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ABSTRACT
Offline meta-reinforcement learning (OMRL) proficiently allows an

agent to tackle novel tasks while solely relying on a static dataset.

For precise and efficient task identification, existing OMRL research

suggests learning separate task representations that be incorporated

with policy input, thus forming a context-based meta-policy. A ma-

jor approach to train task representations is to adopt contrastive

learning using multi-task offline data. The dataset typically encom-

passes interactions from various policies (i.e., the behavior policies),

thus providing a plethora of contextual information regarding dif-

ferent tasks. Nonetheless, amassing data from a substantial number

of policies is not only impractical but also often unattainable in real-

istic settings. Instead, we resort to a more constrained yet practical

scenario, where multi-task data collection occurs with a limited

number of policies. We observed that learned task representations

from previous OMRL methods tend to correlate spuriously with the

behavior policy instead of reflecting the essential characteristics of

the task, resulting in unfavorable out-of-distribution generalization.
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To alleviate this issue, we introduce a novel algorithm to disentan-

gle the impact of behavior policy from task representation learning

through a process called adversarial data augmentation. Specifi-

cally, the objective of adversarial data augmentation is not merely

to generate data analogous to offline data distribution; instead, it

aims to create adversarial examples designed to confound learned

task representations and lead to incorrect task identification. Our

experiments show that learning from such adversarial samples sig-

nificantly enhances the robustness and effectiveness of the task

identification process and realizes satisfactory out-of-distribution

generalization. The results in MuJoCo locomotion tasks demon-

strate that our approach surpasses other OMRL baselines across

various meta-learning task sets.
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1 INTRODUCTION
In recent years, reinforcement learning (RL) has seen substantial

progress, primarily in situations where abundant interactive data
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is accessible for the learning of policies [42, 44, 49]. However, the

practical implementation of RL in fields such as robotics [21] and

healthcare [16] remains constrained by persistent challenges relat-

ing to data efficiency and generalization [9, 23], especially when

environmental interaction becomes costly or poses potential risks.

Offline RL [11, 24–27, 41, 51], proposing to learn policy contexts

from a pre-existing environmental dataset, offers a viable solution to

address the safety concerns and sample efficiency of RL. In parallel,

meta-RL [7, 8, 40, 63] aims to train generalizable policies, adaptable

to various tasks sharing common structural aspects in terms of

environmental dynamics and rewards.

As the intersection of offline RL and meta-RL, Offline Meta-RL

(OMRL) [6, 35, 50, 62] garners growing recognition due to its po-

tential to enhance both data efficiency and generalization. OMRL

usually relies on a multi-task offline dataset collected by different

behavior policies to train a meta-policy that can effectively adapt

to various tasks within the range. Prior OMRL works [28, 29, 38]

focus on context-based methods using a separate context encoder to

extract task representations from context data. The context encoder

learning is crucial for task identification and meta task generaliza-

tion. Although current OMRL methods show tremendous potential

on generalization to unseen tasks without the requirement of real-

time interactions, they usually posit a comprehensive coverage of

the offline dataset [29, 58], i.e., data from each task is collected

by diverse behavior policies. Consequently, the context encoder,

employed for task identity identification, can naturally develop a

robust manner from diverse data. Nevertheless, in instances where

interactions entail substantial risk or cost, such a presumption or

condition lacks realism. We, therefore, contemplate a more feasible

scenario where the data emerges from a limited number of policies,

resulting in poor data coverage for task representation extraction.

When deployed in tasks, the meta-policy may encounter contexts

that deviate from the trained dataset, resulting in out-of-distribution

scenarios, and subsequently, a failure to generalize effectively for

the given tasks.

Recent studies integrate contrastive learning to optimize task

representation learning, such as FOCAL [29], proposing a more

stable contrastive learning objective, and CORRO [58], adopting

a bi-level structure to enhance robustness. When conducting ex-

periments in such a poor-coverage dataset, we find that task repre-

sentations through naive contrastive learning correlate spuriously

with behavior policies from the dataset rather than recognizing task

characteristics. The reason comes from the fact that the state-action

sequence, which composes the context data, is formed not only by

the environment nature but also by the decision from behavior poli-

cies. In this case, the context encoder is prone to fit the properties

of behavior policies to output task representations. Such a manner

severely degrades policy performance as the context encoder may

treat data collected by different policies as different tasks and vice

versa. While existing methods develop various contrastive learning

strategies to comprehend task representations [29, 58] that better

outline task properties, the spurious relationship still remains since

these methods do not account for the effect of behavior policies.

Therefore, employing a task representation learning methodology

that can disentangle behavior policies from learned representations

would significantly enhance out-of-distribution generalization, sub-

sequently facilitating adaptation to a spectrum of unseen tasks.

To disentangle the effect of behavior policy from task representa-

tions, we hope the context encoder to solely capture task-relevant

data from the given context. Specifically, we find that this spuri-

ous relationship is amplified primarily when the task variation

involves different environment transitions rather than reward func-

tions. Since rewards are independently computed and will not affect

subsequent trajectories, prior research can effectively address it

by sharing data and relabeling rewards across tasks [28, 55]. Con-

versely, the variation of transition functions will result in differ-

ent context data coupled with behavior policies, which cannot be

simply relabeled. Consequently, our focus shifts to establishing a

mapping process from transition information into acquired task

representations.

