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ABSTRACT
In multiwinner approval voting, selecting a proportionally repre-

sentative committee based on the voters’ approval ballots is an

essential task. The notion of justified representation (JR) demands

that any large “cohesive” group of voters should be proportionally

“represented”. Different specific definitions of justified representa-

tion define “cohesiveness” in different ways; two common ways are

the following: (C1) the coalition unanimously approves a subset

of candidates whose size is proportional to its share of the elec-

torate, and (C2) each voter in the coalition approves at least a fixed

fraction of a candidate subset proportional to the coalition’s size.

Similarly, among others, the following two concrete definitions of

“representation” have been considered: (R1) the coalition’s collec-
tive utility from the winning set exceeds that of any proportionally

sized alternative, and (R2) for any proportionally sized alternative,

at least one member of the coalition derives less utility from it than

from the winning set.

Three of the four possible combinations have been extensively

studied and used to define extensions of Justified Representation:

• (C1)-(R1): Proportional Justified Representation (PJR)

• (C1)-(R2): Extended Justified Representation (EJR)

• (C2)-(R2): Full Justified Representation (FJR)

All three have merits, but also drawbacks. PJR is the weakest notion,

and perhaps not sufficiently demanding; EJR may not be compatible

with perfect representation; and it is open whether a committee

satisfying FJR can be found efficiently.

We study the combination (C2)-(R1), which we call Full Propor-

tional Justified Representation (FPJR). We investigate FPJR’s proper-

ties and find that it shares advantages with PJR over EJR; specifically,

several desirable proportionality axioms — such as priceability and

perfect representation — imply FPJR and PJR but not EJR. Next,

we show that efficient rules like the greedy Monroe rule and the

method of equal shares satisfy FPJR, thus matching one of the key

advantages of EJR over FJR. However, the Proportional Approval

Voting (PAV) rule may violate FPJR, so neither of EJR and FPJR

implies the other.
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1 INTRODUCTION
Selecting representatives from a large set is a fundamental problem

with widespread applications, including political elections and se-

lection of committees or advisory bodies [12, 15, 16, 30], selection

of projects and participatory budgeting [4, 26, 27], and selection of

representative documents or training sets in machine learning [33].

A commonly accepted principle for representation is proportional-

ity [14, 19, 25]: subgroups of the population should be represented

in the selected set proportionally to their size. In other words, if a

cohesive subset 𝑆 constitutes a 𝜃 fraction of the population, then

approximately a 𝜃 fraction of the representative set should reflect

the preferences of 𝑆 . Naturally, many different concrete instantia-

tions of this principle are possible, depending on how cohesiveness

and representation are defined, and what type of information voters

communicate about their preferences.

A common framework in practice, and the focus of our work,

is approval-based multi-winner voting. In this setting, the 𝑛 voters

submit approval ballots, listing all candidates they approve of. The

voting rule needs to choose a committee of given size 𝑘 .

The study of voting rules achieving some sense of proportional-

ity in this setting dates back well over a century, starting with the

work in the 1890s of Thiele and Phragmén, who sought proportional

representation for minorities in parliament [20]. The fundamental

approach of Thiele is to maximize total voter satisfaction, leading

to rules such as Proportional Approval Voting and the Chamberlin-

Courant rule [13, 35]. Phragmén’s approach is to balance represen-

tation among voters, leading to rules such as seq-Phragmén and

leximax-Phragmén. A somewhat similar objective is pursued by

Monroe [24], whose rule assigns each voter to one representative,

choosing candidates to ensure that each representative is supported

by an equal-sized group of voters.

The proliferation of plausible committee selection rules makes

it necessary to compare the guarantees their outcomes provide. A

very common and successful approach to this goal in social choice

is to define axioms which the voting rules are supposed to satisfy

[7, 23]. Following this approach, Aziz et al. [1] were the first to

introduce axioms for proportional representation under approval

ballots. They proposed the notion of Justified Representation (JR)

by adapting the concept of core stability from cooperative game

theory. Theirs was the first step toward constructing a broader

family of axioms to assess how fair or proportional a committee is.

JR considers a coalition as “cohesive” if it constitutes a 1/𝑘 fraction

of the population and unanimously agrees on a single candidate.
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A coalition is deemed “represented” if at least one member has

positive utility — meaning that they approve at least one winner. A

committee satisfies JR if every cohesive coalition is represented in

this way.

This formulation of “cohesiveness” and “representation” has

subsequently been extended to formulate more demanding propor-

tionality axioms, reviewed in more detail in Section 2.1. Specifically,

Proportional Justified Representation (PJR) [32] defines a coalition

as ℓ-cohesive if it constitutes an ℓ
𝑘
fraction of the population and

unanimously agrees on ℓ candidates. An ℓ-cohesive coalition is

considered “represented” if the coalition’s collective utility is at

least ℓ , i.e., the union of approval sets includes at least ℓ winners.

Extended Justified Representation (EJR) [1] makes the “representa-

tion” condition more stringent by requiring that there exists a voter

within the coalition with utility ℓ .

An even more demanding axiom, Full Justified Representation

(FJR) [27], weakens the notion of “cohesiveness” and requires more

coalitions to be represented. A coalition is considered weakly ℓ-

cohesive if, for somewitness set of candidates (with size proportional

to the coalition size), each voter in the coalition approves at least

ℓ candidates from this set. FJR requires that such coalitions be

represented according to the EJR criterion.

These axioms can be categorized along two dimensions: the

notion of cohesiveness (unanimous agreement vs. densely approved

small witness set) and the notion of representation (collective utility

vs. maximum utility). The axioms PJR, EJR, and FJR cover three

out of four possible combinations of these notions. We explore

the fourth combination, which merges the cohesiveness notion

of densely approved witness set with the representation notion

of collective utility. We call this axiom Full Proportional Justified

Representation (FPJR), as it combines features of both Full Justified

Representation and Proportional Justified Representation. More

formally (a precise definition is given in Section 3), FPJR requires

that the collective utility of every weakly ℓ-cohesive coalition is at

least ℓ .

Our goal in this work is to understand how FPJR relates to other

proportionality axioms and related properties, and which algo-

rithms guarantee that their outputs satisfy FPJR. Here, we overview

some of the observed relationships.

PJR is the weakest axiom among the ones introduced above. How-

ever, Sánchez-Fernández et al. [32] showed that PJR is compatible

with another proportionality notion called Perfect Representation

(PER). A committee satisfies Perfect Representation if there exists an

equal-sized 𝑘-partition of voters such that each part unanimously

approves a distinct winner. While a committee satisfying PER may

violate EJR (and thus FJR), any committee with Perfect Represen-

tation satisfies PJR [32]. Furthermore, Peters and Skowron [28]

introduced another proportionality axiom, priceability, which justi-

fies committees as the result of voters spending equal amounts of

money to elect candidates. They showed that any priceable com-

mittee also satisfies PJR.

Our work reveals that FPJR, like EJR, is a stronger requirement

than PJR. Nonetheless, paralleling PJR (and contrasting EJR), any

committee satisfying Perfect Representation or priceability also sat-

isfies FPJR. This insight enriches our understanding of priceability,

as we now see that it implies an even more stringent axiom than

PJR.

