
Game of Thoughts: Iterative Reasoning in Game-Theoretic
Domains with Large Language Models

Benjamin Kempinski

Radboud University

Nijmegen, Netherlands

benjaminkempinski@gmail.com

Ian Gemp

Google DeepMind

London, United Kingdom

imgemp@google.com

Kate Larson

Google DeepMind/University of

Waterloo

Montreal/Waterloo, Canada

katelarson@google.com

Marc Lanctot

Google DeepMind

Montreal, Canada

lanctot@google.com

Yoram Bachrach

Meta

London, United Kingdom

yorambac@gmail.com

Tal Kachman

Radboud University

Nijmegen, Netherlands

kachman.tal@gmail.com

ABSTRACT
We explore the strategic reasoning capabilities of large language

models (LLMs). We first show that naively allowing LLMs to select

actions in games can lead to sub-optimal and easily exploitable

strategies. To address this limitation we propose several algorithms

that guide LLMs to iteratively refine their action choices by sim-

ulating game outcomes in self-play, akin to cognitive hierarchy

models used to characterize human thought processes in strategic

settings. Our empirical results in several prominent resource allo-

cation and auction settings indicate that our approach produces

stronger and less exploitable strategies. Hence, emulating human

decision-making models can enable us to improve the reasoning

capabilities of LLMs in multiagent interactions.

KEYWORDS
Game Theory, LLMs, Theory of Mind

ACM Reference Format:
Benjamin Kempinski, IanGemp, Kate Larson,Marc Lanctot, YoramBachrach,

and Tal Kachman. 2025. Game of Thoughts: Iterative Reasoning in Game-

Theoretic Domains with Large Language Models. In Proc. of the 24th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 10 pages.

1 INTRODUCTION
Large Language Models (LLMs) have achieved strong performance

on many tasks, from question answering and text summarization

to code generation and natural language understanding [13, 28, 29].

There has been recent excitement in the possibility of using LLMs

as autonomous agents that perform complex tasks on their own or

with others [23, 33, 34, 43, 48, 50]. To performwell, LLM agents must

have strong reasoning and planning capabilities [17, 18, 41]. This is

especially demanding in settings where the agent is also affected by

the choices made by other intelligent agents occupying the same

environment [15, 24, 35, 37, 51, 54]. Some work has attempted to

evaluate or improve LLM “Theory of Mind”, i.e. the ability of LLMs

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

to reason about the beliefs and thoughts of other agents [7, 36, 40,

42]. There are also methods for improving the reasoning capabilities

of LLMs by re-querying the LLM or breaking down the process

of responding to the query into smaller reasoning steps, such as

Chain of Thought and similar methods [14, 38, 44, 45].

Despite this, there are still many limitations in the reasoning

and planning capabilities of LLMs (e.g. [17, 41]), especially when

reasoning, strategically, about other agents [1, 15, 26, 35, 53, 54].

Game theory studies interactions between self-interested agents

that are affected by each other’s actions [30], providing a founda-

tion for studying multi-agent capabilities of LLMs [10, 11]. In such

settings multiple agents operate in the same environment, making

strategic action choices knowing that their utility depends not only

on their own actions but also on the actions of their peers.

Our Contribution:We study the strategic behaviour of LLMs.

Using well-studied games from the literature, including Prisoners’

Dilemma, Colonel Blotto [31], all-pay auctions [5] (and others),

we show that naïvely using LLMs to select actions leads to sub-

optimal and easily exploitable strategies. Taking inspiration from

the behavioural economics literature [8], and in particular cog-

nitive hierarchy models (CHT) such as level-𝑘 reasoning [4, 49]

that model human strategic reasoning [4, 9, 47, 49], we propose a

family of three algorithms: Best Response Iterative Reasoning Lan-
guage Model (BRIRLM), Fictitious Play Iterative Reasoning Language
Model (FPIRLM), and Policy Space Response Oracle Language Model
(PSROLM). These algorithms combine LLM responses with an “outer

loop” that allows for levelled reasoning by simulating game out-

comes under different assumptions of the strategic capabilities of

the other agents. We show empirically that our approach produces

stronger and less exploitable strategies compared to LLM bench-

marks.