To eliminate the impact of behavior policies in original offline

data, we introduce adversarial data augmentation to assist task

representation learning. Different from traditional data augmen-

tation approaches that usually generate in-distribution data, the

proposed adversarial data augmentation is intended to reshape

data distribution from the original offline dataset so that the bias

induced by behavior policies can be removed. To be more specific,

the data augmentation process tries to generate the most indistin-

guishable interaction data to confound the context encoder within

an adversarial learning objective. We adopt a model-based RL ap-

proach to generate such data without environment interactions via

multiple pretrained dynamics models and a particular adversarial

policy for data collection. Using augmented training data, the con-

text encoder learns to marginalize the effect of behavior policies

and correctly identify tasks based on the environment character-

istics. Our results on several meta-RL task sets from locomotion

benchmarks demonstrate that our OMRL method with adversarial

data augmentation exhibits definite abilities to distinguish tasks

and significantly outperforms other OMRL baselines even when

encountering out-of-distribution context data.

2 PRELIMINARIES
2.1 Offline Meta-RL
Reinforcement learning (RL) tasks can be formulated as Markov

decision processes (MDPs) [46]𝑀 = (S,A,𝑇 , 𝑟, 𝑑0, 𝛾), where S is

the state space, A is the action space, 𝑇 (𝑠′ |𝑠, 𝑎) is the transition
function, 𝑟 (𝑠, 𝑎) is the reward function, 𝑑0 (𝑠) is the initial state

distribution, and 𝛾 ∈ [0, 1) is the discount factor. In state 𝑠 , an

agent takes action 𝑎 ∼ 𝜋 (· | 𝑠) according to its policy 𝜋 (𝑎 | 𝑠) and
results in the next state 𝑠′ ∼ 𝑇 (· | 𝑠, 𝑎) and the reward 𝑟 (𝑠, 𝑎). The
objective of RL is to maximize the cumulative discounted reward

(a.k.a. return) as follows:

max

𝜋
𝑅𝑀 (𝜋) = E𝑠0∼𝑑0,𝑎𝑡∼𝜋 ( · |𝑠𝑡 ),𝑠𝑡+1∼𝑇 ( · |𝑠𝑡 ,𝑎𝑡 )

∑︁∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ).

Meta-RL considers deploying a meta-policy that can perform

well over a task distribution 𝑃 (𝑀), where the meta-policy is trained

in a task set and is deployed for tasks that may be unseen during the

meta-train period. Offline meta-RL (OMRL) then extends this con-

cept to offline RL settings, where the meta-policy should be learned

from a static dataset {𝐷𝑖 }𝑛𝑖=1 containing interactions from different

tasks𝑀1, 𝑀2, . . . , 𝑀𝑛 . Every single-task data𝐷𝑖 is collected by some

unknown behavior policies, which may be trained with modern

single-task RL algorithms, for example, TD3 [12] and SAC [17] for
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MuJoCo locomotion tasks [47]. The goal of OMRL is to learn a

meta-policy 𝜋 that maximizes the cumulative discounted reward of

each task under the task distribution 𝑃 (𝑀) as follows:

max

𝜋
E𝑀∼𝑃 ( ·) [𝑅𝑀 (𝜋)] .

It is worth noting that OMRL does not posit the number of

behavior policies for single-task data. Traditionally, previous ap-

proaches [29, 58] adopt a variety of policy checkpoints to collect

interaction data for each task, resulting in a diverse data distribu-

tion for task identification. Such comprehensive data coverage may

be plausible to alleviate the data bias induced by specific behavior

policies. However, using exhaustive policies to collect data is not

practical for realistic scenarios, which, in most cases, is what OMRL

methods should be applied to.

2.2 Task Representation Learning
Task identification is vital for meta-RL to realize fast adaptation to

unseen tasks [3]. Here we focus on context-based meta-RL methods,

which learn a meta-policy 𝜋 (𝑎 | 𝑠, 𝑧) that is explicitly conditioned

on a task representation 𝑧. It additionally adopts a context encoder

𝜙 (𝑧 | 𝑥) to extract task representations 𝑧 from context data 𝑥 . The

context data 𝑥 , which is often a transition tuple or a sub-trajectory

of multiple interaction steps, can be collected from an arbitrary

policy. This feature enables zero-shot generalization of the meta-

policy when providing pre-collected or bootstrapped context data

without extra updates during the adaptation phase.

Although online meta-RL often trains the context encoder and

the meta-policy jointly [40], in OMRL settings they are typically

learned separately with different objectives to stabilize the train-

ing process. From the perspective of information theory, an ideal

context encoder should maximize the mutual information 𝐼 (𝑧;𝑀)
between the task representation 𝑧 and the corresponding MDP

𝑀 . As 𝐼 (𝑧;𝑀) is not directly tractable, we proceed by optimizing

an InfoNCE objective [36], which is a lower bound of the mutual

information metric as proved by [58]:

𝐼 (𝑧;𝑀) ≥ E𝑀∼𝑃 ( ·),𝑧,𝑧∗∼𝜙 ( · |𝑥𝑀 ) log
exp(𝑆 (𝑧, 𝑧∗))

Φ(𝑧) +𝐶,

where Φ(𝑧) =
∑︁

𝑀 ′∼𝑃 ( ·),𝑧′∼𝜙 ( · |𝑥𝑀′ ) exp(𝑆 (𝑧, 𝑧
′)) .

(1)

We denote 𝑥𝑀 and 𝑥𝑀 ′ as context data from tasks𝑀 and𝑀′
respec-

tively, and 𝑆 (·, ·) as a score function which measures the similarity

between two representations, e.g., their inner product or cosine

similarity. 𝐶 is a constant that relates to the task distribution 𝑃 (𝑀).
An intuitive understanding of maximizing the lower bound in

Equation (1) is to make representations of the same task similar

while keeping those of different tasks apart. Nevertheless, naively

applying this objective may fail to establish the correct relationship

between the characteristics and representation of the tasks in the

offline setting, because 𝑥𝑀 is sampled from the offline dataset and

influenced by the behavior policy and task𝑀 jointly. When each

task data 𝐷𝑖 is collected by a few ad-hoc behavior policies and

comparatively limited in coverage, the context encoder is prone

to overfitting the behavior data and fails to generalize to unseen

data distributions during evaluation. In the following section, we

propose a method to disentangle the effect of behavior policy and

base the representation only on the task nature.