An important property of a proportionality axiom is the existence

of efficient (polynomial-time) algorithms to find a committee that

satisfies it. In the literature, several efficient rules are known to

satisfy the EJR axiom (and hence PJR), including LS-PAV (a local

search variant of PAV), the EJR-Exact rule, and the Method of Equal

Shares [2, 6]. In contrast, other efficient procedures — such as the

Phragmén-type rules (seq-Phragmén and leximax-Phragmén) and

the greedy Monroe rule (for the special case 𝑘 | 𝑛) — satisfy PJR

but not EJR [9, 17]. In this work, we show that the Monroe rule and

its efficient greedy variant satisfy FPJR, as do the Method of Equal

Shares and Phragmén-type rules. However, the PAV and LS-PAV

rules may violate FPJR, so committees satisfying PJR or EJR may not

satisfy FPJR. Conversely, the Monroe rule violates EJR but satisfies

FPJR, implying that FPJR and EJR are incomparable.

The FJR axiom is the most demanding among the family of

axioms discussed, and it remains an open question whether any

efficient rule can output a committee satisfying FJR. Moreover, it

is is known that all currently known efficient rules violate the FJR

axiom. FPJR shares the same cohesiveness condition with FJR, and

we hope that the properties of FPJR explored in our work may shed

further light on the algorithmic properties of FJR.

Finally, verifying whether a committee satisfies a certain axiom

is also an important task. Aziz et al. [1] showed that verifying EJR is

coNP-complete, as did Aziz et al. [2] for PJR and Brill et al. [10] for

core stability. Core stability is one of the strongest proportionality

notions, ensuring that for any coalition and any alternative subset

of candidates of size proportional to the size of the coalition, there

exists a voter who weakly prefers the committee to the alternative

set.
1
In this work, we extend these results and show that verifying

FJR and FPJR are also coNP-complete. Our hardness results for FJR

and FPJR are based on the same reductions from the Balanced

Bicliqe problem as the hardness results of Aziz et al. [1, 2], but

with a slightly more involved analysis.

In summary, our main contributions are the following:

(i) We introduce the Full Proportional Justified Representation

(FPJR) axiom, filling a gap in the family of proportionality

axioms by combining the cohesiveness notion of densely

approved witness set with the representation notion of col-

lective utility.

(ii) We demonstrate that FPJR is a stronger notion than PJR, yet

any committee satisfying Perfect Representation or price-

ability also satisfies FPJR.

(iii) We show that theMonroe rule and its efficient greedy variant,

as well as the Method of Equal Shares and Phragmén-type

rules, satisfy FPJR. However, the PAV and LS-PAV rules may

violate FPJR.

(iv) We establish that verifying whether a committee satisfies

FPJR or FJR is coNP-complete, extending known results

about the complexity of verifying proportionality axioms.

1
One of the big open questions in the area of approval-based committee selection is

whether the core is always non-empty.
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Related Work
In addition to the work discussed previously, the following strands

of literature relate to our present work.

Verifiable Justified Representation Axioms. Recently, Brill and Peters
[11] introduced proportionality axioms of the Justified Representa-

tion type called EJR+ and PJR+. In a given election and committee, a

coalition is called ℓ-deprived if it constitutes at least an
ℓ
𝑘
fraction of

the population and unanimously agrees on a non-winner candidate.

The PJR+ axiom requires that any ℓ-deprived coalition must have a

collective utility of at least ℓ . Similarly to EJR, EJR+ requires that

for any ℓ-deprived coalition, there exists a voter in the coalition

with utility at least ℓ . Brill and Peters [11] showed that EJR+ is

more demanding than EJR, and PJR+ is more demanding than PJR.

Importantly, and in contrast to PJR and EJR, both axioms can be

verified in polynomial time.

The PAV rule, which satisfies EJR+ and PJR+, violates FPJR. Con-

versely, the Monroe rule violates EJR and thus EJR+, yet it satisfies

FPJR. This implies that FPJR and EJR+ are incomparable. Addition-

ally, in the full version of this paper [22], we provide an example

showing a committee satisfying FPJR but violating PJR+, further

implying that FPJR and PJR+ are incomparable.

Participatory Budgeting. Participatory Budgeting (PB) is a demo-

cratic process for deciding on the funding of public projects, adopted

in several cities worldwide. In PB, each election consists of a set

of voters, candidates, a ballot profile, a budget, and a cost function

describing the cost of each candidate. The total cost of the candi-

dates in the winning set must not exceed the budget. For a detailed

discussion of PB, we refer readers to the recent surveys by Aziz

and Shah [5] and by Rey and Maly [31].

One key goal in PB is again proportional representation [8]. In

the approval voting setting, existing proportionality axioms such

as EJR [26], PJR, FJR, EJR+, and PJR+ [11] have been generalized to

the PB context as well. Moreover, methods like the Method of Equal

Shares [26] are known to satisfy these axioms in the PB domain.

One can follow a similar approach to generalize the FPJR axiom to

participatory budgeting; we leave this direction for future work.

Proportional Representation Beyond Approval Voting. The concept
of proportional representation has also been studied beyond ap-

proval voting. Early research by Dummett [14] tried to ensure

proportionality for Solid Coalitions (PSC) on ranked ballots. These

coalitions consist of voter groups whose sets of top candidates are

the same (for corresponding set sizes), though the ordering of these

top candidates may differ within the coalition. Another notion of

proportional representation has been defined for ranked ballots

compatible with a hidden distance function determined by a metric

space [21]. In this setting, the cost of a candidate to a voter is mea-

sured by this hidden distance function, and the goal is to ensure that

any sufficiently large coalition has an (approximately) smaller cost

with the winning set than with a proportionally sized alternative.

Finally, Skowron et al. [34] extended the principle of propor-

tional representation to rankings: given approval preferences, the

goal is to generate aggregated rankings so that cohesive groups of

voters are represented proportionally in each initial segment of the

ranking.

2 PRELIMINARIES
We consider an election with a set 𝑉 of 𝑛 voters, and a set 𝐶 of

𝑚 candidates. Each voter 𝑣 ∈ 𝑉 submits an approval ballot 𝐴𝑣 ⊆
𝐶 , listing the subset of candidates that 𝑣 approves. The vector of

all approval ballots is denoted by A = (𝐴𝑣)𝑣∈𝑉 and referred to

as the ballot profile. For any candidate 𝑐 ∈ 𝐶 , the set of voters

approving 𝑐 is denoted by𝑁𝑐 . For a desired committee size 𝑘 > 0, an

approval-based multi-winner voting rule takes as input the election

(𝑉 ,𝐶,A, 𝑘) and outputs a subset𝑊 ⊆ 𝐶 of size𝑘 , called thewinning

set or committee.

2.1 Proportional Representation Axioms
Proportional representation axioms express that cohesive groups

of voters should receive fair representation in the committee. Fol-

lowing the foundational work of Aziz et al. [1], various definitions

have been proposed to formalize the notions of “cohesiveness” and

“representation.”

Definition 2.1. Consider an approval-based multi-winner elec-

tion (𝑉 ,𝐶,A, 𝑘). A coalition 𝑆 ⊆ 𝑉 is called ℓ-cohesive if
|𝑆 |
𝑛 ≥

ℓ
𝑘

and |⋂𝑣∈𝑆 𝐴𝑣 | ≥ ℓ .

