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ABSTRACT

We show how hidden interesting subelections can be discovered in
ordinal elections. An interesting subelection consists of a reason-
ably large set of voters and a reasonably large set of candidates such
that the former have a consistent opinion about the latter. Consis-
tency may take various forms but we focus on three: Identity (all
selected voters rank all selected candidates the same way), antago-
nism (half of the selected voters rank candidates in some order and
the other half in the reverse order), and clones (all selected voters
rank all selected candidates contiguously in the original election).
We first study the computation of such hidden subelections. Second,
we analyze synthetic and real-life data, and find that identifying
hidden consistent subelections allows us to uncover some relevant
concepts.
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1 INTRODUCTION

Ordinal voting consists in taking as input a preference profile (a
collection of rankings over candidates) and producing a winner,
or a set of winners, or a collective ranking as output — this could
be called the “mechanism” view of voting. A much less studied
question consists in discovering, from a preference profile, some
hidden properties of the domain at hand. An example of such a
study is the discovery of structure among the set of candidates,
such as an order of candidates that makes the profile single-peaked
(perhaps only approximately), or among the set of voters, such as
an order that makes the profile single-crossing.

There is however more to discover from a preference profile,
by focusing on voters and candidates simultaneously. Imagine an
explorer from another planet visiting us and observing a local
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voting profile over food items. They do not know anything about
our food, they do not have the concepts of meat, fish, vegetables,
sweet, or spicy. They do not have either the concepts of children,
or vegetarians, and ignore our local cultures. Still, they can observe
that a significant group of voters consistently prefer some items to
others (say, tofu and lentils to eggs, eggs to fish, and fish to meat)
and that a significant group of voters are indifferent to all food
items that they do not know as it is not part of their culture.

In a more realistic context, the voters are citizens of a country
with unknown world views, and the candidates are political issues.
Still in another context, the explorer is a manufacturing company,
voters are potential consumers, and candidates are items theywould
be interested to purchase if they were on the market.

The hidden information we seek is a subset of voters 𝑉 ′ and
a subset of candidates 𝐶′ such that voters in 𝑉 ′ have consistent

preferences over 𝑉 ′, i.e., it is a consistent subelection of the original
election. In order for a subelection to make us learn something
interesting, the consistency property has to be meaningful. We
focus on the following three consistency properties:

Identity: All the candidates are ranked the same way by all voters
(children prefer coke to juice and juice to coffee).
Clone structure : Voters in 𝑉 ′ rank all candidates in 𝐶′ contigu-
ously in the original election (people living outside of Europe are
indifferent between non-exported varieties of European cheese;
this is not to say they rank them at the bottom, as they may very
well rank them above items that they know they do not like).
Antagonism : Half of the voters in 𝑉 ′ rank the candidates in 𝐶′

in the same order, while the others rank them in the opposite one.

Identity is probably the most interesting consistency property.
It allows us to discover significant segments of the population
with identical preferences on a large fraction of options (e.g., it
allows us to discover that a homogeneous set of voters, whatever
we want to call it, prefers tofu to eggs, eggs to fish, and fish to
meat). Clone structures also lead to major findings: A subpopulation
considering a set of alternatives as clones usually means that they
cannot distinguish between them (e.g., uncommon cheese varieties).
We include antagonism as it is the natural opposite of identity and
it helps us to discover what divides a subpopulation. We leave
other meaningful properties, such as single-peakedness, single-
crossingness or group separability for further research.

Note an important difference between, on the one hand, identity
and antagonism, and on the other, clone structures: We do not need
the original election to check if a subelection satisfies identity or
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single-peakedness, whereas being a clone structure can only be
defined with respect to the original election, which is not the case
for identity or antagonism.

In order for a consistent subelection to be meaningful, not only
should the property make sense, but the size of the subelection
should also be reasonably large (for instance, knowing that two
voters out of ten are consistent over three candidates out of ten
does not tell us anything interesting). This motivates searching for
consistent subelections whose number of voters (resp. candidates)
reach a given threshold.

Example 1. To clarify the concepts of hidden clones, identity, and

antagonism, consider the following election, with six voters expressing

preferences over six candidates:

𝑣1 : 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑓 ≻ 𝑒 ≻ 𝑑

𝑣2 : 𝑐 ≻ 𝑏 ≻ 𝑎 ≻ 𝑑 ≻ 𝑒 ≻ 𝑓

𝑣3 : 𝑎 ≻ 𝑓 ≻ 𝑒 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑

𝑣4 : 𝑑 ≻ 𝑒 ≻ 𝑓 ≻ 𝑐 ≻ 𝑏 ≻ 𝑎

𝑣5 : 𝑎 ≻ 𝑐 ≻ 𝑏 ≻ 𝑑 ≻ 𝑒 ≻ 𝑓

𝑣6 : 𝑓 ≻ 𝑒 ≻ 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑

We discover some interesting patterns:

• All voters agree that candidates 𝑒 and 𝑓 are clones; and all

voters except 𝑣3 agree that 𝑎, 𝑏, and 𝑐 are clones: We have a

clone set of two candidates for six voters, and a clone set of

three candidates for five voters.

• 𝑣1, 𝑣3 and 𝑣6 agree on the ranking 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑 : This is a

hidden identity with three voters and four candidates. All voters

except 𝑣2 and 𝑣4 agree on 𝑎 ≻ 𝑏 ≻ 𝑑 and on 𝑎 ≻ 𝑐 ≻ 𝑑 : These

are hidden identities with four voters and three candidates.

• Candidates𝑑, 𝑒 , and 𝑓 are antagonizing all voters: Half of them

(𝑣2, 𝑣4, and 𝑣5) rank them 𝑑 ≻ 𝑒 ≻ 𝑓 , while the other half (𝑣1,
𝑣3, and 𝑣6) rank them in the reverse order 𝑓 ≻ 𝑒 ≻ 𝑑 : There is

an antagonism for three candidates and six voters.

Discovering consistent, large enough subelections not only helps
to understand a population better (e.g., with respect to food prefer-
ences, customer behavior, or political opinions over issues), but it
can also benefit a variety of tasks. Notably, if we start eliciting the
preferences of a new voter (outside of the original profile), we might
discover that they probably belong to some group with consistent
preferences, which eases and speeds up the elicitation process. For
instance, once discovered that Ann is a vegetarian, asking her if
she prefers pork to asparagus is a loss of time.

