𝐺 (𝑥)/𝐺 (𝑥∗) where 𝑥 is a solution of the

algorithm and 𝑥∗ is an optimal solution. Since finding an optimal

solution is NP-hard, the simulation is conducted on a 1D chain with

|𝐶 | = 20, |C+ | = 10, and 𝑁 = 5.

In that case, the proposed algorithm outperforms both distributed

algorithms (VVP and SOTA) and improves the efficiency by about

21.7% compared to SOTA (Figure 8). The efficiency ratio of NBO

is 90% which is much better than the theoretical approximation
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Figure 7: Different shapes of the environment.

Figure 8: Efficiency ratio 𝐺 (𝑥)/𝐺 (𝑥∗) where 𝑥 is a solution of
each algorithm and 𝑥∗ is an optimal solution, with 𝑁 = 5.

ratio of 2. We examine the detail with an illustrative example in the

supplementary material.

Due to the NP-hardness of the problem, it is difficult to compare

with optimal solutions in larger settings. For that reason, we instead

compute the efficiency ratio with the centralized greedy (CGR) as a

practical baseline. Table 1 summarizes all the results obtained. The

quantitative comparison of the efficiency shows similar results as

in Figure 8 that the proposed method outperforms the benchmarks

in all cases. Note that NBO even sometimes outperforms CGR in

some instances, despite the following two disadvantages of NBO

compared to CGR: (i) NBO uses only limited information while

CGR uses full information, (ii) NBO starts from a random initial

state, which is less favorable compared to CGR’s iterative approach

from the empty environment.

4.2 Scalability
We finally evaluate the scalability of the proposed algorithm by

varying the size of the space |𝐶 | and the number of agents 𝑛 (we

could run experiments with more than 150 agents, the details can

be found in the supplementary material). The results show that:

• The runtime grows with the size |𝐶 |, as expected. On the

largest instances of size |𝐶 | = 192, with 20 agents, the run-

time is above 3 hours.

Shapes SOTA VVP NBO

1D Chains 0.686 ± 0.045 0.515 ± 0.052 0.903 ± 0.050

Stars 0.983 ± 0.008 0.962 ± 0.010 1.017 ± 0.006

Trees 0.952 ± 0.009 0.935 ± 0.009 0.980 ± 0.004

Simualed indoor 0.895 ± 0.007 0.841 ± 0.010 0.917 ± 0.013

Random (𝑤 = 1) 0.932 ± 0.010 0.904 ± 0.008 0.963 ± 0.009

Random (𝑤 = 2) 0.936 ± 0.008 0.901 ± 0.007 0.976 ± 0.009

Small bridge 0.975 ± 0.007 0.955 ± 0.012 1.000 ± 0.002

3D structure 0.960 ± 0.006 0.937 ± 0.007 0.982 ± 0.010

OR library 0.843 ± 0.126 0.963 ± 0.014 0.978 ± 0.006

Table 1: Comparison on different shapes: Efficiency ratio
𝐺 (𝑥)/𝐺 (𝑥𝐶𝐺𝑅) where 𝑥 is a solution of each algorithm and
𝑥𝐶𝐺𝑅 is a solution of CGR. Each cell shows mean ± standard
deviation. Larger values mean better results.

• The runtime decreases when 𝑛 increases because the size of

partitions |P𝑖 𝑗 | also decreases, and thus the opportunities of

improvement are more severely constrained.

These results demonstrate the applicability of the proposed al-

gorithm to real-world medium-scale problems. For larger-scale

settings, further improvements will be required to make the ap-

proach viable. It should be emphasized though that the anytime

nature of the algorithm makes it relevant even with a limited time

budget. Further details about the experiments are deferred to the

supplementary material.

5 CONCLUSION
This paper extends the approach of [12] to general dimensional

settings for discrete environments, ensuring convergence to a neigh-

borhood optimum solution, even in challenging non-convex scenar-

ios, with an approximation ratio of 2. The communication require-

ments involve disseminating the value and position of the minimum

utility agent, capturing an approximation ratio that surpasses other

methods presented in [6, 16]. Interestingly, this minimal level of

informational dissemination recaptures the best achievable approx-

imation ratio of 2 for Nash equilibria, which requires all agents to

have full information about the environment (e.g., choices of all

agents, utility associated with all feasible choices, etc.). While more

communication demanding than simple best responses based on

Voronoi partitioning, the informational dissemination requirements

are manageable, enabling local decision-making rules. Furthermore,

our algorithm guarantees optimality in a special subclass of the

coverage problem and outperforms state-of-the-art benchmark al-

gorithms in experiments. Future research will focus on improving

the algorithm’s efficiency by minimizing information transmission

or enhancing experimental results. Implementing this algorithm

on real robotic systems is another important avenue for further

exploration.
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