That is, 𝑆 is ℓ-cohesive if it comprises at least an
ℓ
𝑘
fraction

of the population (and is therefore “entitled” to at least ℓ out of

the 𝑘 committee members), and the voters in 𝑆 agree on at least ℓ

candidates.

A weaker form of cohesiveness can be defined by relaxing the

condition of having ℓ common approved candidates.

Definition 2.2. A coalition 𝑆 ⊆ 𝑉 is called weakly ℓ-cohesive

with witness set 𝑇 if 𝑇 is a subset of candidates such that
|𝑆 |
𝑛 ≥

|𝑇 |
𝑘
,

and |𝐴𝑣 ∩𝑇 | ≥ ℓ for each voter 𝑣 ∈ 𝑆 . 𝑆 is weakly ℓ-cohesive if there

exists a witness 𝑇 such that 𝑆 is weakly ℓ-cohesive with witness 𝑇 .

Weak cohesiveness expresses that 𝑆 is large enough to deserve a

candidate set of the size of 𝑇 , and each voter in 𝑆 approves at least

ℓ candidates from 𝑇 .

Based on these concepts of cohesiveness, the following propor-

tionality axioms have been introduced:

• PJR [32]: A committee 𝑊 satisfies Proportional Justified

Representation (PJR) if, for every ℓ ≥ 1 and every ℓ-cohesive

coalition 𝑆 , the voters in 𝑆 collectively approve at least ℓ

candidates in𝑊 , i.e.,�����𝑊 ∩⋃
𝑣∈𝑆

𝐴𝑣

����� ≥ ℓ .

• EJR [1]: A committee𝑊 satisfies Extended Justified Rep-

resentation (EJR) if, for every ℓ ≥ 1 and every ℓ-cohesive

coalition 𝑆 , there exists a voter 𝑣 ∈ 𝑆 approving at least ℓ

candidates in𝑊 , i.e., |𝐴𝑣 ∩𝑊 | ≥ ℓ .

• FJR [27]: A committee𝑊 satisfies Full Justified Represen-

tation (FJR) if, for every ℓ ≥ 1 and every weakly ℓ-cohesive

coalition 𝑆 , there exists a voter 𝑣 ∈ 𝑆 approving at least ℓ

candidates in𝑊 , i.e., |𝐴𝑣 ∩𝑊 | ≥ ℓ .

• Core Stability [1]: A committee 𝑊 is in the core if for

every coalition 𝑆 and subset of candidates 𝑇 such that
|𝑆 |
𝑛 ≥

|𝑇 |
𝑘
, there exists a voter 𝑣 ∈ 𝑆 approving at least as many

candidates in𝑊 as in 𝑇 , i.e., |𝐴𝑣 ∩𝑊 | ≥ |𝐴𝑣 ∩𝑇 |.
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It is well known [1, 27, 32] that core stability implies FJR, FJR

implies EJR, and EJR implies PJR.

Beyond the “core” framework and its Justified Representation

variants, we consider two other notions of proportionality from the

literature. First, a set of candidates𝑊 provides perfect representation

(PER) [32] for A and 𝑘 if the voter set 𝑉 can be partitioned into 𝑘

equal-size pairwise disjoint subsets 𝑉1, . . . ,𝑉𝑘 , with the following

property: one can assign a distinct candidate 𝑐𝑖 from𝑊 to each

subset 𝑉𝑖 such that every voter in 𝑉𝑖 approves of 𝑐𝑖 . In particular,

PER can only be satisfied when 𝑘 divides 𝑛.

Recently, Peters and Skowron [28] introduced the concept of

priceability for committees. Intuitively, a committee is priceable if

it can be justified as the result of voters spending equal amounts

of money to elect candidates. Formally, a price system is a pair

(𝑝, (𝑝𝑣)𝑣∈𝑉 ) comprising a price 𝑝 > 0 and a payment function

𝑝𝑣 : 𝐶 → [0, 1] for each voter 𝑣 . Each payment function 𝑝𝑣 satisfies

that 𝑝𝑣 (𝑐) > 0 only for candidates 𝑐 ∈ 𝐴𝑣 that the voter approves,

and

∑
𝑐∈𝐶 𝑝𝑣 (𝑐) ≤ 1, ensuring the voter spends at most one unit.

A price system supports a committee𝑊 if for each candidate

𝑐 ∈𝑊 , the payments sum to 𝑝 (i.e.,

∑
𝑣∈𝑉 𝑝𝑣 (𝑐) = 𝑝), no candidate

𝑐 ∉ 𝑊 receives any payment, and no unelected candidate has

supporters whose remaining unspent budget strictly exceeds 𝑝 , i.e.,

for any 𝑐 ∉𝑊 : ∑︁
𝑣∈𝑁𝑐

(
1 −

∑︁
𝑐′∈𝑊

𝑝𝑣 (𝑐 ′)
)
≤ 𝑝.

A committee𝑊 is priceable if a supporting price system exists.

If𝑊 is supported by a price system with price 𝑝 , then 𝑝 ≤ |𝑉 |
|𝑊 |

since the total voter spending is exactly 𝑝 · |𝑊 |, which cannot

exceed the total budget |𝑉 |. Notably, priceability does not impose

any constraints on the target committee size 𝑘 .

We relate priceability and PER with the following immediate

proposition, which states that PER is a more demanding axiom than

priceability.

Proposition 2.3. Any committee providing perfect representation

is also priceable.

To see why this proposition holds, recall that a perfect repre-

sentation partitions voters into groups and associates each group

with a distinct candidate whom the group unanimously approves.

Each group can simply spend their total budget on the associated

candidate.

2.2 Approval-based Multi-winner Rules
We review several approval-based multi-winner voting rules. For a

detailed examination of these rules and their axiomatic properties,

we refer readers to the survey by Lackner and Skowron [23].

2.2.1 Proportional Approval Voting (PAV). The Proportional Ap-
proval Voting (PAV) rule [35] selects a committee𝑊 maximizing

the PAV score

PAV(𝑊 ) =
∑︁
𝑣∈𝑉

𝐻 ( |𝐴𝑣 ∩𝑊 |) ,

where 𝐻 (𝑡) = ∑𝑡
𝑖=1

1

𝑖 is the 𝑡 th harmonic number, and |𝐴𝑣 ∩𝑊 | is
the number of candidates from𝑊 approved by voter 𝑣 . The PAV

rule satisfies EJR and thus PJR [1]. Although computing the exact

PAV outcome is NP-hard [3], there exists a polynomial-time local

search variant, called LS-PAV, that produces a committee with an

approximately optimal PAV score and still satisfies EJR [2].

2.2.2 Monroe’s Rule. Monroe’s Rule [24] matches voters to can-

didates in the committee, achieving an approximation to perfect

representation. Specifically, it seeks a committee𝑊 and an assign-

ment 𝜋 : 𝑉 →𝑊 such that:

(i) Each candidate 𝑐 ∈𝑊 is assigned approximately
𝑛
𝑘
voters:

⌊𝑛
𝑘
⌋ ≤ |𝜋−1 (𝑐) | ≤ ⌈𝑛

𝑘
⌉.