For the sake of simplicity, in this paper, we choose to focus on
subelections that satisfy exact consistency properties. Occasionally,
if applicable, we relate to the question of finding the closest sub-
election in terms of swap distance, that is, the minimum number of
swaps on adjacent candidates we need to perform to obtain a sub-
election satisfying some consistency property [10]. While allowing
approximate properties (e.g., find a subelection where all voters
order almost all candidates in the same way) is definitely interest-
ing, and of course, would allow us to discover larger meaningful
subelections, we leave it for further research.

Our Contribution. We provide an analysis of finding hidden sub-
elections, both from theoretical and empirical perspectives. First,
we focus on their computation. We obtain hardness results for find-
ing a sufficiently large hidden identity or antagonism, which are
tempered by parameterized tractability results for the number of
candidates or voters, and by a translation into an ILP. We note
that we obtain a reduced run time of our FPT algorithms due to a
graph representation of unanimous preference orders. As to hidden
clones, they can be identified in polynomial time.

Then, we perform an empirical analysis, using both synthetic
and real-life data. To analyze the results for synthetic data we use
the map of elections framework. As to the real-life data, we study a
well-known dataset containing preferences over different types of
sushi, as well as a political election dataset (obtained through polls)
over candidates from the 2014 French presidential election.

Related Literature. Discovering structure in elections has re-
ceived significant attention in the context of single-peakedness:
Given a profile, is it single-peaked with respect to some hidden axis
(such as political left-right) on which the candidates are positioned?
Since the plausibility of a positive answer quickly decreases with the
size of the profile, most of the focus has been laid on approximate
single-peakedness; several measures of single-peakedness have
been defined, and the key question is to identify an axis for which
the profile maximizes the single-peakedness degree. Variants have
been considered (such as Euclidean preferences, single-peakedness
on a tree or a circle), as well as other structures (mostly single-
crossingness, where the hidden axis bears on the set of voters). The
most recent review of work on this trend is [9].

Uncovering a hidden axis and maximally explaining the prefer-
ence profile allows us to discover hidden properties of the domain
at hand, which is also our motivation. However, uncovering an axis
allows us to learn structure of the set of candidates only. Symmetri-
cally, finding an axis over the set of voters making the profile as
much single-crossing as possible leads us to learning structure of
the set of voters only.

Elkind et al. [8] identify clones in elections (sets of candidates
that are ranked contiguously by all voters). Part of our contribu-
tion generalizes the discovery of clone sets by considering sets of
candidates that are considered clones by only some of the voters.1

Colley et al. [6] identify, from a preference profile, the divisiveness
of each candidate, measuring the disagreement of the population
about it. Various notions of degrees of consensus, conflict, or diver-
sity within an electorate have also been studied [1, 2, 15]. While
(some of) the subelections we discover also tell us something about
the degree of consensus or conflict in a society, they tell us much
more, by localizing the candidates and the voters on which there is
a high consensus or conflict.

Faliszewski et al. [12] study the problem of subelection isomor-
phism, where they analyze the complexity of verifying whether
one election is isomorphic to a subelection of the other election.
This approach differs from ours because we always focus solely on
the inner structure of a single election, hence, we do not have to

1A specific notion of clone structure occurs when the set of candidates can be parti-
tioned in two classes, such that each voter prefers all candidates in one class to all
those in the other one (group separability); see Sections 3.11 and 4.7 of (Elkind, Lackner,
and Peters 2022).
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deal with all the problems related to matching the candidates and
voters from different elections.

Biclustering [14], also known as co-clustering or block-clustering,
aims at learning structure in a real-valued, two-dimensional matrix
by simultaneously finding a set of rows and a set of columns with
similar behavior, i.e., near-identical rows, near-identical columns,
rows or columns roughly obtained from each other by an additive
or multiplicative factor. This resembles our subelection discovery
tasks, with a major difference: Biclustering algorithms work on a
cardinal input, while ours is ordinal. This is more important than it
may appear. Crucially, expressing a profile as a matrix whose cell
corresponding to voter 𝑖 and candidate 𝑐 𝑗 is 𝑐 𝑗 ’s rank in 𝑖’s ranking
would not help, as our consistency notions cannot be expressed by
near-identity or near-linear relations between rows or columns.

2 CONSISTENT SUBELECTIONS

Let us introduce the basic notions which we use in our analysis.
For a natural number 𝑡 > 0, we denote as [𝑡] the set {1, . . . , 𝑡}.

Elections. An election 𝐸 = (𝐶,𝑉 ) consists of the set 𝐶 of candi-
dates and the set𝑉 of voters. We assume that each voter 𝑣 submits a
ranking ≻𝑣 over 𝐶 . Also, The size of an election 𝐸, denoted 𝑠𝑖𝑧𝑒 (𝐸),
is a pair of integers ( |𝐶 |, |𝑉 |).

Subelections. For an election 𝐸 = (𝐶,𝑉 ), a subset of candidates
𝐶′ ⊆ 𝐶 , and a subset of voters 𝑉 ′ ⊆ 𝑉 , we say that 𝐸′ = (𝐶′,𝑉 ′) is
a subelection of 𝐸 for every voter 𝑣 ∈ 𝑉 ′ and any pair of candidates
𝑐1, 𝑐2 ∈ 𝐶′, 𝑐1 ≻𝑣 𝑐2 in 𝐸′ if and only if 𝑐1 ≻𝑣 𝑐2 in 𝐸.

Identity. We say that 𝐸 = (𝐶,𝑉 ) is an identity election if, for every
pair of voters 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , ≻𝑣𝑖 = ≻𝑣𝑗 .

Antagonism. We say that 𝐸 = (𝐶,𝑉 ), with |𝑉 | even, is an antag-

onism if there is a partition of𝑉 into𝑉1 and𝑉2 such that |𝑉1 | = |𝑉2 |
and for every pair of voters 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2, as well as any pair of
candidates 𝑐, 𝑐′ ∈ 𝐶 , 𝑐 ≻𝑣1 𝑐

′ if and only if 𝑐′ ≻𝑣2 𝑐 .

Clones. We say that𝐶′ is a clone set for an election 𝐸 = (𝐶,𝑉 ) if
for any 𝑥,𝑦 ∈ 𝐶′, any 𝑧 ∉ 𝐶′ and any voter 𝑖 we have 𝑥 ≻𝑖 𝑧 if and
only if 𝑦 ≻𝑖 𝑧. The size of a clone set 𝐶′ for election 𝐸 is the pair of
integers ( |𝐶′ |, |𝑉 |).