Offline dataset

Dynamics
Model

Adversarial Policy
𝜋!(𝑎 ∣ 𝑠) Adversarial data

Supervised learning Meta-Policy
𝜋(𝑎 ∣ 𝑠, 𝑧)

Interaction data

Offline RL

Context Encoder
𝜙(𝑧 ∣ 𝑥)

Dynamics
Model

Dynamics
Model

𝑧

Dynamics
Model

𝐽(𝜋! , 𝜙)
min max

Figure 1: The overall process of using adversarial data aug-
mentation for offline meta-RL.

3 ADVERSARIAL DATA AUGMENTATION
In this section, we present a novel OMRL algorithm that can disen-

tangle behavior policies during task representation learning via an

effective approach called adversarial data augmentation, as shown

in Figure 1. This augmentation process, different from generat-

ing in-distribution auxiliary data, aims to provide a more robust

data distribution that can minimize the influence of specific be-

havior policies. Therefore, consequent task representations can

break down the spurious relationship between behavior policies

and task representations. In Section 3.1, we will introduce the ad-

versarial training objective for our data augmentation phase. In

Section 3.2, we demonstrate how we utilize a model-based RL ap-

proach to acquire additional data for task representation learning

in the offline setting. In Section 3.3, we develop the algorithmic

framework to use adversarial data argumentation in OMRL and

present its implementation details.

3.1 Adversarial Training Objective
As mentioned in Section 2.2, we can derive a lower bound in the

form of InfoNCE [36] from the mutual information between task

representations and the task MDP, which can be described as the

following objective:

𝐽 (𝜙) = E𝑀∼𝑃 ( ·),𝑧,𝑧∗∼𝜙 ( · |𝑥𝑀 ) log
exp(𝑧⊤𝑧∗)

Φ(𝑧) ,

where Φ(𝑧) =
∑︁

𝑀 ′∼𝑃 ( ·),𝑧′∼𝜙 ( · |𝑥𝑀′ ) exp(𝑧
⊤𝑧′).

(2)

Here we specify the score function 𝑆 (·, ·) in Equation (1) to be

the inner product, which aligns to prevalent contrastive learning

works [13, 39]. Though these works suggest that InfoNCE can be an

effective objective to learn powerful representations according to

given labels, the objective leads to building a connection between

task representations 𝑧 and task context data 𝑥𝑀 , rather than the

task𝑀 itself. Since the context data 𝑥𝑀 is sampled from the offline

dataset, collected by specific behavior policies, this objective estab-

lishes a spurious relationship between behavior policies and learned

task representations. In Section 5.1 we will show an instantiation

of this spurious relationship.

To eliminate such a spurious relationship, we envision that the

context encoder can derive correct task representations from not

only in-distribution data but also context data collected by any

policy. To realize such generalization, the context encoder is ex-

pected to learn from a wider range of context data, which may help

marginalize the effect of behavior policies. However, it is intractable

to involve diverse context data collected by disparate policies in
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offline training. Inspired by previous progress in adversarial train-

ing [15, 18], we find that an intuitive approach is tomake the context

encoder capable of discerning the most indistinguishable samples.

Therefore, the context encoder can possess adequate robustness to

identify the task no matter what behavior policies the data comes

from.

To generate additional context data for adversarial training, we

adopt a model-based RL approach [31, 33] to learn environment

models and thus provide interaction data in the offline setting. For

a particular meta-RL task distribution 𝑃 (𝑀), previous methods

usually consider task variants on environment dynamics 𝑇 and

reward functions 𝑟 . As discussed in the introduction section, we

only consider task variations where environment dynamics differ

since it is the key factor in the spurious relationship. Given a multi-

task offline dataset {𝐷𝑖 }𝑁𝑖=1, we learn several dynamics models via

supervised learning with transition tuples sampled from the dataset.

These learned dynamics models formulate a new task distribution

𝑃 (𝑀̂) that is quite similar to the real task distribution. Denoting

𝑥
𝑀̂

as context data collected from the simulating task 𝑀̂ with an

auxiliary policy 𝜋𝑎 , we summarize our adversarial optimization

problem in the max-min form below:

max

𝜙
min

𝜋𝑎
𝐽 (𝜋𝑎, 𝜙) = E

𝑀̂∼𝑃 ( ·),𝑧,𝑧∗∼𝜙 ( · |𝑥
𝑀̂
(𝜋𝑎 ) ) log

exp(𝑧⊤𝑧∗)
Φ(𝑧) ,

where Φ(𝑧) =
∑︁

𝑀̂ ′∼𝑃 ( ·),𝑧′∼𝜙 ( · |𝑥
𝑀̂′ (𝜋𝑎 ) ) exp(𝑧

⊤𝑧′) .
(3)

Note that we mark the context data 𝑥
𝑀̂
(𝜋𝑎) for its sources from the

simulating MDP 𝑀̂ and the auxiliary policy 𝜋𝑎 . Here we name the

auxiliary policy 𝜋𝑎 as adversarial policy since it is trained against

the context encoder’s goal. Using the InfoNCE objective 𝐽 (𝜋𝑎, 𝜙)
as the basic form, the minimization part guarantees that the adver-

sarial policy can learn to search the most indistinguishable data for

a specific task. Then the maximization part helps the task identifi-

cation of the context encoder in the worst-case data. Therefore, the

context encoder is expected to recognize tasks well for any data

distribution, as it has learned from the weakest data the adversarial

policy chooses to generate.