(ii) Defining the function 𝑑 (𝑣, 𝑐) = 1 if 𝑐 ∈ 𝐴𝑣 and 0 otherwise,

the total satisfaction

∑
𝑣∈𝑉 𝑑 (𝑣, 𝜋 (𝑣)) is maximized among

all possible assignments.

In particular, if

∑
𝑣 𝑑 (𝑣, 𝜋 (𝑣)) = 𝑛 and 𝑘 | 𝑛, then the resulting

committee𝑊 satisfies perfect representation. The Monroe Rule,

although known to violate EJR, does satisfy PJR provided 𝑘 | 𝑛. This
divisibility condition is essential, as Aziz et al. [1] presented a coun-

terexample when 𝑘 ∤ 𝑛. Computing the exact Monroe outcome is

NP-hard. However, Faliszewski et al. [17] developed a polynomial-

time implementable greedy version of Monroe’s Rule which also

satisfies PJR when 𝑘 | 𝑛. This variant builds the committee itera-

tively, repeating the following while |𝑊 | < 𝑘 :

(i) Select a candidate 𝑐 ∉ 𝑊 who is approved by the largest

number of unassigned voters.

(ii) Assign approximately
𝑛
𝑘
such voters to 𝑐 , ensuring that each

candidate in 𝑊 is assigned between ⌊𝑛
𝑘
⌋ and ⌈𝑛

𝑘
⌉ voters.

Specifically, until the number of remaining voters is divisible

by the number of remaining slots, it assigns ⌈𝑛
𝑘
⌉ voters; and

subsequently assigns ⌊𝑛
𝑘
⌋. In each iteration, it adds as many

voters as possible approving 𝑐 ; if there are not enough voters

for a step, it selects some other arbitrary unassigned voters.

(iii) Add 𝑐 to𝑊 .

2.2.3 Priceable Rules. Within the landscape of approval voting

rules, priceable rules are guaranteed to output priceable committees.

Two notable rules in this family are the Method of Equal Shares

and Phragmén’s method [28].

The Method of Equal Shares (ES) [26, 29] constructs the commit-

tee𝑊 sequentially. In each round, it checks which candidates can

be “purchased” at cost 𝑝 = 𝑛
𝑘
by the voters who approve them, using

their remaining budgets. (Each voter starts with a total budget of 1.)

Specifically, ES looks for a cost-sharing threshold 𝑞 such that every

approving voter pays at most 𝑞, and these contributions collectively

cover 𝑝 . Among all candidates that can be afforded this way, the

rule selects the candidate requiring the smallest 𝑞. Once selected,

the voters’ budgets are reduced by their actual contributions. The

process repeats until no additional candidate can be afforded, at

which point the current committee𝑊 is returned.

Phragmén’s methods [9, 20] select a committee by assigning

loads to voters who approve the elected candidates, aiming to bal-

ance these loads as evenly as possible. Each elected candidate’s load

is distributed among their approving voters, summing to 1. The

objective is to minimize the maximum voter load, with prominent

variations including leximax-Phragmén and sequential Phragmén.

While the Monroe rule outputs a perfect representation (and

therefore a priceable committee) when a perfect representation

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1073



exists [9], it had been unknown if the Monroe rule outputs a price-

able committee in general. In this paper, we present an example

demonstrating that the Monroe rule can fail to satisfy priceability,

even when the desired divisibility conditions are met.

3 FULL PROPORTIONAL JUSTIFIED
REPRESENTATION

This section is devoted to our main results. We begin by defining

Full Proportional Justified Representation.

Definition 3.1 (Full Proportional Justified Representa-

tion (FPJR)). A committee𝑊 satisfies Full Proportional Justified

Representation (FPJR) if, for every weakly ℓ-cohesive coalition 𝑆 , we

have |𝑊 ∩⋃
𝑣∈𝑆 𝐴𝑣 | ≥ ℓ .

We prove a useful property of weakly ℓ-cohesive coalitions.

Lemma 3.2. For any weakly ℓ-cohesive coalition 𝑆 with witness 𝑇 ,

there exists a candidate 𝑐 ∈ 𝑇 such that |𝑁𝑐 ∩ 𝑆 | ≥ ℓ · 𝑛
𝑘
.

Proof. By definition of being weakly ℓ-cohesive, we know that

|𝑆 |
𝑛 ≥

|𝑇 |
𝑘
, and |𝐴𝑣 ∩𝑇 | ≥ ℓ for all 𝑣 ∈ 𝑆 . Thus,∑︁

𝑣∈𝑆
|𝐴𝑣 ∩𝑇 | ≥ ℓ · |𝑆 | ≥ ℓ · |𝑇 | · 𝑛

𝑘
.

Hence, the average approval of candidates 𝑐 ∈ 𝑇 is

1

|𝑇 |
∑︁
𝑐∈𝑇
|𝑁𝑐 ∩ 𝑆 | =

1

|𝑇 |
∑︁
𝑣∈𝑆
|𝐴𝑣 ∩𝑇 | ≥ ℓ · 𝑛

𝑘
.

Because the average approval of candidates in𝑇 is at least ℓ ·𝑛
𝑘
, there

must exist at least one candidate 𝑐 ∈ 𝑇 such that |𝑁𝑐∩𝑆 | ≥ ℓ · 𝑛
𝑘
. □

3.1 Axiomatic Properties
We begin by relating FPJR to previous proportionality axioms. First,

observe that FPJR requires any weakly ℓ-cohesive coalition to col-

lectively approve at least ℓ candidates from the committee𝑊 . In

contrast, FJR demands that there exist a voter 𝑣 within the coalition

who individually approves ℓ candidates from the committee. This

immediately implies that FJR is a more stringent axiom than FPJR.

Indeed, we show below that the Monroe rule and the Method of

Equal Shares satisfy FPJR, but may violate FJR [26], implying the

following:

Corollary 3.3. FJR is strictly more demanding than FPJR.

Next, we investigate how FPJR relates to EJR and PJR. First, we

revisit an example from the literature [27, 28] illustrating that the

Proportional Approval Voting (PAV) rule may violate the FJR axiom.

Example 3.4 (PAV might violate FPJR [27, 28]). Consider an

election with 15 candidates and 𝑛 = 6 voters𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6},
whose approval sets are as follows:

𝐴𝑣1 = {𝑐1, 𝑐2, 𝑐3, 𝑐4} 𝐴𝑣2 = {𝑐1, 𝑐2, 𝑐3, 𝑐5}
𝐴𝑣3 = {𝑐1, 𝑐2, 𝑐3, 𝑐6} 𝐴𝑣4 = {𝑐7, 𝑐8, 𝑐9}
𝐴𝑣5 = {𝑐10, 𝑐11, 𝑐12} 𝐴𝑣6 = {𝑐13, 𝑐14, 𝑐15}

The committee size is 𝑘 = 12. The PAV rule selects the commit-

tee𝑊 = {𝑐1, 𝑐2, 𝑐3, 𝑐7, 𝑐8, 𝑐9, 𝑐10, 𝑐11, 𝑐12, 𝑐13, 𝑐14, 𝑐15}. Consider the

weakly 4-cohesive coalition {𝑣1, 𝑣2, 𝑣3} (with witness set of candidates
{𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6}). They collectively approve only 3 candidates in

the committee𝑊 . Therefore, FPJR is violated. Sequential PAV also

selects this committee; hence, it may violate FPJR too.