In our initial example, ({𝑎, 𝑏, 𝑐, 𝑑}, {𝑣1, 𝑣3, 𝑣6}) is an identity sub-
election of 𝐸 of size (4, 3); ({𝑎, 𝑏, 𝑐},𝑉 ) is an antagonism subelec-
tion of 𝐸 of size (3, 6); and {𝑎, 𝑏, 𝑐} is a clone set for the subelection
(𝐶, {𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6}) of 𝐸 of size (3, 5).

Given two identity (resp. antagonism) subelections 𝐸1, 𝐸2 for
election 𝐸, we say that 𝐸1 is larger than 𝐸2 if 𝑠𝑖𝑧𝑒 (𝐸1) = (𝑚1, 𝑛1),
𝑠𝑖𝑧𝑒 (𝐸2) = (𝑚2, 𝑛2),𝑚1 ≥ 𝑚2, and 𝑛1 ≥ 𝑛2, with one of these two
inequalities being strict. In other terms, this is Pareto-dominance
for two criteria, being the number of candidates and the number of
voters in subelections. Note also that the existence of an identity
of size𝑚′ for 𝑛′ voters implies the existence of an identity of size
𝑚′′ ≤ 𝑚′ for 𝑛′′ ≤ 𝑛′ voters.

We define the identity (resp. antagonism) signature of an election
as the set of pairs (𝑚′, 𝑛′) of integers such that (i) there is an identity
(resp. antagonism) subelection 𝐸′ of 𝐸 of size (𝑚′, 𝑛′), and (ii) no
identity (resp. antagonism) subelection of 𝐸 is larger than 𝐸′. In
Example 1, the identity signature of 𝐸 is {(1, 6), (3, 4), (4, 3), (6, 1)}.
We will further say that a set of voters (resp. candidates) has an

identity (resp. antagonism) subelection if there is a subelection of
that type with that set of voters or candidates.

We assume that the reader is familiar with basic concepts in
(parametrized) computational complexity.

3 COMPUTING MEANINGFUL SUBELECTIONS

In this section, we study the complexity of discovering hidden
subelections and provide algorithms for finding them.

3.1 Hidden Clones

Let us commence with the problem of finding clone sets in an
election. In Hidden-Clones we are concerned with checking the
existence of sufficiently large sets of voters similar with respect to
a set of candidates of a given size.

Hidden-Clones:
Input: Election 𝐸 = (𝐶,𝑉 ),𝑚′, 𝑛′ ∈ N.
Question: Is there a set of 𝑛′ voters 𝑉 ′ ⊆ 𝑉 and a set
of𝑚′ candidates 𝐶′ ⊆ 𝐶 such that 𝐶′ is a clone set
for 𝑉 ′?

Theorem 1. Hidden-Clones is P-time solvable.

Proof. Let (𝐸,𝑚′, 𝑛′) be an instance of Hidden-Clones. A sub-
set of𝑚′ candidates can be a clone set for at least one voter if and
only if it forms a segment of𝑚′ consecutive candidates in some
vote. We observe that there are at most |𝑉 | · ( |𝐶 | −𝑚′ + 1) such
subsets, we iterate over them and accept if any of them appear
in at least 𝑛′ votes. □

To better understand the algorithm, let us analyze it in the pre-
vious example.

Example 2. Consider again the election from Example 1. Take

𝑚′ = 3: The segments of length 3 for voter 1 are {𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑓 },
{𝑐, 𝑒, 𝑓 } and {𝑑, 𝑒, 𝑓 }; for voter 2, these are {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑑, 𝑒}
and {𝑑, 𝑒, 𝑓 }; and so on. Counting the number of voters for which

these subsets correspond to a segment of length 3, we find that {𝑎, 𝑏, 𝑐}
appears four times, {𝑏, 𝑐, 𝑓 } only once, {𝑐, 𝑒, 𝑓 } twice, and so on. The
sets occurring most frequently are {𝑎, 𝑏, 𝑐}, {𝑑, 𝑒, 𝑓 } (four times each):

In conclusion, there are hidden clones of size (3, 𝑛′), for 𝑛′ ≤ 3.

The following observation states that the existence of clone
sets of a given size is not monotonic (whereas for identity and
antagonism subelections, monotonicity holds.)

Observation 1. The existence of a clone set of size𝑚′
does not

imply the existence of a clone set of smaller (nor larger) size.

As a trivial example, (𝑎 ≻ 𝑏 ≻ 𝑐, 𝑏 ≻ 𝑐 ≻ 𝑎, 𝑐 ≻ 𝑎 ≻ 𝑏) has no
clone set of two candidates, but every singleton, as well as the set
of all candidates, are clone sets for all voters.

For this reason, we do not define the clone signature of an elec-
tion, but for every 𝑚′ ≤ 𝑚 we define MaxClone(𝐸,𝑚′) as the
largest 𝑛′ ∈ [𝑛] such that there exists a set of 𝑛′ voters𝑉 ′ ⊆ 𝑉 and
a set of𝑚′ candidates 𝐶′ ⊆ 𝐶 such that 𝐶′ is a clone set.

Example 3. Let us consider the instance defined in Example 1.

There, we observe that MaxClone(𝐸, 2) = 6,MaxClone(𝐸, 3) =

5,MaxClone(𝐸, 4) = MaxClone(𝐸, 5) = 3, and trivially,
MaxClone(𝐸, 1) = MaxClone(𝐸, 6) = 6.
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Analogously to the algorithm described in Theorem 1, we can
also computeMaxClone in polynomial time (we search for a subset
with maximum occurrences).

Corollary 2. MaxClone is P-time solvable.

We note that using standard data structures such as hash map
and doubly linked list, both of our algorithms can be implemented
in𝑂 ( |𝑉 | · ( |𝐶 | −𝑚′) ·𝑚′) time and space complexity, which makes
them very fast and usable in practice. For example, for electionswith
a few hundred voters and a few hundred candidates, the algorithm
works in a few seconds.

Due to the nonmonotonicity of clone sets, it is meaningless
to approximate the size of a maximal clone set. Regarding the
approximation of the maximal number of voters for which there
exists a clone set of a given size, solving such a problem is very
similar to solving the MaxClone problem.