3.2 Adversarial Data Generation
Starting from Equation (3), we consider how to generate data from

a simulating task distribution. To compensate for the absence of the

task MDP in offline settings, we first train several dynamics models

for each task data 𝐷𝑖 like previous model-based RL approaches [31,

33], following a supervised learning manner:

max
𝑇𝑖
E(𝑠,𝑎,𝑠′ )∼𝐷𝑖

[log𝑇𝑖 (𝑠′ |𝑠, 𝑎)] . (4)

In addition, the reward function is learned in a similar supervised

learning way with all of the task data, as the reward functions are

shared across different tasks. According to Equation (3), we require

context data from simulating task distribution, which is determined

by both the simulating environment model and an adversarial pol-

icy. As the environment model should precisely reflect the original

task distribution, the functionality of producing adversarial data to

confound the context encoder, i.e., minimizing 𝐽 (𝜋𝑎, 𝜙), falls to the

adversarial policy 𝜋𝑎 . Since context data forms a sequence-style

format, we adopt reinforcement learning to optimize the adver-

sarial policy, which helps make the goal of obscuring task iden-

tification consistent along the whole trajectory. Specifically, we

define the reward as how much ambiguity the task representations

are measured by InfoNCE compared to the previous step. Letting

𝑅(𝑧𝑡 ) = E𝑧∗ [log
exp(𝑧⊤𝑡 𝑧∗ )
Φ(𝑧𝑡 ) ] denote the value of 𝐽 (𝜋𝑎, 𝜙) at step 𝑡 ,

the reward for training 𝜋𝑎 towards the adversarial objective is:

𝑟adv𝑡 = 𝑅(𝑧𝑡+1) − 𝑅(𝑧𝑡 ) = E𝑧∗
[
log

exp(𝑧⊤
𝑡+1𝑧

∗)
Φ(𝑧𝑡+1)

− log

exp(𝑧⊤𝑡 𝑧∗)
Φ(𝑧𝑡 )

]
.

(5)

Intuitively, we reward the adversarial policy for taking actions that

will decrease the task representation similarity within the same

task. Therefore, the adversarial policy 𝜋𝑎 is helpful to mine the most

indistinguishable data to enhance the robustness of the context en-

coder 𝜙 . Nevertheless, we notice that adopting the reward function

of Equation (5) is not sufficient to train a well-behaved adversarial

policy. The learned policy may explore states that are far beyond

the environment model’s support, which leads to useless data. On

the other hand, when only following the adversarial reward, the

policy will learn to make decisions that are irrelevant to the task

goals. To this point, we highlight two additional terms that should

be incorporated with the adversarial reward:

• Uncertainty penalty. Like previous offline model-based RL

works [22, 57], we quantify the uncertainty 𝑢𝑡 (𝑠, 𝑎) of the
current state-action pair by the aleatoric uncertainty of the

learned dynamics models on the state transition. Specifically,

the aleatoric uncertainty is the maximum standard deviation

of the Gaussian distribution of the next states among a group

of dynamics models. This uncertainty metric serves as a

penalty for rollouts in the models to prevent the policy from

collecting imprecise data.

• Task completeness. We also append the task reward 𝑟 (𝑠, 𝑎)
provided by the learned reward model to the total reward

used for training the adversarial policy. Adopting the task

reward should be a natural approach since we focus more on

contexts that are related to the task goal rather than other

meaningless data.

We also draw theoretical inspirations for the design of these two

reward components. We illustrate these reward terms are beneficial

to generate useful data in Appendix A. Combining the two addi-

tional reward terms above, we can acquire the total reward to train

the adversarial policy:

𝐽 (𝜋𝑎) = E
𝑀̂∼𝑃 ( ·),𝑠𝑡∼𝑀̂,𝑎𝑡∼𝜋𝑎 ( · |𝑠𝑡 )

[ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑟adv𝑡 −

𝜆1𝑢𝑡 (𝑠, 𝑎) + 𝜆2𝑟 (𝑠, 𝑎)
) ]
,

(6)

where we get states 𝑠𝑡 from the learned environment model and

actions 𝑎𝑡 from the adversarial policy 𝜋𝑎 for each task. 𝜆1 and 𝜆2
are two coefficients to balance the weights of different reward terms.

We adopt the branch rollout approach [19] to mitigate the influence

of model error and avoid the requirement of initial state distribution.

Instead of using a single dataset, we draw initial states from the

joint dataset 𝐷 =
⋃

𝑖 𝐷𝑖 to enhance the coverage of rollout.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

947



Algorithm 1 Meta-training with adversarial data augmentation

Input: The offline dataset {𝐷𝑖 }𝑛𝑖=1 from 𝑛 tasks, the context

encoder 𝜙 (𝑧 |𝑥), the meta-policy 𝜋 (𝑎 |𝑠, 𝑧), and the adversarial

policy 𝜋𝑎 (𝑎 |𝑠)
1: ⊲ Dynamics model training
2: for 𝑖 = 1, 2, · · · , 𝑛 do
3: Learn𝑚 dynamics models with supervised learning on 𝐷𝑖

to represent the task dynamics

4: end for
5: ⊲ Task representation learning
6: for 𝐾 = 1, . . . , 𝐾𝑐 do
7: ⊲ Collect adversarial data
8: for 𝑖 = 1, 2, · · · , 𝑛 do
9: Sample adversarial data 𝐷̂𝑖 from learned dynamics models

𝑀̂𝑖 using adversarial policy 𝜋𝑎

10: end for
11: ⊲ Train the adversarial policy
12: Compute rewards from sampled adversarial data 𝐷̂1, . . . , 𝐷̂𝑛

according to Equation (6)

13: Update adversarial policy 𝜋𝑎 (𝑎 |𝑠) using SAC

14: ⊲ Train the context encoder
15: Update context encoder 𝜙 (𝑧 |𝑥) with sampled adversarial

data 𝐷̂1, . . . , 𝐷̂𝑛

16: end for
17: ⊲ Meta-policy learning
18: Update meta-policy 𝜋 (𝑎 |𝑠, 𝑧) with dataset {𝐷𝑖 }𝑛𝑖=1 with fixed

context encoder 𝜙

As for the maximization part of Equation (3), the context encoder

𝜙 can learn from the adversarial data generated by the adversarial

policy in the environment model by fixing the adversarial policy.