1.1 Notation and Preliminaries
We describe basic concepts from game theory used in this work [30].

In a two-player normal form game 𝐺 , players select actions
simultaneously, and the outcome is determined by the choices of

both players. Let 𝐴1 = {𝑎1
1
, . . . , 𝑎1

𝑘
} be the set of pure strategies

available to player 1 and let 𝐴2 = {𝑎2
1
, . . . , 𝑎2𝑚} be the strategies

available to player 2. Denote the set of strategy profiles, consisting
of a strategy choice for both players as 𝐴 = 𝐴1 ×𝐴2. The utility of

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1088

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Figure 1: Overview of our iterative reasoning approach. To
generate level 0 strategies we prompt the LLM with a game
description and ask that it return an action. We iteratively
refine strategies through multiple iterations, asking the LLM
to produce candidate strategies by describing the game and
the previously produced actions (levels 0,1 . . .𝑘 − 1).

each player depends on the actions selected by both for them, i.e.

the payoffs are 𝑢 : 𝐴→ R𝑛
, where 𝑢 (𝑎) = (𝑢1 (𝑎), 𝑢2 (𝑎)) for 𝑎 ∈ 𝐴,

and where each player 𝑖 tries to maximize their individual utility

𝑢𝑖 . A game is zero-sum if for any profile 𝐴 we have

∑
𝑖 𝑢𝑖 (𝐴) = 0.

A mixed strategy is a probability distribution Δ over pure strate-

gies, i.e. Δ = (𝑝1, . . . , 𝑝𝑛) where 𝑝𝑖 denotes the probability that Δ

assigns to pure strategy 𝑠𝑖 (so
∑𝑘
𝑖=1 𝑝𝑖 = 1). Given a mixed strategy

Δ, we denote sampling a random pure strategy 𝑠 from this distri-

bution by 𝑠 ∼ Δ, and obtaining a sample of 𝑘 pure strategies from

the mixed strategy Δ by (𝑠1, 𝑠2, . . . 𝑠𝑘) ∼ Δ (short for 𝑠𝑖 ∼ Δ for all

𝑖 ∈ [𝑘]).
Given a mixed strategy profile 𝜎 = (𝜎1, 𝜎2) the expected utility

of 𝑢𝑖 of player 𝑖 is 𝑢𝑖 (𝜎1, 𝜎2) =
∑
(𝑎1,𝑎2) ∈𝐴 𝜎1 (𝑎1)𝜎2 (𝑎2)𝑢𝑖 (𝑎1, 𝑎2).

The best response for player 𝑖 to his opponent’s strategy 𝜎−𝑖 is
𝐵𝑅(𝜎−𝑖) = argmax𝜎𝑖 ∈Δ(𝐴𝑖) 𝑢𝑖 (𝜎𝑖 , 𝜎−𝑖), while a Nash equilibrium

for a two-player game is defined as a pair ofmutually best-responding

strategies. We will be particularly interested in exploitability of

a strategy, 𝜎𝑖 defined as 𝑒 (𝜎𝑖) = [max𝜎 ′
𝑖
∈Δ(𝐴𝑖) 𝑢𝑖 (𝜎′𝑖 , 𝜎−𝑖) −𝑢𝑖 (𝜎)],

where 𝜎′
𝑖
are all alternative strategies of player 𝑖 . The lower the

value of 𝑒 (𝜎𝑖), the less exploitable that mixed strategy is. Less ex-

ploitable strategies are considered to be of higher quality, as they

make it difficult for the opponent to capitalize on their knowledge

of the strategy and take advantage of the player.

2 METHODOLOGY
We develop algorithms for improving game-theoretic reasoning

by LLMs, to enable LLM agents to select better-performing and

less exploitable strategies in games. Our overall approach mimics

the logic of cognitive hierarchy models or 𝑘-level iterative reason-

ing models [4, 9], as shown in Figure 1. The approach starts with

an initial strategy, level 0, proposed by the LLM, and iteratively

refines it. Each refinement step uses the LLM to respond to the

previous strategy at step 𝑘 and applies a simulation to identify

promising improvements and generate the next-level strategies

for step or level 𝑘 + 1. We propose three specific algorithms, all

based on the same theme of combining LLM-based strategy gen-

eration with game simulations. BRIRLM, short for Best Response

Iterative Reasoning Language Model, only considers level 𝑘 − 1

strategies when producing level 𝑘 strategies; FPIRLM, short for

Fictitious Play Iterative Reasoning Language Model, responds to a

uniform mixture of all the previous levels, 1, 2, . . . , 𝑘 − 1, inspired
the Fictitious Play algorithm [6]; PSROLM, short for Policy Space

Response Oracle Language Model, where the best response at level

𝑘 is based on responding to the Nash equilibrium over the previous

levels 1, 2, . . . , 𝑘 − 1 , inspired by Response Oracles [22, 27] from

the game theory and reinforcement learning literature (sometimes

called “Double Oracle” algorithms). We also consider two LLM base-

lines; LMNS (Language Model Naïve Strategy), directly queries

the LLM to produce game strategies; CoT, is based on Chain-of-

Though [44, 45] querying of the LLM to create strategies.