We may also be interested in how far we are from obtaining a
clone set of a given size for a given number of voters in terms of
swap distance. However, the closest clone set (in terms of swap dis-
tance) may not be present in any vote: for𝐶 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖},
𝑣1 = {𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑 ≻ 𝑒 ≻ 𝑓 ≻ 𝑔 ≻ ℎ ≻ 𝑖}, 𝑣2 = {𝑑 ≻ 𝑓 ≻ 𝑔 ≻ 𝑖 ≻
𝑎 ≻ 𝑏 ≻ 𝑐 ≻ ℎ ≻ 𝑒}, 𝑣3 = {𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑓 ≻ 𝑒 ≻ 𝑖 ≻ 𝑑 ≻ ℎ ≻ 𝑔},
𝑛′ = 3,𝑚′ = 4, the closest clone set is {𝑎, 𝑏, 𝑐, 𝑒} with swap distance
3. However, for any clone set candidate 𝑐𝑠 , we can compute in poly-
nomial time the minimum number of swaps we need to do so that
𝑐𝑠 becomes a valid clone set (and use it to find the best one).

3.2 Hidden Identity

We study the problem of whether a certain number of voters agree
regarding the order of a given number of candidates.

Hidden-ID:
Input: Election 𝐸 = (𝐶,𝑉 ),𝑚′, 𝑛′ ∈ N.
Question: Is there an identity subelection 𝐸′ = (𝐶′,𝑉 ′)

of 𝐸, with |𝐶′ | ≥ 𝑚′ and |𝑉 ′ | ≥ 𝑛′?
We first show that Hidden-ID is intractable.

Theorem 3. Hidden-ID is NP-complete.

Proof Sketch. Membership to NP is clear as we can guess both
a set of voters and a set of candidates and check if these voters rank
these candidates in the same order. Hardness is shown by reduction
from 3-SAT. For a 3-CNF formula 𝜙 with the set of variables 𝑋 =

{𝑥0, . . . , 𝑥𝑛} and the set of clauses 𝐶 = {𝐶0, . . . ,𝐶𝑚}, we consider
a sufficiently large number of pairs of voters 𝑀 , whom we call
main voters. We further include three clause voters for each of the
clauses in 𝐶 . We will associate every such voter with a distinct
literal in a corresponding clause. Subsequently, we consider a set of
variables 𝑋 ′, consisting of 𝑋 and five additional variables for each
clause, assuming an order of candidates in 𝑋 ′. Then, we construct
a pair of literal candidates for each such variable 𝑥𝑖 , i.e., 𝑐𝑥𝑖 and
𝑐¬𝑥𝑖 . Furthermore, in the constructed instance of Hidden-ID we
take the identity with the number of candidates equal to |𝑋 ′ |, and
the number of voters |𝐶 | +𝑀 .

Further, we let main voters rank the candidates following the
order of 𝑋 ′, with one of such voters in each pair ranking 𝑐𝑥𝑖 ≻ 𝑐¬𝑥𝑖
and the other 𝑐¬𝑥𝑖 ≻ 𝑐𝑥𝑖 , for every 𝑥𝑖 ∈ 𝑋 ′. Notice that by choosing

a sufficiently high number of main voters we ensure that in a sub-
election required in the instance we consider, we select exactly one
literal candidate for each variable. Hence, such a subelection corre-
sponds to some valuation over 𝑋 ′. We let every clause voter rank
the candidate encoding the negation of a literal that the voter cor-
responds to lower than the candidates representing a variable with
a higher index. Observe that then, if a clause voter 𝑣 corresponding
to a literal 𝐿 is selected in a target subelection, then 𝑐¬𝐿 is not, as
then 𝑣 ’s vote would not be identical to the main voters’ rankings.
Subsequently, using additional variables in 𝑋 ′ corresponding to a
clause 𝐶𝑖 , we ensure that at most one of the clause voters for 𝐶𝑖 is
present in a subelection satisfying criteria of our instance, because
otherwise the selected clause voters would not have identical votes
in the target subelections. As by the size of a target subelection
we need to select at least |𝐶 | clause voters, we obtain that it exists
exactly when 𝜑 is satisfiable. (See the full version of the paper for
an example of votes in an encoding we define). □

Following the NP-hardness of the problem we consider in gen-
eral, a natural approach is to ask for FPT algorithms. We will show
that we are able to efficiently verify if a given set of voters has an
identity of a given size (even if we do not know which candidates
should be selected). This enables us to provide an FPT algorithm
parameterized by the number of voters.

Proposition 4. Checking if for a given set of 𝑛′ voters there exists
an identity subelection with at least𝑚′

candidates is P-time solvable.

Proof. Suppose we are given a Hidden-ID instance (𝐸,𝑚′, 𝑛′)
and a set of 𝑛′ voters 𝑉 ′ = {𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑛′ }. We ask if there exist
𝑚′ candidates that are preferred exactly in the same order by all
voters from 𝑉 ′.2 We define the unanimity graph Una(𝑉 ′) as the
graph whose set of vertices is𝐶 , and that contains edge (𝑐, 𝑐′) if and
only if all voters in 𝑉 ′ prefer 𝑐 to 𝑐′. Una(𝑉 ′) is a directed acyclic
graph, and (𝐶′,𝑉 ′) is an identity subelection of 𝐸 if and only if
there is a path in Una(𝑉 ′) that goes through all candidates of 𝐶′.
Therefore, it suffices to check whether Una(𝑉 ′) contains a path of
length𝑚′ − 1; as finding the longest path in DAG is well-known to
be P-time solvable [7], our algorithm runs in polynomial time. □

Specifically, the Algorithm 4 can be implemented in 𝑂 (𝑛′ · |𝐶 |2)
time complexity and𝑂 (𝑛′ · |𝐶 | + |𝐶 |2) space complexity. We demon-
strate our approach in an example.