The learning process is through simple contrastive learning with

the InfoNCE objective:

𝐽 (𝜙) = E
𝑀̂∼𝑃 ( ·),𝑧,𝑧∗∼𝜙 ( · |𝑥𝑀̂ (𝜋𝑎 )) log

exp(𝑧⊤𝑧∗)
Φ(𝑧) . (7)

3.3 Overall Framework
Though most of our work focuses on the stage of task representa-

tion learning, we further propose an algorithm that can meta-train

a policy using adversarial data augmentation. As shown in Algo-

rithm 1, the meta-training process consists of three stages: task

dynamics model training, task representation learning, and meta-

policy learning. Utilizing provided offline datasets, we first train

several dynamics models for each task, which is useful for data

generation. During task representation learning, we train the ad-

versarial policy 𝜋𝑎 and the context encoder 𝜙 alternatively like

common generative adversarial learning approaches. Finally, we

fix the context encoder 𝜙 and train the meta-policy with a standard

offline RL algorithm. To be more specific, we adopt the classic SAC

algorithm [17] and add a standard behavior-cloning-style regular-

ization term [10] for its offline adaptation. The context encoder

𝜙 (𝑧 | 𝑥) has a Transformer-based structure [48] for better cap-

turing context in the form of sequence information. For detailed

attention computation, we concatenate the current observation and

the last action as the source of query, and the context is in the form

of state-action pair and serves as the source of key and value. We

detach the gradient of output task representation and feed it into

the meta-policy 𝜋 (𝑎 | 𝑠, 𝑧) along with the observed state 𝑠 . The

network structure of the meta-policy is a simple multi-layer percep-

tron (MLP), which is the same as the adversarial policy 𝜋𝑎 (𝑎 | 𝑠)
despite the removal of input task representation 𝑧.

4 RELATEDWORK
4.1 Offline Reinforcement Learning
Offline reinforcement learning proposes to learn policies from a

fixed offline dataset and is considered helpful for many realistic

domains such as healthcare and robotics [16, 21] to avoid exhaus-

tive online interactions that is usually impractical for real-world

scenarios. The main issue with offline learning is the distribution

shift caused by the mismatch between the behavior and exploita-

tion policies [27], inducing a huge challenge for online evaluation.

When adopting RL algorithms from online RL literature, offline

model-free RL methods usually adopt a conservative way to learn

policies. For example, they explicitly constrain the policy to be

similar to the behavior policy with different regularization man-

ners [4, 10, 11, 25, 34, 34, 37, 54, 59, 61], imposing conservative

penalty on out-of-distribution actions [1, 2, 26], or re-weighting

offline samples during policy evaluation and improvement [24, 60].

Another line of research is offline model-based RL that incorpo-

rates dynamics models [5, 20, 22, 43, 45, 56, 57] to synthesize data

for better generalization. However, the dynamics models are typi-

cally trained from offline dataset via supervised learning and still

face model errors on unseen state-action pairs. One approach to ac-

count for this problem is to modify the learned dynamics [22] or add

reward penalties to highly uncertain areas [57], which is quantified

by disagreement or maximum standard deviation over an ensem-

ble of dynamics. COMBO [56] bypasses uncertainty quantification

by leveraging the model-free method for optimization. Recently,

RAMBO [43] introduces the idea of robust RL and proposes to learn

adversarial dynamics models to incorporate conservatism.

Our paper generally adopts offline model-free RL approaches to

train meta-policies by introducing SAC [17] with adding a behavior-

cloning-style regularization term [10]. When tackling the auxiliary

adversarial policy, we also utilize a model-based RL approach. We

train several dynamics models to augment the original dataset

and penalize the policy by the model uncertainty, which builds a

connection with the model-based offline RL literature [22, 57].

4.2 Offline Meta-Reinforcement Learning
Meta-reinforcement learning [3] is a popular research area that

learns a policy that is capable of adapting to any new task from

the task distribution with as little data as possible. When more and

more meta-RL approaches are shown to learn a good meta-policy

with extremely comprehensive interactions [8, 53], offline meta-

RL [6] extends the boundary of meta-RL by learning themeta-policy

directly from offline data.

Different from a major research direction on applying model-

agnosticmeta-learning (MAML)methods [8] to offlinemeta-RL [32],

we here concentrate more on adopting context-based meta-RL ap-

proaches [40]. As MAML-style approaches often require few-shot

updates for task adaptation, context-based meta-RL methods can
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(a) (b) 

Figure 2: (a) Performance on InvertedPendulum-v2 with 1.0x
gravity coefficient. (b) The relative representation metric of
different methods.

utilize pre-collected context data from other policies or its boot-

strapped interactions, realizing a promising capability of zero-shot

generalization. When extending context-based meta-RL methods

to the offline setting, previous works typically employ contrastive-

style learning objectives to learn discriminative representations

for each task, such as triplet loss [28], InfoNCE [36, 58], and a

negative-power variant contrastive loss [29]. Similar to our moti-

vation, MBML [28] and CORRO [58] also point out the impact of

behavior policy on task identification, and try to alleviate this issue

via relabeling data with known reward functions or learned genera-

tive models like conditional variational autoencoders. Nonetheless,

we note that these works do not indeed eliminate the correlation

between the behavior policy and the task transition. CSRO [14]

aims to solve this problem by introducing an information bottle-

neck between the policy and task features. However, we notice that

previous works assume that the behavior policies used to collect the

dataset are diversified enough (e.g. CORRO uses each saved check-

point during the training process to collect data), which alleviates

the issue of building the spurious relationship with behavior poli-

cies. To the best of our knowledge, we are the first to exhaustively

consider the spurious relationship in task representation learning

and eliminate the effect of behavior policies.