Our algorithms apply a cognitive-hierarchy-inspired model, com-

bining LLMs with a multi-agent simulation of game outcomes. Our

LLM building blocks query an LLM to obtain a strategy in the game.

The first, 𝐿𝐿𝑀𝐺𝑎𝑚𝑒𝑄𝑢𝑒𝑟𝑦, queries the LLM with a prompt 𝑃 de-

scribing the game rules, and requesting the LLM to select a strategy

in the game. The second, 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦, is similar but asks

the LLM to choose a strategy in the game assuming that the oppo-
nent is likely to choose some strategy 𝑠 . Hence, 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦

asks the LLM to best respond to the opponent strategy 𝑠 .

LLM Choice: We used the Llama-2-70B [39] model (see the

appendix for experiments with other LLM engines and rationale

for choosing this model).

Prompts for LLMGameQuery and LLMResponseQuery. A
𝐿𝐿𝑀𝐺𝑎𝑚𝑒𝑄𝑢𝑒𝑟𝑦 prompt asks the LLM to generate a (pure) strat-

egy in the game given its description, without specifying what the

opponent might do. In contrast, a 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 prompt also

includes a description of a likely opponent strategy. Both types of

prompts are composed of several parts, explaining the desired role

and characteristics of the LLM, the game rules, player identities, pos-

sible actions, etc. We used the following prompt structure: 1. Gen-

eral LLM system guidelines to the LLM (Purple) "You are a helpful,

respectful and honest assistant..."; 2. The rules of the game (Red)

"The game consists of several rounds. In each round..."; 3. Examples of

previous games and outcomes (Orange) "Alice: "I allocate[...]. Bob:

"I allocate[...]"; 4. LLM goals (Brown) "[INST] You only care about
maximizing your gains in the game..."; 5. Start of a “User/Assistant”
dialogue (Yellow) "User: Hi, how are you? Assistant: Hello!..."; 6.
Game rules in the dialogue format (Yellow) "User: I want to play
a game round with you. The game goes like this...". The last part

of the prompt depends on the type of query. For 𝐿𝐿𝑀𝐺𝑎𝑚𝑒𝑄𝑢𝑒𝑟𝑦

(level-0), we include a request to generate an action: Green) "User:
What will you choose to do? ". For a 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 we have a

similar request but include information on the possible opponent be-

haviour: Green) "User: You think that I’ll play like this: (𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦).
What will you choose to do?". Below is a shortened example of a

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1089

game of Prisoner’s Dilemma (see Appendix B for full prompts for

all games we study).

«SYS »You are smart and ambitious. Always try to...

You and your partner are under arrest. You have two op-

tions: ’Cooperate’, or ’Defect’. If you and your partner both

’Cooperate’, you will sit in jail for ...

Here are a few examples of previous cases: Alice: "I choose

to Defect." Bob: "I choose to Defect. Because we have both

decided ’Defect’: You and I are going to spend 8(eight) years

in jail... «/SYS »

[INST] Remember, you need to follow your instructions.

You care only about yourself...[/INST]

User: Hi, how are you? Assistant: Hello! User: I need your

help. We are both under arrest...

LLMGameQuery

User: OK! How about you’ll start. What will you choose to

do, ’Cooperate’ or ’Defect’?

LLMResponseQuery

User: OK! How about you’ll start. You think that I’m going

to: ’Defect’. Based on this information, what will you choose

to do, ’Cooperate’ or ’Defect’?