Example 4. We continue Example 1. Take 𝑉 ′ = {𝑣1, 𝑣3, 𝑣6}: The
unanimity graph for 𝑉 ′

consists of the edges 𝑎 → 𝑏, 𝑎 → 𝑐 , 𝑎 → 𝑑 ,

𝑎 → 𝑒 , 𝑏 → 𝑐 , 𝑏 → 𝑑 , 𝑐 → 𝑑 , 𝑒 → 𝑑 , 𝑓 → 𝑑 , 𝑓 → 𝑒 . The longest

path being 𝑎 → 𝑏 → 𝑐 → 𝑑 , 𝑉 ′
has a subelection with 4 candidates

(and no more). With 𝑉 ′′ = {𝑣1, 𝑣2, 𝑣3, 𝑣6}, the unanimity graph is

composed of the edges 𝑎 → 𝑑 , 𝑏 → 𝑐 , 𝑏 → 𝑑 , the longest path is

𝑏 → 𝑐 → 𝑑 , 𝑉 ′′
has a subelection with 3 candidates (and no more).

Using the above algorithm, we obtainthat Hidden-ID is fixed-
parameter tractable for the number of voters.

Corollary 5. Hidden-ID is in FPT for the parameterization by

the number of voters (|𝑉 |) and in XP for the parameterization by the

number of voters in the solution (𝑛′).
2Initially this approach is reminiscent of the (NP-hard) Longest Common Subsequence
problem. However, in our problem, each candidate appears in each vote exactly once.
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Proof. Suppose we are given a Hidden-ID instance (𝐸,𝑚′, 𝑛′).
We iterate through all possible size-𝑛′ subsets of voters and check
if the algorithm 4 found any identity subelection consisting of at
least𝑚′ candidates, if so, then we accept, otherwise we reject. The
algorithm works in𝑂 (

( |𝑉 |
𝑛′
)
· (𝑛′ · (𝑛′ · |𝐶 |2))) time complexity and

𝑂 ( |𝑉 | · |𝐶 | + |𝐶 |2) space complexity. □

We show analogous results for a given set of candidates and for
the parameter number of candidates.

Proposition 6. Checking if for a given set of𝑚′
candidates there

exists an identity subelection with at least 𝑛′ voters is P-time solvable.

Proof. Take a Hidden-ID instance (𝐸,𝑚′, 𝑛′) and a set of 𝑚′

candidates 𝐶′ = {𝑐𝑖1 , 𝑐𝑖2 , . . . , 𝑐𝑖𝑚′ }. We ask if there are 𝑛′ voters
that rank them identically. As there are at most |𝑉 | distinct orders
of candidates 𝐶′ in our instance, it suffices to check if any of them
appears in at least 𝑛′ votes. □

The Algorithm 6 can be implemented in 𝑂 ( |𝑉 | · |𝐶 |) time and
space complexity. Due to it, we obtain parameterized tractability of
Hidden-ID for the number of candidates.

Corollary 7. Hidden-ID is in FPT for the parameterization by

the number of candidates (|𝐶 |) and in XP for the parameterization by

the number of candidates in the solution (𝑚′
).

Proof. Suppose we are given a Hidden-ID instance (𝐸,𝑚′, 𝑛′).
We iterate through all size-𝑚′ sets of candidates and accept if the
algorithm 6 found any identity subelection consisting of at least 𝑛′

voters, otherwise we reject. The algorithm works in 𝑂 (
( |𝐶 |
𝑚′

)
· ( |𝑉 | ·

|𝐶 |)) time complexity and 𝑂 ( |𝑉 | · |𝐶 |) space complexity. □

The algorithms described in Propositions 4 and 6 can be used
to effectively answer natural questions about preferences such as
what do voters coming from a certain background mostly agree
on, or are certain alternatives ranked in the same order by some
large group of voters. As we showed in Corollaries 5 and 7, we are
able to answer these questions effectively provided that either the
number of voters or the number of candidates is relatively small
(up to 20 or 30). Nevertheless, if both the number of voters and the
number of candidates are not small, then this approach is too slow.
To tackle this problem, we provide an ILP for Hidden-ID which
finds an identity subelection (if exists) or the closest subelection to
identity if such does not exist.

Proposition 8. There is an ILP for Hidden-ID which selects a

solution for a “yes”-instance and the closest subelection to identity (in

terms of swap distance) for a “no”-instance.

Proof. Let 𝐸 = (𝐶,𝑉 ) be the election we wish to analyze, with
𝐶 = {𝑐1, . . . , 𝑐𝑚} and𝑉 = {𝑣1, . . . , 𝑣𝑛}. All variables will be binaries.
For each 𝑖 ∈ [𝑛], we define a variable 𝑉𝑖 with the intention that
value 1 indicates that voter 𝑣𝑖 is selected. Similarly, for each 𝑗 ∈ [𝑚],
we define a binary variable 𝐶 𝑗 with the intention that value 1
indicates that candidate 𝑐 𝑗 is selected. The variable 𝑆 𝑗1, 𝑗2 is equal to
1 if candidates 𝐶 𝑗1 and 𝐶 𝑗2 are selected and candidate 𝐶 𝑗1 appears
before 𝐶 𝑗2 in the identity ranking. Variable 𝑃𝑖, 𝑗1, 𝑗2 is equal to 1

if voter 𝑉𝑖 agrees that 𝐶 𝑗1 is ranked before 𝐶 𝑗2 and both these
candidates are selected. We introduce the following constraints: 3∑

𝑖∈[𝑛] 𝑉𝑖 = 𝑛′, (1)∑
𝑗∈[𝑚] 𝐶 𝑗 =𝑚′, (2)

𝑆 𝑗1, 𝑗2 + 𝑆 𝑗2, 𝑗1 = 𝐶 𝑗1 ·𝐶 𝑗2 , ∀𝑗1, 𝑗2∈[𝑚] , (3)
𝑃𝑖, 𝑗1, 𝑗2 = 𝑉𝑖 · 𝑆 𝑗1, 𝑗2 , ∀𝑖∈[𝑛], 𝑗1, 𝑗2∈[𝑚] . (4)

Constraints (1) and (2) ensure that we select the proper numbers
of voters and candidates. Constraints (3) and (4) implements the
logic of 𝑆 and 𝑃 variables, respectively. The optimization goal
is to minimize:

∑
𝑖∈[𝑛], 𝑗1, 𝑗2∈[𝑚] 𝑃𝑖, 𝑗1, 𝑗2 ·𝑊𝑖, 𝑗1, 𝑗2 , where𝑊𝑖, 𝑗1, 𝑗2 =

[𝑝𝑜𝑠𝑣𝑖 (𝑐 𝑗1 ) > 𝑝𝑜𝑠𝑣𝑖 (𝑐 𝑗2 )]. □

We see that with the proposed ILP, we are able to maximize
the solution if exists as well as to effectively determine the closest
subelection if the exact one does not exist. We also consider the
maximization problem for Hidden-ID, which will be useful for our
experiments. For𝑚′ ∈ [𝑚], by Max-ID(𝐸,𝑚′) we denote the prob-
lem of finding 𝑛′ ∈ [𝑛] such that (𝑛′,𝑚′) is the identity signature,
i.e., 𝑠𝑖𝑧𝑒 (𝐸) = (𝑚′, 𝑛′). We can solve it via a modification of the ILP
in Proposition 8, that is, by 1) adding a constraint

∑
𝑖∈[𝑛] 𝑉𝑖 (i.e.,

the previous objective function) and 2) changing the optimization
goal to maximize

∑
𝑖∈[𝑛] 𝑉𝑖 .