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the proposed

adversarial data augmentation. We investigate whether the task

Representation learning via adversarialDataAugmentation (ReDA)

can disentangle the effect of behavior policies and thus helps train

generalizable meta-policies. In Section 5.1, we use a didactic exam-

ple to show the issue of spurious relationship and how ReDA can

help address it via a classic control task. In Section 5.2, we establish

tasks and datasets to benchmark ReDA and other OMRL baselines.

We particularly design two evaluation manners called on-policy

and off-policy protocols to verify the effectiveness of learned task

representation under different circumstances. Finally in Section 5.3,

we ablate multiple design choices in the adversarial data augmen-

tation process, for example, the use of models and different reward

terms on training adversarial policy. We also provide illustrative

explanations on task representations in out-of-distribution data.

5.1 A Didactic Example
As a straightforward example to show the spurious relationship

between behavior policies and task representations, we conduct ex-

periments on the InvertedPendulum-v2 environment from Gym’s

classic control benchmarks. To make task variants, we modify the

gravity of the environment by multiplying it by 1.0 and 2.0, creating

two distinct tasks. For offline dataset collection, we independently

train SAC policies on each task. We select the checkpoint that

achieves an expected episodic return of 100 for gravity 1.0 (task

1) and that of 50 of gravity 2.0 (task 2) to collect training data. We

denote these two datasets as 𝐷train

1
and 𝐷train

2
. After training, we

choose the test dataset from task 1 with returns of 50, which is

denoted by 𝐷test

1
. To highlight the spurious relationship issue, we

evaluate the meta-policy on task 1 with context data from 𝐷test

1
.

We speculate that the existence of spurious relationship may en-

courage the context encoder to predict task representations more

similar to task 2. We test the performance with several baselines.

FOCAL is an OMRL baseline [29] that designs an ad-hoc contrastive

learning objective for task representation learning. OM-SAC is a

baseline that adopts the same context encoder structure as ReDA

but only adopts the same offline RL manner as ReDA without the

data augmentation and context encoder learning.

We depict the performance in task 1 when using context data

from 𝐷test

1
in Figure 2(a). The majority of baselines exhibit poor

performance, indicating a failure in task identification and gener-

alization. In contrast, our method ReDA can better capture task

features and thus performs exceptionally well when facing out-of-

distribution contexts. To get deeper insights on how well the task

representations are, we define a relative representation metric 𝑑 (𝜙)
to delineate whether the task representation is close to task 1 given

its out-of-distribution context data, as follows:

𝑑 (𝜙) =
|𝐷train

2
|∑𝑧1∼𝜙 ( · |𝑥1 ),𝑥1∼𝐷 train

1

∑
𝑧∼𝜙 ( · |𝑥 ),𝑥∼𝐷 test

1

∥𝑧1 − 𝑧∥2

|𝐷train

1
|∑𝑧2∼𝜙 ( · |𝑥2 ),𝑥2∼𝐷 train

2

∑
𝑧∼𝜙 ( · |𝑥 ),𝑥∼𝐷 test

1

∥𝑧2 − 𝑧∥2
.

We acquire this metric by feeding context data from each training

dataset and computing the mean square errors with task represen-

tations from test data. It is obvious that when 𝑑 (𝜙) is close to 0, the
context encoder correctly recognizes most context data as task 1. A

large value of 𝑑 (𝜙) means the context encoder cannot perform task

identification well. As illustrated in Figure 2(b), we find that only

the context encoder of ReDA reaches a 𝑑 (𝜙) near 0, indicating its
effectiveness. In contrast, OM-SAC and FOCAL both have a larger

𝑑 (𝜙) compared to ReDA, while the particular contrastive objective

of FOCAL makes it slightly better than OM-SAC. We include a

detailed description about this example in Appendix B.

5.2 Performance on MuJoCo Benchmarks
Following the experiment setups in previous meta-RL works [29,

30, 58], we construct multiple tasks by varying certain hyper-

parameters of the simulator in MuJoCo locomotion tasks [47].

Specifically, we choose a set of Gym’s MuJoCo environments, in-

cluding HalfCheetah-v2, Hopper-v2, Walker2d-v2, and Ant-v2.
For each environment, we perturb the environment parameters,

namely gravity and dof-damping, of the original simulator to cre-

ate a wide range of tasks. During offline training, the meta-policy is

trained when the environment parameters are set to 0.5, 1.0, and 1.5

times of their original values for each environment. We also choose

0.8 and 1.2 times of the parameters as unseen tasks to evaluate the

generalization ability. For each task, we train behavior policies of

multiple qualities via SAC [17]. Similar to that in CORRO [58], we

save the checkpoint during the whole learning process but only
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Table 1: Average score of the meta-policy under the on-policy protocol. The performance is averaged over 5 random seeds. We
abbreviate task names for simplicity. For example, Walker2d Gravity-1 denotes the Walker2d-v2 task with training datasets
collected from 1 checkpoint.