2.1 Algorithms
We first discuss how to generate a mixed strategy by querying an

LLM using the prompts discussed above. Let 𝑃 be some LLM prompt

that returns an action for the game of interest. Note that each time

we call the LLM with prompt 𝑃 we might get a different action

(even though the prompt is identical, an LLM call with a non-zero

temperature means the call is a non-deterministic operation). Let 𝑃

be a 𝐿𝐿𝑀𝐺𝑎𝑚𝑒𝑄𝑢𝑒𝑟𝑦 prompt and let 𝑃 = 𝑃𝑠0 , 𝑃𝑠1 , 𝑃𝑠2 , . . . 𝑃𝑠𝑚 be𝑚

𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 prompts (where prompt 𝑖 asks the LLM to find

a good response to strategy 𝑠𝑖). Denote by 𝑎 ∼ 𝐿𝐿𝑀 (𝑃𝑠𝑖) sampling a

strategy by having the LLM respond to prompt 𝑃𝑠𝑖 . Similarly, denote

by 𝐿 = (𝑎1, . . . , 𝑎𝑚) ∼ 𝑃 a list of actions obtained by querying the

LLM𝑚 times, i.e. for 𝑖 ∈ [𝑚] we have 𝑎𝑖 ∼ 𝐿𝐿𝑀 (𝑃𝑠𝑖). Denote the
frequency of action 𝑖 in this list as 𝑓𝑖 (𝐿) = |{ 𝑗 |𝑎 𝑗 = 𝑎𝑖 }|/𝑚.

An LLM-based algorithm for selecting actions in a game takes

the game description as input (used in the prompt), and produces

a mixed strategy Δ for the game, i.e. a probability distribution

over the possible pure strategies (i.e. actions) in the game. An LLM

with strong game-theoretic reasoning capabilities should be able

to provide strong strategies in a game given its description. Hence,

our baseline algorithm is called Language Model Naïve Strategy

(𝐿𝑀𝑁𝑆 shown in Algorithm 1), and reflects the simplest approach

of calling the LLM multiple times with a prompt 𝑃 which includes

the game description, then using the relative frequencies of the

actions returned by the LLM to create a mixed strategy Δ in the

game, through the CreateMixedStrategy(𝐿) call. We have also tried

a CoT prompting approach [46, 52], which has been shown to be

successful in improving LLM reasoning; this encourages the LLM

to reason about the opponent’s actions and their consequences.

Algorithm 1 Language Model Naïve Strategy (LMNS)

Require: Prompt 𝑃

Ensure: Mixed strategy Δ
1: for 𝑖 = 1 to 𝑛 do
2: 𝑎𝑖 ← LLMGameQuery(𝑃) ⊲ LLM produces a pure strategy
3: Δ← CreateMixedStrategy(𝐿 = (𝑎1, 𝑎2, . . . 𝑎𝑛))
4: return Δ ⊲ Return the mixed strategy

This second baseline, CoT is identical, except the prompt given

the LLM is a Chain-of-Thought prompt, shown in full in appendix B.

This prompt asks the LLM first to explain what strategy it believes

the opponent is likely to play, and then to select its own strategy

given its previous response.

Earlier work, as well as our empirical results (see Section 3.2),

show that simply requesting a strategy from the LLM yields poor

performance even for simple games (both with LMNS or CoT). We

propose improving the game-theoretic reasoning of LLMs through

algorithms employing a CHT process, combining LLMs and multi-

agent simulation; they first create a “level-0” mixed strategy Δ0

by querying the LLM (via 𝐿𝐿𝑀𝐺𝑎𝑚𝑒𝑄𝑢𝑒𝑟𝑦), then iteratively refine

the mixed strategy, progressing from level-1 to level-2 and so on

(where each level 𝑘 is reflected through a mixed strategy Δ𝑘). The
algorithms (BRIRLM, FPIRLM, PSROLM) differ in how the next level

𝑘 is obtained from the previous level strategies Δ0,Δ1, . . . ,Δ𝑘−1
𝐵𝑅𝐼𝑅𝐿𝑀 constructs the next level strategy Δ𝑘 by best respond-

ing to strategies sampled from the previous level Δ𝑘−1. Similarly

to 𝐿𝑀𝑁𝑆 , it first queries the LLM multiple times, to generate sev-

eral game strategies 𝑎1, . . . , 𝑎𝑚 ; however, each such strategy 𝑎 𝑗
is generated by having the LLM respond to a strategy 𝑠 𝑗 sam-

pled at random from the previous level 𝑠 𝑗 ∼ Δ𝑘−1, i.e. by calling

𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 (𝑃𝑠 𝑗) (where 𝑃𝑠 𝑗 is a prompt stating that the