Recall that the PAV rule satisfies EJR and, consequently, PJR.

On the other hand, by focusing on weakly ℓ-cohesive sets with

witness set size |𝑇 | = ℓ , the requirements of FPJR coincide with

those needed to satisfy PJR. This implies the following:

Corollary 3.5. FPJR is strictly more demanding than PJR.

Next, we show that priceability is more demanding than FPJR.

Theorem 3.6. Every priceable committee𝑊 satisfies FPJR with

𝑘 = |𝑊 |.

Proof. Let (𝑝, (𝑝𝑣)𝑣∈𝑉 ) be a price system for the committee𝑊 .

For each voter 𝑣 , let 𝑏𝑣 = 1 −∑
𝑐∈𝑊 𝑝𝑣 (𝑐) be 𝑣 ’s remaining budget.

Consider a weakly ℓ-cohesive coalition 𝑆 with witness set𝑇 , and

let𝑊𝑆 denote the subset of committee members approved by at

least one voter in 𝑆 , i.e.,𝑊𝑆 = 𝑊 ∩⋃
𝑣∈𝑆 𝐴𝑣 . Let 𝑂 = 𝑇 ∩𝑊𝑆 be

the subset of𝑊𝑆 that is also in 𝑇 .

We lower-bound the sum, over all candidates 𝑐 ∈ 𝑇 \𝑂 , of the re-

maining budget of voters approving 𝑐 . Notice that voters approving

multiple candidates in 𝑇 \𝑂 will be counted multiple times in this

sum. Because each voter 𝑣 ∈ 𝑆 approves of at least ℓ candidates in

𝑇 , of whom at most |𝑂 | can be in 𝑂 , we obtain that each 𝑣 ∈ 𝑆 is in

𝑁𝑐 for at least ℓ − |𝑂 | candidates in 𝑇 \𝑂 . This gives us the bound∑︁
𝑐∈𝑇 \𝑂

∑︁
𝑣∈𝑁𝑐

𝑏𝑣 ≥ (ℓ − |𝑂 |) ·
∑︁
𝑣∈𝑆

𝑏𝑣

= (ℓ − |𝑂 |) ·
∑︁
𝑣∈𝑆

(
1 −

∑︁
𝑐∈𝐶

𝑝𝑣 (𝑐)
)

≥ (ℓ − |𝑂 |) · ( |𝑆 | − |𝑊𝑆 | · 𝑝)

≥ (ℓ − |𝑂 |) ·
(
|𝑇 | · 𝑛

𝑘
− |𝑊𝑆 | ·

𝑛

𝑘

)
; (1)

here, the last inequality used the size bound on 𝑆 in the definition

of cohesiveness and the fact that the price of each candidate must

be bounded by
𝑛
𝑘
to be feasible. Furthermore, the last inequality is

strict if 𝑝 < 𝑛
𝑘
.

On the other hand, because none of the candidates 𝑐 ∈ 𝑇 \ 𝑂
were included in𝑊 , the remaining budget of the supporters for

each such 𝑐 must add up to at most 𝑝 , implying that∑︁
𝑐∈𝑇 \𝑂

∑︁
𝑣∈𝑁𝑐

𝑏𝑣 ≤ |𝑇 \𝑂 | · 𝑝 ≤ |𝑇 \𝑂 | ·
𝑛

𝑘
. (2)

Combining the two inequalities and canceling out the common

term
𝑛
𝑘
, we obtain that |𝑇 | − |𝑂 | = |𝑇 \𝑂 | ≥ (ℓ − |𝑂 |) · ( |𝑇 | − |𝑊𝑆 |).

We now consider two cases:

(1) If |𝑊𝑆 | ≥ ℓ , then by definition, the representation condition

is satisfied for 𝑆 .

(2) If |𝑇 | = ℓ , then we can invoke the result from Proposition 1 in

[28], which states that priceability implies PJR, to conclude

that |𝑊𝑆 | ≥ ℓ , meaning that the representation condition is

satisfied for 𝑆 .
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Outside of these two cases, we have that |𝑇 | > ℓ > |𝑊𝑆 | ≥ |𝑂 |.
When 𝑝 < 𝑛

𝑘
, Inequality (1) becomes strict, and the inequality

|𝑇 | − |𝑂 | > (ℓ − |𝑂 |) · ( |𝑇 | − |𝑊𝑆 |) must be strict also. However,

because (ℓ − |𝑂 |) + (|𝑇 | − |𝑊𝑆 |) ≥ |𝑇 | − |𝑂 | + 1, and both factors

ℓ − |𝑂 | and |𝑇 | − |𝑊𝑆 | are strictly positive, this is impossible.

Finally, we consider the case 𝑝 = 𝑛
𝑘
. Here, we note that the

winners in𝑊 \𝑊𝑆 are not approved by any voters in 𝑆 , and must

therefore be entirely paid for by voters in 𝑉 \ 𝑆 . Because |𝑆 | ≥
|𝑇 | · 𝑛

𝑘
≥ ℓ · 𝑛

𝑘
, there are at most |𝑉 \ 𝑆 | ≤ (𝑘 − ℓ) · 𝑛

𝑘
such voters.

With their combined budget of at most (𝑘 − ℓ) · 𝑛
𝑘
, even if they do

not contribute towards candidates in𝑊𝑆 , at a candidate price of
𝑛
𝑘
, they can support at most (𝑘 − ℓ) candidates. But because𝑊𝑆

contains strictly fewer than ℓ candidates, this leaves𝑊 with strictly

fewer than 𝑘 candidates, a contradiction. □

This theorem leads to the following corollaries. First, since a

priceable committee may violate EJR [28], Example 3.4 and Theo-

rem 3.6 imply the following:

Corollary 3.7. EJR and FPJR are incomparable.

As shown in Proposition 2.3, any committee satisfying Perfect

Representation is also priceable and hence satisfies FPJR.

Corollary 3.8. Perfect Representation implies FPJR.

Finally, Peters and Skowron [28] showed that the Method of

Equal Shares and Phragmén’s rule always output priceable com-

mittees; hence, their outputs satisfy FPJR.

Corollary 3.9. Phragmén’s rule and Equal Shares satisfy FPJR.

Figure 1 provides a visual summary of the current implications

among various proportionality axioms, including the new relation-

ships established in this paper.

CS FJR FPJR

EJR PJR

EJR+ PJR+

Priceability

PER

Figure 1: In the diagram, we illustrate how proportionality
axioms in approval-based committee selection relate to one
another, with arrows indicating transitive implications. Rect-
angular boxes represent rules that are difficult to verify, while
ellipsoids represent those that admit efficient verification.
Solid-line frames denote axioms whose existence is guar-
anteed or can be checked efficiently, whereas dashed-line
frames denote axioms whose existence remains unknown.
Lastly, double-line frames indicate axioms for which efficient
methods exist to find a solution that satisfies them.

3.2 The Monroe Rule and Greedy Monroe Rule
Satisfy FPJR

Recall that Monroe’s Rule aims to find an assignment 𝜋 : 𝑉 →𝑊

that assigns each voter to a committee member such that every

candidate in the committee is assigned either ⌊𝑛
𝑘
⌋ or ⌈𝑛

𝑘
⌉ voters.