Task Type OM-BC OM-SAC CORRO FOCAL PromptDT ReDA (ours)

Walker2d Gravity-1 835.7 ± 158.9 1227.4 ± 176.8 965.7 ± 283.5 1260.2 ± 292.1 1019.7 ± 216.4 1720.8 ± 321.3
Walker2d Gravity-3 1110.4 ± 170.6 1180.1 ± 175.7 1269.8 ± 309.9 1584.6 ± 361.4 1125.0 ± 226.0 1611.6 ± 288.0
Walker2d Gravity-5 657.4 ± 265.8 1216.5 ± 388.4 1412.5 ± 387.7 2181.7 ± 355.7 1082.8 ± 277.7 2560.7 ± 362.1
Walker2d Dof-Damping-1 2692.3 ± 488.5 2995.4 ± 287.9 2756.5 ± 379.5 3409.2 ± 343.9 2635.0 ± 298.6 3769.2 ± 364.2
Walker2d Dof-Damping-3 1734.5 ± 309.0 1941.4 ± 342.5 2232.0 ± 332.4 1940.7 ± 321.9 1935.1 ± 342.3 3536.7 ± 258.7
Walker2d Dof-Damping-5 998.8 ± 231.3 1478.9 ± 267.6 1647.5 ± 423.3 2222.0 ± 311.0 1136.0 ± 281.2 2497.6 ± 339.4
HalfCheetah Gravity-1 4204.0 ± 840.3 4641.7 ± 745.6 5353.7 ± 869.6 3651.9 ± 505.9 5034.1 ± 644.3 6772.0 ± 649.5
HalfCheetah Gravity-3 3719.9 ± 614.6 5419.6 ± 682.0 5054.6 ± 754.7 2950.0 ± 391.7 3900.9 ± 944.0 6130.8 ± 856.4
HalfCheetah Gravity-5 2684.8 ± 584.5 4398.2 ± 778.3 4165.7 ± 654.7 1863.9 ± 633.4 3494.8 ± 711.6 4549.0 ± 753.9

Table 2: Average score of the meta-policy under the off-policy protocol. The performance is averaged over 5 random seeds.

Task Type OM-BC OM-SAC CORRO FOCAL PromptDT ReDA (ours)

Walker2d Gravity-1 102.9 ± 16.5 773.9 ± 115.4 354.9 ± 113.3 972.4 ± 314.9 516.5 ± 165.3 1349.8 ± 374.2
Walker2d Gravity-3 887.5 ± 197.7 1096.0 ± 182.6 755.7 ± 387.5 1331.1 ± 384.5 996.6 ± 204.1 1336.3 ± 363.3
Walker2d Gravity-5 655.4 ± 253.2 983.0 ± 394.0 899.1 ± 298.5 2318.6 ± 312.3 1254.8 ± 255.0 2421.0 ± 398.7
Walker2d Dof-Damping-1 2566.4 ± 358.6 2567.3 ± 381.1 2138.2 ± 432.6 2141.7 ± 299.3 2594.3 ± 315.6 3274.5 ± 429.5
Walker2d Dof-Damping-3 1599.2 ± 340.2 1611.1 ± 415.6 1765.8 ± 498.6 1619.0 ± 362.0 1883.9 ± 331.2 3236.0 ± 322.7
Walker2d Dof-Damping-5 823.6 ± 340.1 1798.6 ± 345.6 1667.2 ± 438.8 1943.4 ± 353.4 1446.5 ± 326.5 2243.7 ± 352.2
HalfCheetah Gravity-1 6024.0 ± 768.2 3985.1 ± 676.9 5244.7 ± 766.6 3960.4 ± 517.0 5755.3 ± 582.9 6243.8 ± 604.4
HalfCheetah Gravity-3 2112.9 ± 601.1 4792.5 ± 596.7 4865.2 ± 710.8 2293.1 ± 532.1 3211.5 ± 660.6 5749.2 ± 599.0
HalfCheetah Gravity-5 3006.2 ± 684.3 4164.7 ± 602.3 3654.6 ± 677.0 2181.2 ± 414.6 3243.8 ± 601.1 4268.1 ± 562.2

(b) OM-SAC(a) ReDA (c) FOCAL (d) CORRO
l  0.5 DoF-Damping l  1.0 DoF-Damping l  1.5 DoF-Damping

Figure 3: Visualization on task representations with t-SNE dimensionality reduction for (a) ReDA, (b) OM-SAC, (c) FOCAL, and
(d) CORRO on the task set Walker2d Dof-Damping-1. Task representations from different tasks are shown in distinct colors.

select 1, 3, and 5 checkpoints from all to collect training data and

use the rest checkpoints to collect test data. Our data collection is

distinguished from that in CORRO, which utilizes all checkpoints

to collect training data. We name the task type by the number of

checkpoints used for training. For example, Walker2d Gravity-1
means that the offline dataset of Walker2d is collected by 1 check-

point in 0.5x, 1.0x, and 1.5x gravity. We put more detailed descrip-

tions on how we select checkpoints and collect data to Appendix B.

Besides above baselines, we also include OM-BC, which trains a

meta-policy with behavior cloning, an OMRL baseline CORRO [58],

and PromptDT [52]. To better show the generalization ability of

different OMRL algorithms, we apply two evaluation protocols

to shape different context data: on-policy protocol and off-policy
protocol.

On-policy protocol. In the on-policy protocol, the context data

comes from interactions the meta-policy encounters when deployed

to the task. Compared to the behavior policies that collect the offline

data, the meta-policy is often an improved one, and thus there still

exists a mismatch between training-time and test-time distribution.