opponent is likely to play 𝑠 𝑗). These strategies 𝑎1, . . . , 𝑎𝑚 are con-

sidered as candidate strategies to be evaluated. BRIRLM determines

the probability of playing each candidate strategy 𝑎𝑐 in the mixed

strategy Δ𝑘 generated for the next level 𝑘 by applying 𝑔 simula-
tion rounds (where 𝑔 is a constant algorithm parameter). In each

simulation round, we generate a score 𝑑𝑐 for each candidate 𝑎𝑐 by

computing its mean payoff against a sample 𝑋 = (𝑥1, 𝑥2, . . . 𝑥𝑞)
of strategies sampled from the level 𝑘 − 1 strategy Δ𝑘−1 (the sam-

ple size 𝑞 is a constant algorithmic parameter).
1
The function for

computing this score is 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑖𝑛𝑔, given in Algorithm 2.

The 𝑗-th simulation round in BRIRLM ends by selecting the strat-

egy 𝑎𝑤𝑗
with the highest score 𝑤 𝑗 = argmax𝑡 𝑑𝑡 as the winner

candidate of the simulation round. The relative frequency in which

candidate 𝑎𝑐 is the winner of a simulation round is used to deter-

mine its probability under the next-level mixed strategy Δ𝑘 (i.e. the

more simulation rounds a candidate 𝑎𝑐 wins, the higher its proba-

bility in Δ𝑘). as such, the complexity of BRIRLM is 𝑂 (𝑘𝑔𝑚), where
1
If the number of strategies is low enough, we can exactly compute the expected

payoff of candidate 𝑎𝑐 against the mixed strategy Δ𝑘−1 , but this is intractable when
the number of strategies in the game is very high.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1090

Algorithm 2 Simulation scoring

Require: Candidate strategy 𝑎, strategy sample 𝐿 = (𝑠1, 𝑠2, . . . 𝑠𝑞)
Ensure: Candidate score against the sampled strategies.

1: for 𝑖 = 1 to |𝐿 | do
2: 𝑢𝑖 ← u(𝑎, 𝑠𝑖) ⊲ Payoff vs. 𝑠𝑖

return
∑|𝐿 |

𝑖=1
𝑢𝑖

|𝐿 | ⊲ Mean payoff vs. sample 𝐿

𝑘 is the k-iterative levels, 𝑔 is the number of simulation rounds and

𝑚 is the number of LLM calls per round. The full BRIRLM algorithm

is given in Algorithm 3.

Algorithm 3 Best Response Iterative Language Model (BRIRLM)

Require: LLM, Number of simulation candidates 𝑞

Ensure: Mixed strategy Δ𝑘
1: for 𝑘 = 1 to 𝑛 do
2: for 𝑗 = 1 to𝑚 ⊲ Generate𝑚 candidate strategies

do
3: 𝑠 𝑗 ∼ Δ𝑘−1 ⊲ Sample from the level 𝑘 − 1 distribution
4: 𝑎 𝑗 ← 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 (𝑃𝑠 𝑗) ⊲ Response to 𝑠 𝑗
5: for 𝑗 = 1 to 𝑔 do ⊲ Perform 𝑔 simulation rounds
6: 𝑋 = (𝑥1, 𝑥2, . . . 𝑥𝑞) ∼ Δ𝑘−1 ⊲ Sample from Δ𝑘−1
7: for 𝑐 = 1 to𝑚 do
8: 𝑑𝑐 ← 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑖𝑛𝑔(𝑎𝑐 , 𝑋 = (𝑥1, 𝑥2, . . . 𝑥𝑞))
9: 𝑤 𝑗 = argmax𝑡 𝑑𝑡 ⊲ Get index𝑤 of strategy 𝑎 with the

highest mean score vs. sample 𝑋
10: 𝐿𝑘 ← (𝑎𝑤1

, 𝑎𝑤2
, . . . 𝑎𝑤𝑔

)
11: Δ𝑘 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑖𝑥𝑒𝑑𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (𝐿𝑘)

return Δ𝑘 ⊲ Resulting level 𝑘 mixed strategy

𝐹𝑃𝐼𝑅𝐿𝑀 uses similar building blocks as 𝐵𝑅𝐼𝑅𝐿𝑀 (and so has

the same complexity of 𝑂 (𝑘𝑔𝑚)), but applies a process akin to

the Fictitious Play [6] algorithm (FP) from game theory. FP iter-

atively selects strategies, where the strategy chosen in step 𝑘 is

a best response to strategies selected from all the previous levels
0, 1, . . . , 𝑘 − 1. Hence, 𝐹𝑃𝐼𝑅𝐿𝑀 is different from 𝐵𝑅𝐼𝑅𝐿𝑀 in that