For arbitrary coalitions 𝑆 , we define the Monroe score

𝑀𝜋 (𝑆) :=
∑︁
𝑣∈𝑆
|𝐴𝑣 ∩ {𝜋 (𝑣)}|;

the goal is then to find a committee𝑊 and assignment 𝜋 maximizing

𝑀𝜋 (𝑉 ). The Greedy Monroe Rule approximates this objective by

repeatedly adding a candidate 𝑐 approved by the largest number of

unassigned voters, then assigning (at most ⌈𝑛
𝑘
⌉) approving voters

to 𝑐 , adding arbitrary voters if too few voters approve 𝑐 .

Before delving into the main theme of this section, we present an

example illustrating that the Monroe rule does not always satisfy

priceability, even when 𝑘 | 𝑛. This demonstrates that the results in

this section are not derivable from those of the previous section.

Example 3.10 (TheMonroe Rule Violates Priceability). Con-

sider an election with 𝑛 = 6 voters 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and 6

candidates, with approval sets as follows:

𝐴𝑣1 = {𝑐1} 𝐴𝑣2 = {𝑐2} 𝐴𝑣3 = 𝐴𝑣4 = 𝐴𝑣5 = 𝐴𝑣6 = {𝑐3, 𝑐4, 𝑐5, 𝑐6}.
The committee size is 𝑘 = 3. The maximum Monroe score is 5,

achieved by selecting one of 𝑐1 or 𝑐2, along with two candidates from

{𝑐3, 𝑐4, 𝑐5, 𝑐6}. Without loss of generality, assume that the Monroe

rule selects𝑊 = {𝑐1, 𝑐3, 𝑐4}.
Suppose that there exists a price system (𝑝, (𝑝𝑣)𝑣∈𝑉 ) supporting

𝑊 . First, we observe that 𝑝 = 𝑝𝑣1 (𝑐1) ≤ 1. For voters 𝑣3, 𝑣4, 𝑣5, 𝑣6,

who only need to support 𝑐3 and 𝑐4, their total contributions satisfy∑
6

𝑖=3

∑
𝑐∈𝐶 𝑝𝑣𝑖 (𝑐) ≤ 2. Consequently, the unspent budget across these

voters is 4−∑
6

𝑖=3

∑
𝑐∈𝐶 𝑝𝑣𝑖 (𝑐) ≥ 2 > 𝑝 . This implies that these voters

could collectively afford an additional candidate, such as 𝑐5 or 𝑐6,

contradicting the claim that (𝑝, (𝑝𝑣)𝑣∈𝑉 ) supports𝑊 .

Alternatively, consider 𝑊 = {𝑐3, 𝑐4, 𝑐5} with 𝑝 = 4

3
and each

𝑝𝑣𝑖 (𝑐 𝑗 ) = 1

3
for 𝑖 ∈ {3, 4, 5, 6} and 𝑗 ∈ {3, 4, 5}, and 𝑝𝑣𝑖 (𝑐) = 0 other-

wise. In this case, (𝑝, (𝑝𝑣)𝑣∈𝑉 ) supports𝑊 , showing that a priceable

committee of size 3 exists. However, this committee will not be selected

by the Monroe rule as it gets Monroe score of 4.

This example highlights that while priceable committees may exist,

the Monroe rule does not necessarily select one.

Our main theorem is that both the Monroe Rule and Greedy

Monroe Rule satisfy FPJR when 𝑘 divides 𝑛.

Theorem 3.11. When 𝑘 divides 𝑛, both the Monroe Rule and the

Greedy Monroe Rule satisfy FPJR.

For the remainder of this section, we assume that 𝑘 divides 𝑛.

Before we proceed with the proof, we observe the following about

the output of Monroe’s Rule. Given an election (𝑉 ,𝐶,A, 𝑘), let𝑊
be the winning committee and 𝜋 an assignment that maximizes the

Monroe score. Even if a cohesive group of voters is not satisfied with

the assignment 𝜋 , they are nonetheless satisfied with the committee

𝑊 itself.

Lemma 3.12. If 𝑆 ⊆ 𝑉 is a coalition of size |𝑆 | ≥ 𝑛

𝑘
and𝑀𝜋 (𝑆) = 0,

then

⋂
𝑣∈𝑆 𝐴𝑣 ⊆ 𝑊 , i.e., all candidates universally approved by 𝑆

must be in the committee.
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Proof. Let 𝑐 ∈ ⋂
𝑣∈𝑆 𝐴𝑣 and assume for contradiction that 𝑐 ∉

𝑊 . Because 𝑀𝜋 (𝑆) = 0, no voter 𝑣 ∈ 𝑆 approves their assigned

candidate, i.e., 𝜋 (𝑣) ∉ 𝐴𝑣 for all voters 𝑣 ∈ 𝑆 . In fact, for every

candidate 𝑐 ′ assigned to one or more voter in 𝑆 , we know that 𝑐 ′ is
not approved by any voter in 𝑆 : if 𝜋 (𝑣) = 𝑐 ′ for some 𝑣 ∈ 𝑆 and 𝑐 ′

is approved by 𝑣 ′ ∈ 𝑆 , then by switching the assignments of 𝑣 and

𝑣 ′ (neither of whom approves their currently assigned candidate

because𝑀𝜋 (𝑆) = 0), the Monroe score would strictly increase. Now

fix such a candidate 𝑐 ′ who is assigned to at least one voter in 𝑆

despite not being approved by any voter in 𝑆 .

Consider replacing 𝑐 ′ with 𝑐 in the committee, and changing

the assignment as follows. Let 𝑌 be the set of voters not in 𝑆 who

were assigned to 𝑐 ′, and let 𝑋 ⊆ 𝑆 be a set of voters previously not

assigned to 𝑐 ′ with |𝑋 | = |𝑌 |. Because |𝑆 | ≥ 𝑛
𝑘
and 𝑐 ′ has 𝑛

𝑘
voters

assigned to them, such a set 𝑋 must exist. Now define an arbitrary

bijection 𝜙 : 𝑌 → 𝑋 , and assign 𝜋 (𝜙 (𝑣)) to each 𝑣 ∈ 𝑌 , and 𝑐 to

each 𝑣 ∈ 𝑋 and each voter 𝑣 ∈ 𝑆 who was previously assigned to 𝑐 ′

(leaving all other assignments unchanged).

Then, while it is possible that no 𝑣 ∈ 𝑌 approves of their new

assigned candidate, all 𝑣 ∈ 𝑋 (of whom there are exactly as many

as in 𝑌 ) now go from disapproving to approving their assigned

candidate, and the same is true for the candidates in 𝑆 who were

previously assigned to 𝑐 ′ (of which there is at least one). Thus, the

overall Monroe score strictly increases, contradicting the optimality

of the original assignment 𝜋 . □

We are now prepared to prove the main theorem.

Proof of Theorem 3.11. The proofs for both rules are nearly

identical. We will therefore combine the proofs, and explicitly point

out the parts that are specific to one algorithm or the other.

Let𝑊 be the winning set under the selection rule (Monroe or

Greedy Monroe). Let 𝑆 ⊆ 𝑉 be an arbitrary weakly ℓ-cohesive

coalition with witness set𝑇 , so
|𝑆 |
𝑛 ≥

|𝑇 |
𝑘
. Assume for contradiction

that 𝑆 violates FPJR, so𝑊𝑆 :=𝑊 ∩⋃
𝑣∈𝑆 𝐴𝑣 has size less than ℓ .