3.3 Hidden Antagonism

We further analyze the problem of checking if an election contains
an antagonism of a given size.

Hidden-AN:
Input: Election 𝐸 = (𝐶,𝑉 ),𝑚′, 𝑛′ ∈ N.
Question: Is there an antagonism subelection𝐸′ = (𝐶′,𝑉 ′)

of 𝐸, with |𝐶′ | ≥ 𝑚′ and |𝑉 ′ | ≥ 𝑛′?
First, we show that Hidden-AN is intractable in general.

Theorem 9. Hidden-AN is NP-complete.

Proof Sketch. The proof extends the reduction in the proof
Theorem 3. For a 3-CNF formula 𝜑 with the set of variables 𝑋 =

{𝑥0, . . . , 𝑥𝑛} and the set of clauses 𝐶 = {𝐶0, . . . ,𝐶𝑚}, we begin
by taking the encoding provided there. Subsequently, we double
the number of main voters, reversing their order of candidates
corresponding to particular variables for half of these voters. So, for
half of the main voters, we have that 𝑐𝑥𝑖 and 𝑐¬𝑥𝑖 are preferred to
both 𝑐𝑥 𝑗

and 𝑐¬𝑥 𝑗
, while for a half 𝑐𝑥 𝑗

and 𝑐¬𝑥 𝑗
are preferred to 𝑐𝑥𝑖

and 𝑐¬𝑥𝑖 , if 𝑖 > 𝑗 . Observe that as in the case of the reduction in the
proof of Theorem 3, by choosing a sufficient number of main voters
and the required number of candidates in a target subelection as
|𝑋 ′ |, we ensure that it corresponds to some valuation over 𝑋 ′.

Then, we take two copies of voters corresponding to each clause,
requiring voters in each such copy to have a reversed order of
candidates corresponding to particular variables, as in the case
of main voters. Following the reasoning provided in the proof of
Theorem 3, due to the reversed order of candidates, there exists
an antagonism with at least |𝑋 ′ | candidates and 2|𝐶 | +𝑀 voters,
where𝑀 is the number of pairs of main voters, exactly when 𝜑 is
satisfiable. □
3In some constraints, we used themultiplication operation. However, as all the variables
are binaries they can be easily replaced by standard constraints of a less intuitive form.
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(a) MaxClone(𝐸, 2) . (b)Max-ID(𝐸, 5) (c) Max-AN(𝐸, 5)

Figure 1: Maps of elections with 10 candidates and 50 voters. Each point represents a single election, and its color represents the

maximum number of voters that a) find certain two candidates clones (left), b) agree on certain five candidates being identity

(middle), c) are antagonized over certain five candidates. In other words, the darker the point is, the more voters agree on a

certain set of candidates being clones (left), identity (middle), or antagonism (right). On each map, ID label marks the identity

election, and AN label marks the antagonism election, and dots representing elections coming from the same statistical culture

were connected in clusters with names.

Although it requires more effort to model antagonized votes
than identical ones, we can still compute maximum antagonism
for a given set of voters or candidates in polynomial time and thus
obtain FPT algorithms for Hidden-AN.

Proposition 10. Checking if for a given set of 𝑛′ voters there
exists an antagonism subelection with at least 𝑚′

candidates is P-

time solvable.

Proof. Suppose we are given a Hidden-AN instance (𝐸,𝑚′, 𝑛′)
and a set of 𝑛′ voters 𝑉 ′ = {𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑛′ }. We ask if there exists
a set of𝑚′ candidates such that all voters from 𝑉 ′ are antagonized
over them. That is, half of them rank these candidates in the same
order, whereas the other half in the opposite one.

For𝑚′ = 1 the answer is naturally yes, so we assume that𝑚′ ≥ 2.
Suppose now that the answer is yes, the solution is order 𝑝′ of
candidates 𝐶′ ⊆ 𝐶 , candidate 𝑐𝑏 is at the beginning of 𝑝′, and
candidate 𝑐𝑒 is at the end of 𝑝′. Let𝑉 ′

𝑐𝑏≻𝑐𝑒 and𝑉 ′
𝑐𝑒≻𝑐𝑏 be the voters

from 𝑉 ′ preferring 𝑐𝑏 over 𝑐𝑒 and 𝑐𝑒 over 𝑐𝑏 , respectively. Then all
voters from𝑉 ′

𝑐𝑏≻𝑐𝑒 must order candidates𝐶′ in the order 𝑝′ and all
voters from 𝑉 ′

𝑐𝑒≻𝑐𝑏 must order them exactly in the reversed order
𝑟 ′. However, all voters from 𝑉 ′

𝑐𝑒≻𝑐𝑏 order candidates 𝐶′ exactly in
the reversed order 𝑟 ′ if and only if they order them in the order 𝑝′
after reversing their whole votes.