We report partial performance in Table 1 and due to the limitation

of space, the full results are provided in Appendix B.10. The results

demonstrate that ReDA significantly outperforms other baseline

methods when using bootstrapped context data, indicating the

superior ability of task recognition and generalization. Previous
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Table 3: Ablations on different variants of ReDA. The variant
w/o model has no data augmentation and the variant w/o
adv. augments data with rollouts from random policies. “Dof-
Damp” is short for Dof-Damping.

Task Param w/o model w/o adv. ReDA

Walker2d Gravity-1 834.0 1197.5 1349.8 ± 321.3
Walker2d Gravity-3 1135.5 1268.9 1336.3 ± 363.3
Walker2d Gravity-5 1348.6 1220.2 2421.0 ± 398.7
Walker2d DofDamp-1 2606.5 3186.2 3274.5 ± 429.5
Walker2d DofDamp-3 1773.3 2845.8 3236.0 ± 322.7
Walker2d DofDamp-5 1641.7 1566.0 2243.7 ± 352.2

Table 4: Ablations on adversarial policy learning with dif-
ferent reward terms. The variant w/o UP learns the policy is
ReDA with 𝜆1 = 0. The variant w/o TC is ReDA with 𝜆2 = 0.

Task Param w/o UP w/o TC ReDA

Walker2d Gravity-1 1185.4 1281.3 1349.8 ± 321.3
Walker2d Gravity-3 1249.0 1292.3 1336.3 ± 363.3
Walker2d Gravity-5 1572.1 2212.5 2421.0 ± 398.7
Walker2d DofDamp-1 2893.2 3002.4 3274.5 ± 429.5
Walker2d DofDamp-3 2985.2 3145.8 3236.0 ± 322.7
Walker2d DofDamp-5 1787.8 2209.2 2243.7 ± 352.2

works like FOCAL and CORRO exhibit similar performance to OM-

SAC, indicating that their task representation learning approaches

cannot work for this extreme setting of poor data coverage.

Off-policy protocol. To further investigate the generalization

ability of the context encoders, we introduce the off-policy proto-

col where we replace the context with interactions collected by

unseen checkpoints. This evaluation type typically raises a higher

requirement to the generalization capability of the context encoder

since it should output correct task representations collected from

arbitrary policies. Due to the limitation of space, we provide the

partial results of performance in Table 2 and full results in Appen-

dix B.10. We notably find that almost all methods have performance

drops in the off-policy protocol, while our algorithm still achieves

significant performance advantages compared to other baselines.

5.3 Ablation Studies
We design a few ablation studies to investigate why ReDA works in

the experiments above. To compare how well the method identifies

different tasks, we visualize the task representations trained in the

Walker2d Dof-Damping-1 setting in Figure 3. The task representa-

tions are obtained by feeding the context encoders with interaction

data from tasks including different gravity coefficients. We find that

ReDA can generate generally distinct task representations for dif-

ferent tasks even though some data patterns are never encountered

during training, indicating that the proposed adversarial data aug-

mentation helps improve out-of-distribution generalization. When

we remove the adversarial data augmentation of ReDA and keep

other procedures the same (shown in the results of OM-SAC), the

consequent task representations become indistinguishable, as well

as those from FOCAL and CORRO. To ablate each component in our

adversarial data augmentation process, we also design two variants

of ReDA and compare their performance on Walker2d Gravity
and Walker2d Dof-Damping dataset. One variant is to implement

ReDA but does not introduce pre-trained dynamics models for data

augmentation (w/o model). The other variant is to utilize the model

for data augmentation but with a random policy rather than an

additional adversarial policy (w/o adv.). As shown in Table 3, the re-

sults on the Walker2d task sets demonstrate that both two variants

degrade severely compared to ReDA, which verifies the effective-

ness of the proposed adversarial data augmentation. Besides, The

performance of the ReDA variant without data augmentation is

not as high as the ReDA variant using dynamics models, indicating

that introducing additional context data from pre-trained dynamics

models is helpful for generalization of task representations. Then

we turn to ablate the design of reward for learning the adversarial

policy. As we adopt two additional reward terms in our method-

ology, we propose two variants of ReDA. One variant (w/o UP) is

ReDA without uncertainty penalty (𝜆1 = 0) and the other (w/o TC)

is ReDA without task completeness reward (𝜆2 = 0). The results in

Table 4 show that our reward design could promote task represen-

tation generalization while these two variants show less promising

performance. The uncertainty penalty, which is adopted from of-

fline model-based literature [57], is shown to be more critical to

policy performance. We also provide more results of task represen-

tation visualization on mentioned ablation variants in Appendix B,

which shows that ReDA outputs more distinct representations than

those variants.

6 CONCLUSION
In this paper, we shift our attention to OMRL in a low-data regime,

where the offline dataset is limited in terms of coverage by collec-

tive policy. We underscore the criticality of disentangling behavior

policies from task representation learning and offer a practical solu-

tion named adversarial data augmentation. We train an adversarial

policy to prevent the context encoder from identifying the task and

augment the offline dataset. The data is collected in learned dy-

namics models, which is irrelevant to the original behavior policies

and thus can assist in learning robust task representations. Exper-

imental results reveal that when the dataset is encompassed by

limited behavior policies, previous OMRL methods encounter diffi-

culties with task identification. Nevertheless, task representation

learning with adversarial data augmentation resolves this problem,

effectively generalizing to out-of-distribution context data at test

time. Our aspiration for this research is to stimulate further explo-

ration into the impact of behavior policies and the standardization

of OMRL benchmarks. One identified limitation of our work is the

rudimentary designation of the context encoder, with us merely

inheriting a simple Transformer architecture, tasked with extract-

ing and aggregating context information. Due to its departure from

this study’s primary focus, we reserve this issue for future work.
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