Now define 𝑆 ′ = 𝑆 \⋃𝑐∈𝑊𝑆
𝜋−1 (𝑐), and let 𝑇 ′ ⊆ 𝑇 \𝑊𝑆 be an

arbitrary subset
2
of size |𝑇 | − |𝑊𝑆 | > 0.

We first establish that 𝑆 ′ is a weakly (ℓ−|𝑊𝑆 |)-cohesive coalition
with witness set 𝑇 ′. Because |⋃𝑐∈𝑊𝑆

𝜋−1 (𝑐) | ≤ |𝑊𝑆 | · 𝑛𝑘 , we get
that |𝑆 ′ | ≥ (|𝑇 | − |𝑊𝑆 |) · 𝑛𝑘 = |𝑇 ′ | · 𝑛

𝑘
. Thus, 𝑆 ′ satisfies the size

constraint for being weakly (ℓ − |𝑊𝑆 |)-cohesive. Also, because at
most |𝑊𝑆 | candidates were removed from 𝑇 to obtain 𝑇 ′, we have
that |𝐴𝑣 ∩𝑇 ′ | ≥ |𝐴𝑣 ∩𝑇 | − |𝑊𝑆 | ≥ ℓ − |𝑊𝑆 | for all 𝑣 ∈ 𝑆 ′. Thus, 𝑆 ′
is indeed weakly (ℓ − |𝑊𝑆 |)-cohesive.

Next, by definition of 𝑆 ′, we know that 𝜋 (𝑣) ∉𝑊𝑆 for all 𝑣 ∈ 𝑆 ′.
Because 𝜋 (𝑣) ∈𝑊 by definition, we obtain that 𝜋 (𝑣) ∉ ⋃

𝑣′∈𝑆 𝐴𝑣′ ,

so in particular, 𝑣 does not approve of 𝜋 (𝑣). This also implies that

𝑀𝜋 (𝑆 ′) = 0.

Because 𝑆 ′ is weakly (ℓ − |𝑊𝑆 |)-cohesive, by Lemma 3.2, there

exists a candidate 𝑐 ∈ 𝑇 ′ such that |𝑁𝑐 ∩ 𝑆 ′ | ≥ (ℓ − |𝑊𝑆 |) · 𝑛𝑘 ≥
𝑛
𝑘
.

Because |𝑁𝑐 ∩ 𝑆 ′ | > 0, 𝑐 is approved by at least one voter in 𝑆 . And

because 𝑐 ∈ 𝑇 ′, we know that 𝑐 ∉𝑊𝑆 , implying that 𝑐 ∉𝑊 . Now,

for the final step of the proof, we distinguish between the two rules:

• If 𝑊 was the output of the Monroe rule, then we apply

Lemma 3.12 to 𝑁𝑐 ∩ 𝑆 ′, and conclude that 𝑐 ∈𝑊 . But this

contradicts the earlier conclusion that 𝑐 ∉𝑊 .

2
Note that𝑊𝑆 is not necessarily a subset of𝑇 , so𝑇 ′ has to be a strict subset of𝑇 .

• If𝑊 was the output of the Greedy Monroe rule, then con-

sider the first iteration that assigned some voter in 𝑆 ′ to a

candidate 𝑐 ′. At that point of the algorithm, 𝑐 could have

been chosen as the next candidate and assigned to
𝑛
𝑘
vot-

ers in 𝑁𝑐 ∩ 𝑆 ′ who all approve 𝑐 , and none of whom had

been assigned. Instead, the Greedy Monroe rule chose some

candidate 𝑐 ′ and assigned 𝑐 ′ to at least one voter 𝑣 in 𝑆 ′;
as stated above, 𝑣 did not approve 𝑐 ′. This contradicts the
greedy choice of always adding a candidate approved by the

largest number of not-yet-assigned voters.

Thus, we obtained a contradiction in either case, completing the

proof of the theorem. □

Together with this theorem and Example 3.10 we conclude the

section with the following corollary.

Corollary 3.13. A committee satisfying FPJR is not necessarily

priceable.

4 HARDNESS
In this section, we establish the computational hardness (specifically,

coNP-hardness) of verifying FPJR for a proposed committee𝑊 .

Because a very similar reduction also proves hardness for verifying

FJR, and this hardness result seems to not have appeared in the

literature, we also fill this gap.

To prove coNP-hardness of verifying FPJR, we use the exact same

reduction which Aziz et al. [2] used to show hardness of verifying

PJR; to prove hardness of verifying FJR, we use the reduction which

Aziz et al. [1] used to show hardness of verifying EJR. However,

our proofs are somewhat more involved. All of the reductions are

from the following Balanced Bicliqe problem:

Definition 4.1. The Balanced Biclique problem is defined as

follows: Given a bipartite graph 𝐺 = (𝐿, 𝑅) and a positive integer

ℓ , determine whether there exist subsets 𝐿′ ⊆ 𝐿 and 𝑅′ ⊆ 𝑅, each

containing ℓ vertices, such that all possible edges between 𝐿′ and 𝑅′

are present in 𝐸; that is, {(𝑢, 𝑣) | 𝑢 ∈ 𝐿′, 𝑣 ∈ 𝑅′} ⊆ 𝐸. Such a pair

(𝐿′, 𝑅′) is called an ℓ × ℓ biclique.

The Balanced Bicliqe problem is known to be NP-complete

[18]. We will show that verifying FJR and FPJR are coNP-complete

by providing reductions from Balanced Bicliqe.

As mentioned above, our approach closely follows the tech-

nique used to establish the hardness of verifying EJR and PJR [1, 2].

Specifically, the authors construct a voting instance and a candidate

winning set based on an arbitrary instance of Balanced Bicliqe.

They then demonstrate that checking whether EJR or PJR is vio-

lated corresponds directly to determining the existence of an ℓ × ℓ
biclique. In this work, we adopt their constructions and apply more

refined reduction arguments.

Due to the similarity of the proofs and space limitations, we

present only the proof for the coNP-completeness of verifying FPJR.

The proof for the coNP-completeness of verifying FJR is provided

in the full version of this paper [22].

4.1 Verifying FPJR is coNP-complete
Theorem 4.2. The following problem is coNP-complete: Given an

arbitrary ballot profileA and a winning set𝑊 , does𝑊 satisfy FPJR?
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Algorithm 1 Construction for Hardness of Verifying PJR [2]

1: Input: A Balanced Bicliqe instance 𝐺 = (𝐿, 𝑅, 𝐸) and an

integer ℓ , with |𝑅 | ≥ ℓ ≥ 3.

2: Output: An election (𝑉 ,𝐶,A, 𝑘) and a designated winner set

𝑊 .

3: Let 𝑠 ← |𝑅 |.
4: Define the candidate set 𝐶 as the union of three sets 𝐶1,𝐶2,𝐶3

as follows:

• 𝐶1 = 𝐿,

• |𝐶2 | = ℓ − 1,
• |𝐶3 | = ℓ𝑠 + 2ℓ − 3𝑠 − 2.