With this observation, we propose a polynomial-time algorithm
as follows. We iterate over each pair of distinct candidates 𝑐𝑏 , 𝑐𝑒
from 𝐶 (with the intention that they will be, respectively, the first
and the last candidate in the antagonism subelection). If |𝑉 ′

𝑐𝑏≻𝑐𝑒 | ≠
|𝑉 ′
𝑐𝑒≻𝑐𝑏 |, then the sets of antagonized voters do not have the same

cardinality, so we continue with the next pair. Now we know that
|𝑉 ′
𝑐𝑏≻𝑐𝑒 | = |𝑉 ′

𝑐𝑒≻𝑐𝑏 |. We remove all candidates from the votes that
appear in at least one vote not between 𝑐𝑏 and 𝑐𝑒 (i.e., we keep
candidate 𝑐 if and only if for each vote either 𝑐𝑏 ≻ 𝑐 ≻ 𝑐𝑒 or 𝑐𝑒 ≻

𝑐 ≻ 𝑐𝑏 ). We are now left with the truncated votes consisting of 𝑐𝑏
and 𝑐𝑒 ranked at the extreme positions and all remaining candidates
ranked between them in all votes. If we end up with less than𝑚′

candidates, then we continue with the next pair. We reverse votes
in which 𝑐𝑒 ≻ 𝑐𝑏 , use the algorithm 4 to see if there is an identity
subelection with𝑚′ candidates, and accept if there is one (note that
due to |𝑉 ′

𝑐𝑏≻𝑐𝑒 | = |𝑉 ′
𝑐𝑒≻𝑐𝑏 | it is equivalent to having half of voters

approving one order and the other half preferring the opposite one).
We reject if we do not find any solution for any pair of candidates
𝑐𝑏 , 𝑐𝑒 ∈ 𝐶 . The algorithm runs in𝑂 (𝑛′ · |𝐶 | + |𝐶 |2 · (𝑛′ · |𝐶 |2)) time
and uses 𝑂 (𝑛′ · |𝐶 | + |𝐶 |2) space. □

Proposition 11. Checking if for a given set of 𝑚′
candidates

there exists an antagonism subelection with at least 𝑛′ voters is P-
time solvable.

Proof. Suppose we are given a Hidden-AN instance (𝐸,𝑚′, 𝑛′)
and a set of𝑚′ candidates 𝐶′ = {𝑐𝑖1 , 𝑐𝑖2 , . . . , 𝑐𝑖𝑚′ }. We ask if there
exists a set of 𝑛′ voters that are antagonized over them, that is,
half of them rank candidates 𝐶′ in one way and the other half
in the opposite order. We create a hash map 𝐷 mapping orders
(permutations) of candidates from 𝐶′ to lists of voters that rank
them in this order. For the sake of brevity, let𝐷 [𝑝] be the value in𝐷
associated with the key 𝑝 , i.e., the list of voters that rank candidates
𝐶′ in the order 𝑝 . Then, we iterate over each order 𝑝 , in the votes of
𝐷 and accept if for any order 𝑝 , both 𝐷 [𝑝] and 𝐷 [𝑟 ] contain at least
𝑛′/2 voters where 𝑟 is the reversed order of 𝑝 . Analogously to the
algorithm in Proposition 6, the algorithm runs in polynomial time
because we consider only permutations that appear in the given
votes. Specifically, its time and space complexity is𝑂 ( |𝑉 | · |𝐶 |). □

Then, fixed-parameter tractability ofHidden-AN for the number
of voters and the number of candidates follows.
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Corollary 12. Hidden-AN is in FPT parametrized by the number

of voters (|𝑉 |) or candidates (|𝐶 |) as well as in XP for the parameteri-

zation by the number of voters (𝑛′) or candidates (𝑚′
) in the solution.

Analogously toHidden-ID, these FPT algorithms suffice if either
the number of voters or the number of candidates is small, but they
are too small if both of these values are not small. To handle it, we
use a simple ILP for that problem. (The details are in the full version
of the paper).

Proposition 13. There is an ILP for Hidden-AN which selects a

solution for a “yes”-instance and the closest subelection to antagonism

(in terms of swap distance) for a “no”-instance.

The strong advantage of this ILP is that it also manages situations
in which the desired antagonism does not exist, which, as we will
see in experiments, is not a rare case.

Additionally, we study a maximization version of Hidden-AN
that will be crucial regarding our experiments. Given𝑚′ ∈ [𝑚], by
Max-AN(𝐸,𝑚′) we denote the problem of finding 𝑛′ ∈ [𝑛] such
that (𝑛′,𝑚′) is the antagonism signature, i.e., 𝑠𝑖𝑧𝑒 (𝐸) = (𝑚′, 𝑛′).

We note that the ILPs provided in this section, i.e., in Propositions
8 and 13, as well as those for Max-ID and Max-AN, are crucial for
the experiments we provide in the next section.

4 EXPERIMENTS

In this section, we focus on the practical application of our approach.
First, we study our problems with synthetic data. Later on, we
analyze several real-life instances.

4.1 Map of Elections

To depict our experimental results, we use the framework intro-
duced by Szufa et al. [18] and extended by Boehmer et al. [3], known
asmap of elections. Themap serves us to better understand the space
of elections and is particularly useful when conducting experiments.
Each point on the map depicts a single election. The embeddings
were calculated based on the mutual distances between elections
(computed with some distance function). The closer the two points
on the map are, the more similar the elections these points depict.
For instance, elections coming from the same statistical cultures or
similar models are often clones on the map, while elections coming
from very different models are usually more distant on the map.
In this case, we use the map from Boehmer et al. [4] that consists
of 344 elections4 with 10 candidates and 50 voters. The map is
based on the isomorphic swap distance [11], and is embedded using
Fruchterman-Reingold algorithm [13].

Having prepared the map and its points, one can put on them
some properties hidden in the colors or shapes of points. E.g., Szufa
et al. [17] color the points on the map of approval elections with sev-
eral statistics (e.g., cohesiveness level, PAV run time, and maximum
approval score) to see how well statistical cultures and elections
situated in different regions satisfy these properties or how well
they perform. Here we will conduct a similar analysis of values
distribution as well as its location on the map. We also investigate
why this particular coloring occurred and what it means.

For each election from the given dataset, we computed the
three following characteristics: (1)Max-ID(𝐸, 5), (2)Max-AN(𝐸, 5),
4Detailed description is provided in the full version of the paper.

(3) MaxClone(𝐸, 2). The results are presented in Figure 1. (Com-
plementary results, containing separate average values for each
statistical culture, are presented in the full version of the paper).

In the case ofMaxClone(𝐸, 2) (as depicted in the leftmost map)
the darker the point, the more voters agree that there exists a pair
of clone candidates. The most modest values are consistently seen
in elections originating from the impartial culture (i.e., each vote is
sampled uniformly at random), averaging at a value of 17, with a
remarkably low standard deviation of only 1.22. Note that the value
forMaxClone(𝐸, 2) seems not to be strongly correlated with the
position on the map. It is because the map is based on swap distance.
By making relatively few swaps (i.e., increasing a distance just a
bit), we can significantly decrease the number of voters agreeing
that two candidates are clones. In other words, given an election
𝐸 we can create a new election 𝐸′ that is very close to 𝐸 (distance-
wise) but has a much lower MaxClone value. In principle, for
the MaxClone problem, usually by one swap we can lower the
results by one (unless that swap is creating a new solution involving
a different set of candidates).