it attempts to identify strategies that do well not just versus the

previous level Δ𝑘−1, but versus a uniform random mixture of all
the previous levels Δ0,Δ1, . . . Δ𝑘−1; 𝐹𝑃𝐼𝑅𝐿𝑀 creates a set of can-

didates 𝑎1, . . . , 𝑎𝑚 , but rather than having the LLM respond to a

strategy 𝑠 𝑗 sampled at random from the immediate previous level
𝑘 − 1, it first chooses a historical level 𝑟 uniformly at random from

0, 1, . . . , 𝑘 − 1, then selects a strategy from that level 𝑠 𝑗 ∼ Δ𝑟 , by
calling 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 (𝑃𝑠 𝑗). Similarly to 𝐵𝑅𝐼𝑅𝐿𝑀 , the candi-

dates are examined in 𝑔 simulation rounds, each computing the

mean score of all candidates versus a sample 𝑋 = (𝑥1, 𝑥2, . . . 𝑥𝑞)
of strategies. However, 𝐹𝑃𝐼𝑅𝐿𝑀 builds the sample 𝑋 by selecting

strategies from all the previous levels Δ0, . . . Δ𝑘−1 (each strategy

𝑥𝑡 in the sample 𝑋 is chosen by first selecting a level 𝑟 uniformly at

random from (0, 1, . . . , 𝑘 − 1), then selecting the strategy 𝑥𝑡 from

that level Δ𝑟). Again, in each simulation round we select the top-

performing candidate strategy against the sample 𝑋 , and use the

relative frequency in which candidate 𝑎𝑐 is the winner of a simula-

tion round as its probability under the next-level mixed strategy

Δ𝑘 . FPIRLM is shown in Algorithm 4.

Algorithm 4 Fictitious Play Iterative Language Model (FPIRLM)

Require: LLM, Number of simulation candidates 𝑞

Ensure: Mixed strategy Δ𝑘
1: for 𝑘 = 1 to 𝑛 do
2: for 𝑗 = 1 to𝑚 ⊲ Generate𝑚 candidate strategies

do
3: 𝑟 ∼ (0, 1, . . . 𝑘 − 1) ⊲ Select previous level uniformly
4: 𝑠 𝑗 ∼ Δ𝑟 ⊲ Sample strategy from selected level
5: 𝑎 𝑗 ← LLMResponseQuery() (𝑃𝑠 𝑗) ⊲ Respond to 𝑠 𝑗
6: for 𝑗 = 1 to 𝑔 do ⊲ Perform 𝑔 simulation rounds
7: for 𝑢 = 1 to 𝑔 do ⊲ Generate a sample using a mixture

over previous levels
8: 𝑟 ∼ (0, 1, . . . 𝑘 − 1) ⊲ Select previous level uniformly
9: 𝑥𝑞 ∼ Δ𝑟 ⊲ Sample strategy from selected level
10: 𝑋 = (𝑥1, 𝑥2, . . . 𝑥𝑞)
11: for 𝑐 = 1 to𝑚 do
12: 𝑑𝑐 ← 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑖𝑛𝑔(𝑎𝑐 , 𝑋 = (𝑥1, 𝑥2, . . . 𝑥𝑞))
13: 𝑤 𝑗 = argmax𝑡 𝑑𝑡 ⊲ Get index𝑤 of strategy 𝑎 with the

highest utility score
14: 𝐿𝑘 ← (𝑎𝑤1

, 𝑎𝑤2
, . . . 𝑎𝑤𝑔

)
15: Δ𝑘 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑖𝑥𝑒𝑑𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (𝐿𝑘)

return Δ𝑘 ⊲ Resulting level 𝑘 mixed strategy

𝑃𝑆𝑅𝑂𝐿𝑀 is our last LLM-based iterative method, inspired by Re-

sponse Oracles algorithms such as the Double Oracle method [27]