5: Define the voter set 𝑉 as the union of three sets 𝑉1,𝑉2,𝑉3 as

follows:

• 𝑉1 = 𝑅,

• |𝑉2 | = ℓ · 𝑠 ,
• |𝑉3 | = ℓ𝑠 + 2ℓ − 3𝑠 − 2.

6: Define an arbitrary bijection 𝜙 : 𝑉3 → 𝐶3.

7: Define the approval sets A for each voter 𝑣 ∈ 𝑉 as follows:

𝐴𝑣 =


{𝑢 ∈ 𝐶1 | (𝑢, 𝑣) ∈ 𝐸} if 𝑣 ∈ 𝑉1,
𝐶1 ∪𝐶2 if 𝑣 ∈ 𝑉2,
{𝜙 (𝑣)} if 𝑣 ∈ 𝑉3 .

8: Set the committee size 𝑘 ← 2 · (ℓ − 1).
9: Select an arbitrary subset 𝑋 ⊆ 𝐶3 of size ℓ − 1 and define the

winner set𝑊 ← 𝑋 ∪𝐶2.

10: Return (𝑉 ,𝐶,A, 𝑘) and𝑊 .

Proof. It is easy to see that the problem is in coNP. A set of

candidates 𝑇 ⊆ 𝐶 and a set of voters 𝑆 ⊆ 𝑉 which is weakly

ℓ-cohesive with witness set 𝑇 and |𝑊 ∩ ⋃
𝑣∈𝑆 𝐴𝑣 | < ℓ gives a

certificate for showing that𝑊 violates FPJR.

For coNP-hardness, we reduce from the Balanced Bicliqe

problem. Given an instance ((𝐿, 𝑅, 𝐸), ℓ), we construct an election

(𝑉 ,𝐶,A, 𝑘) and a winning set𝑊 using Algorithm 1, due to Aziz

et al. [2]. In this construction, notice that

|𝑉 |
𝑘

=
𝑠+ℓ𝑠+(ℓ𝑠+2ℓ−3𝑠−2)

2(ℓ−1) = 𝑠 + 1.

Suppose that there exists an ℓ × ℓ biclique (𝐿′, 𝑅′) in 𝐺 . Then,

as shown by [2], PJR would be violated by 𝑅′ ∪𝑉2. Because FPJR
implies PJR, this means that FPJR is also violated.

For the converse direction, assume that FPJR is violated. Let

𝑆 ⊆ 𝑉 be a weakly ℓ ′-cohesive coalition with witness set 𝑇 such

that |⋃𝐴𝑣 ∩𝑊 | < ℓ ′.
We show that 𝑆 ⊆ 𝑉1 ∪𝑉2. For if 𝑆 ∩𝑉3 ≠ ∅, then because each

voter in 𝑉3 approves only of one distinct candidate, we would have

ℓ ′ = 1, implying that𝑊 ∩𝐴𝑣 = ∅ for all 𝑣 ∈ 𝑆 . Therefore, 𝑆 ⊆ 𝑉1∪𝑉3,
as every voter in 𝑉2 approves the winners from 𝐶2. Because each

voter in 𝑉3 approves a distinct candidate, that candidate must be in

𝑇 , and |𝑇 | ≥ |𝑆 ∩𝑉3 | ≥ |𝑆 | − |𝑉1 | = |𝑆 | − 𝑠 , or |𝑆 | ≤ |𝑇 | + 𝑠 . However,
by definition of weak cohesiveness, |𝑆 | ≥ 𝑛

𝑘
· |𝑇 | = (𝑠 + 1) · |𝑇 |, so

|𝑇 | = 1. Because there exists a voter 𝑣 ∈ 𝑆∩𝑉3,𝑇 must equal {𝜙 (𝑣)},
but 𝜙 (𝑣) is not approved by any voters in 𝑆 \ {𝑣}, thus contradicting
the weak cohesiveness of 𝑆 .

Having established that 𝑆 ⊆ 𝑉1 ∪𝑉2, we proceed to show that

𝑆 ∪𝑇 contains an ℓ × ℓ biclique in the given graph.

Since |𝑉1 | = 𝑠 < 𝑠 + 1 ≤ |𝑆 |, 𝑆 must include at least one voter 𝑣

from 𝑉2. This voter 𝑣 approves all of 𝐶2 ⊆𝑊 , so |𝐴𝑣 ∩𝑊 | ≥ ℓ − 1.
Because𝑊 violates FPJR for 𝑆 , which is weakly ℓ ′-cohesive, we
obtain that ℓ ′ ≥ |𝐴𝑣 ∩𝑊 | ≥ ℓ − 1, or ℓ ′ ≥ ℓ . Because of the size

requirement for weak cohesiveness, |𝑆 | ≥ |𝑉 |
𝑘
· |𝑇 | = (𝑠 + 1) · |𝑇 |.

But |𝑆 | ≤ |𝑉1 | + |𝑉2 | = 𝑠 · (ℓ +1), implying that (𝑠 +1) · |𝑇 | ≤ 𝑠 · (ℓ +1).
Hence, |𝑇 | ≤ 𝑠

𝑠+1 · (ℓ + 1), implying that |𝑇 | ≤ ℓ . But we can also

lower-bound the size of 𝑇 as |𝑇 | ≥ |𝑇 ∩ 𝐴𝑣 | ≥ ℓ ′. Therefore, we
obtain that ℓ ′ ≤ |𝑇 | ≤ ℓ ≤ ℓ ′, implying that |𝑇 | = ℓ ′ = ℓ .

Because each voter 𝑣 ∈ 𝑆 approves of at least ℓ ′ candidates
in 𝑇 , each voter in 𝑆 must approve all candidates in 𝑇 . Moreover,

|𝑆 ∩𝑉1 | ≥ ℓ · (𝑠 + 1) − |𝑉2 | = ℓ · (𝑠 + 1) − ℓ𝑠 = ℓ , so 𝑆 contains at least

ℓ voters from𝑉1. Now let 𝑅′ be an arbitrary subset of ℓ voters from

𝑆 ∩𝑉1, and 𝐿′ = 𝑇 . We have argued that (𝐿′, 𝑅′) is an ℓ × ℓ biclique.
This completes the proof of correctness, and therefore shows

that deciding whether𝑊 satisfies FPJR is coNP-complete. □

5 CONCLUSION
We presented a new proportionality axiom called Full Proportional

Justified Representation (FPJR), situated between PJR and FJR, but

incomparable to EJR. We related FPJR to various other notions of

proportionality, and showed that several well-known algorithms

output committees satisfying FPJR. As for other axioms, verifying

whether a committee satisfies FPJR is coNP-complete.

Our notion grew out of a desire to understand FJR better. Finding

an efficient algorithm for computing a committee satisfying FJR

is still one of the central open questions in the area, along with

understanding if the core is always guaranteed to be non-empty.

FPJR, similar to EJR, PJR, and FJR, can be naturally extended

to participatory budgeting contexts. Further exploration of the

axiomatic foundations and algorithmic properties of FPJR in such

scenarios offers an interesting avenue for future research.

There is increasing interest in proportionality axioms that allow

polynomial-time verification, which we showed FPJR to not allow.

An intriguing open question is whether stronger axioms than FPJR

or FJR can be defined while retaining efficient verifiability, akin to

the enhanced axioms EJR+ and PJR+.
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