For the Max-ID(𝐸, 5) (the middle map) we observe a strong
correlation between the number of voters agreeing on given five
candidates being ranked in a particular order and the swap dis-
tance from ID (the Pearson correlation coefficient (PCC) is −0.791).
Similarly, the results for Max-AN(𝐸, 5) (the rightmost map) are
strongly correlated with the distance from AN (PCC = −0.845).
Both of these correlations are reasonable, as the larger the hidden
identity (resp. antagonism), the fewer swaps we need to convert
the election into ID (resp. AN). This means that for Max-ID and
Max-ID there is a strong correlation between the position on the
map and the size of the signature. Unlike for clones, for identity and
antagonism, it is harder to “spoil” the inner substructure, especially
when𝑚′ is relatively small with regard to𝑚. For instance, for a
vote 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑 ≻ 𝑒 ≻ 𝑓 , no matter which three candidates are
forming the solution, we can always “spoil” this vote with just one
swap. And for example for identity if 𝑎, 𝑐 , and 𝑓 form a solution,
we need at least two swaps to “spoil” this vote.

Remark 1. The way we define Max-AN might seem too rigid, as

we require exactly the same number of “base” and “reverse” votes.

However, we have also verified two other approaches. One, where we

maximized the sum of #base and #reverse votes; it turns out, that

usually the outcome is more similar to the one provided by Max-ID

than by Max-AN. The second approach is to use the product of #base

and #reverse votes. There, the result was usually very similar to the one

provided by the “rigid" approach (PCC = 0.929), yet the running-time

was significantly longer. Therefore, for the sake of simplicity, we focus

on the “rigid" approach.

4.2 Real-Life Instances

We conducted experiments on real-life instances. In particular, we
focus on two datasets, i.e., the Sushi dataset, where 5000 people ex-
pressed their preferences over 10 sushi types [16]; and the Grenoble
dataset, containing data from a field experiment held in Grenoble
in 2017, where people expressed their preferences over French pres-
idential candidates [5]. There, we use the same data preprocessing
method as Faliszewski et al. [10].
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We run MaxClone, Max-ID, and Max-AN for all possible num-
bers of hidden candidates. The results are presented in Figure 2. For
all experiments, we include the respective values from impartial
culture (IC) instances, which we treat as a lower bound.5(Each value
is an average derived from 10 different IC elections).

We first focus on hidden clones. Every individual candidate is
seen as a clone by all the voters. However, it is worth noting that if
the number of hidden candidates is equal to the number of all candi-
dates, then again all the voters would agree that all the candidates
are clones, hence the characteristic “U” shape in Figure 2.

For Sushi, 38.5% of voters agree that Tamago (egg) and Kappa-
maki (cucumber roll) are clones. This is especially interesting, as
these are the only two vegetarian options in that dataset. For Greno-
ble, the strongest set of two clones is Nathalie Arthaud and Philippe
Poutou (clones for 46.7% of voters), which can be explained by the
fact that they have similar far-left ideologies; and the strongest
clone set of size 3 is composed of Jean-Luc Mélenchon (left), Benoît
Hamon (centre-left) and Emmanuel Macron (centre-right), who are
clones for 26.6% of the voters. This may initially look surprising but
can be explained knowing that (a) all three candidates are major,
well-known candidates; (b) on the left-right axis, they are arguably
contiguous; (c) there was (at least in the voters of the dataset) a
clear dividing line between the candidates from left to center-right
on the one hand, and right and far-right candidates on the other.

We now shift to hidden identity. In the case of Sushi, an over-
whelming 88.3% of the voters agree that Toro (fatty tuna) is better
than Kappa-maki (cucumber roll). What is more intriguing is that
43.4% of the voters agree on the following ranking: Toro (fatty
tuna) is preferred over Maguro (tuna), which is, in turn, preferred
over Tekka-maki (tuna roll), and finally, Kappa-maki (cucumber
roll). This order of preference is especially interesting as it mirrors
the price hierarchy of these sushi types. When it comes to the po-
litical elections dataset, 89.2% of the voters prefer Benoît Hamon
(center-left) to Marine Le Pen (far-right).

As to the hidden antagonism, we only briefly discuss the results
for the sushi dataset. The pair Ika (squid) and Tekka-maki (tuna roll)
antagonized the whole society (99.9% of voters). Moreover, 41.2% of
the voters agree or strongly disagree (casting reverse order) with the
following ranking: Uni (sea urchin) ≻ Kappa-maki (cucumber roll)
≻ Tamago (egg). It is intriguing that both the Sushi and Grenoble
datasets show minimal signs of antagonism. The results are almost
the same as for IC elections.

5 SUMMARY AND FUTUREWORK

We explored the concept of hidden substructures in ordinal elec-
tions. We focused on three types of consistency: Identity, antag-
onism, and clones. We executed a comprehensive analysis of the
complexity of the introduced problems and provided algorithms
that can be used in practice. We showed as a possible direction the
search for the closest subelection to the desired one if the exact one
does not exist. Furthermore, we provided experimental evaluations
on synthetic and real-life datasets. The experiments on real-life
datasets confirmed that identifying consistent subelections indeed
helps in learning interesting information hidden in an election.

5Technically, it is possible to create an instance with even smaller clones/identity/an-
tagonism than impartial culture, but the difference will not be of great importance.

(a) MaxClone (b)MaxClone

(c)Max-ID (d) Max-ID

(e) Max-AN (f)Max-AN

Figure 2: Comparison of Sushi and Grenoble datasets. The

black lines denote the results for impartial culture elections.

Analyzing substructures of elections can help better understand
different segments of the population and their preferences, which
can be beneficial in a variety of contexts, such as consumer behavior
or political opinion analysis.

We see this paper as a starting point for a more thorough study.
Indeed, there are numerous possibilities for further research related
to the problems we considered. To start with, we could soften our
criteria and look for subelections that are near-identity or near-
antagonism, and look for near-clones. Next, the complexity of these
issues could be analyzed when applied to structured domains, such
as single-peaked or single-crossing domains. A further natural
extension could involve exploring approval elections.
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