and Policy Space Response Oracle [22], which maintain a set of

pure strategies in the game and iteratively adds strategies into it. In

iteration 𝑘 , the standard PSRO computes a Nash equilibrium over

the current strategies 𝑋𝑘−1 to obtain a mixed strategy Δ𝑘−1, then
identifies a pure strategy 𝑠𝑘 that best responds to Δ𝑘−1, and adds

it to the set so 𝑋𝑘 = 𝑋𝑘−1 ∪ {𝑠𝑘 }. Our PSROLM method follows a

similar recipe, but uses an LLM and multi-agent simulation to select

a strategy to add. In our PSROLM, level 𝑘 − 1 consists of a mixed

strategy Δ𝑘−1 which is the Nash equilibrium distribution over the

strategy support set 𝑋𝑘−1. To obtain the next strategy to add to the

set𝑋 , PSROLMprompts the LLM to respond to a strategy 𝑠 𝑗 selected

at random from Δ𝑘−1 through calls to 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 (𝑃𝑠 𝑗). It
then adds to 𝑋 the strategy 𝑠𝑤 which was returned most frequently

from the LLM (so 𝑋𝑘 = 𝑋𝑘−1 ∪ {𝑠𝑤}), and computes the Nash equi-

librium over the strategy set 𝑋𝑘 to obtain the new mixed strategy

Δ𝑘 .
2
We initialize the set 𝑋 to two strategies chosen at random.

The full PSROLM approach is given in Algorithm 5.

3 EMPIRICAL ANALYSIS
We evaluate our algorithms and the baselines over multiple games

to see which produces superior or less exploitable strategies. The

payoff a strategy achieves also depends on the opponent’s strat-

egy, so we provide comparisons between each pair of algorithms /

baselines. We also present the exploitability of the strategies pro-

duced by each algorithm (which does not depend on the opponent’s

strategy).

2
The Nash equilibrium is calculated in each round. In cases where the computation

of the Nash equilibrium becomes prohibitively slow (especially for later rounds), one

may evict a strategy from the set 𝑋 , such as the oldest strategy in the set or the one

with the lowest probability mass under the Nash equilibrium.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1091

Algorithm 5 Policy Space Response Oracle Language Model

(PSROLM)

Require: LLM, Initial Random Strategies 𝑠1, 𝑠2
Ensure: Mixed strategy Δ𝑘
1: 𝑋 ← [𝑠1, 𝑠2] ∈ A1 ⊲ Initial strategy set
2: Δ0 ← 𝑁𝑎𝑠ℎ𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚(𝑋) ⊲ Level 0: initial Nash
3: for 𝑘 = 1 to 𝑛 do
4: for 𝑗 = 1 to𝑚 do
5: 𝑠 𝑗 ∼ Δ𝑘−1 ⊲ Sample strategy from previous level
6: 𝑎 𝑗 ← 𝐿𝐿𝑀𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑄𝑢𝑒𝑟𝑦 (𝑃𝑠 𝑗) ⊲ Respond to 𝑠 𝑗
7: 𝑤 ← argmax𝑡 𝑓𝑡 (𝐿 = (𝑎1, 𝑎2, . . . 𝑎𝑚)) ⊲ Index of most com-

mon response
8: 𝑋 = 𝑋 ∪ {𝑎𝑤} ⊲ Add most frequent response strategy to 𝑋
9: Δ𝑘 ← 𝑁𝑎𝑠ℎ𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚(𝑋)

return Δ𝑘 ⊲ Resulting level 𝑘 mixed strategy

3.1 Evaluated Games
We briefly describe the games used in our empirical evaluation (see

a more detailed description in the Appendix, and the cited papers

for full details). We considered several famous games, ranging from

the classical Prisoner’s Dilemma [30], through the Colonel Blotto

resource allocation game [31] and the Eleven-Twenty and Tennis

Coach Games [2, 3], and finally an all-pay auction [5, 12]. Of the

many possibile games, we opted to choose those less extensively

researched in the context of LLMs.

Prisoner’s Dilemma [30], and the variant called Snow Shov-

eller [21] is a two-player game, where each player has two possible

strategies: Cooperate (𝐶) and Defect (𝐷). The game has four pos-

sible payoffs, 𝑇, 𝑅, 𝑃, 𝑆 (for “Temptation”, “Reward”, “Punishment”,

“Sucker”), satisfying 𝑇 > 𝑅 > 𝑃 > 𝑆 and 2𝑅 > 𝑇 + 𝑆 . If both players

select𝐶 , they both have a payoff of 𝑅; If both select 𝐷 they both get

a payoff of 𝑃 . If one player selects 𝐶 and the other selects 𝐷 , the

player that selected𝐶 gets the payoff of 𝑆 and the one that selected

𝐷 gets the payoff of 𝑇 . The game is set up so that 𝐷 is a dominant

strategy: a player is always better off selecting 𝐷 rather than 𝐶 (no

matter what the other player does).

Colonel Blotto is a resource allocation game [25], well-studied

in both theory [32] and human behaviour [4, 19]. The game has

two players (“colonels”), and player 𝑖 ∈ {1, 2} has a total of 𝑏𝑖
units, which are to be allocated to𝑚 battlefields. A pure strategy

for player 𝑖 is an allocation 𝑞𝑖
1
, 𝑞𝑖

2
, . . . , 𝑞𝑖𝑚 of his units (with 𝑞𝑖𝑥 of 𝑖’s

units allocated to battlefield 𝑥 ∈ {1, . . . ,𝑚}, so∑𝑚
𝑥=1 𝑞

𝑖
𝑥 = 𝑏𝑖 . Player

𝑖 wins battlefield 𝑥 if they have more troops there, i.e. if 𝑞𝑖𝑥 > 𝑞
𝑗
𝑥

(similarly, if 𝑞
𝑗
𝑥 > 𝑞𝑖𝑥 then 𝑗 wins battlefield 𝑥). If 𝑞𝑖𝑥 = 𝑞

𝑗
𝑥 then

neither player wins battlefield 𝑥 . The game is zero-sum, with the

player who won more battlefields achieving a payoff of 1 and the

other player achieving a payoff of −1 (if the players win an equal

number of battlefields then both get a payoff of 0).

Eleven-Twenty is a game designed to study 𝑘-level iterative

reasoning [2], where the strategies consist of all integers in the

range eleven to twenty (inclusive). Each player gets an amount

of money identical to their chosen number; however, if a player

selects exactly one less than their peer, they get a bonus of twenty.

For instance, if Alice asks for 15 and Bob asks for 14, Alice achieves

a payoff of 15, while Bob’s payoff is 14 + 20 = 24.

(a) LMNS Mixed strategy (b) COT Mixed strategy

Figure 2: LMNS (a) and COT (b) mixed strategies in the
Colonel Blotto Game. The vertical axis shows all 45 possible
unit allocations, while the horizontal axis shows the proba-
bility of each strategy. The line indicates uniform random
probability. Both LMNS and COT strategies deviate slightly
from uniform, having a bias towards empty-field strategies.

Tennis Coach is another game designed to study iterative rea-

soning [2]. In the game, two coaches each have four players, with

the ability levels 𝐴+, 𝐴, 𝐵+, 𝐵, ranked from highest to lowest ability.

A coach selects an ordering of their players (i.e. a permutation).

The first players in the orderings of both coaches compete, then the

second players, and so on. A coach obtains 1 point for each game

they win and -1 point for each game they lose (a tie gives 0 points

to both). For instance, if Alice selects the permutation 𝐴+, 𝐴, 𝐵+, 𝐵,
and Bob selects 𝐴, 𝐵+, 𝐵, 𝐴+ then Alice wins the first game (𝐴+ vs
𝐴), wins the second game (𝐴 vs 𝐵+), wins the third game (𝐵+ vs 𝐵),
and loses the fourth game (𝐵 vs 𝐴+); hence Alice gets a payoff of

1 + 1 + 1 − 1 = 2 and Bob a payoff of (−1) + (−1) + (−1) + 1 = −2.
All-Pay Auctions are a well-studied form of auctions [5, 12, 20].

In the game, every player submits a bid 𝑏, and the player with

the highest bid obtains a reward worth 𝑟 dollars; all the players

(including whoever did not win) pay their bid. The highest bidder

with a bid of 𝑏𝑤 thus gets 𝑟 −𝑏𝑤 and a non-winner who bid 𝑏𝑙 gets

−𝑏𝑙 . In the case of a tie with bid 𝑏, both players equally share the

reward worth 𝑟 and pay their bid 𝑏, yielding a reward of
𝑟
2
− 𝑏 for

both. We use a reward of 𝑟 = 16, and have discretized bids, so the

allowed bids are {0, 1, 2, . . . , 16}.

3.2 Empirical Results
We will show the main results for the Colonel Blotto game here.

For the exact prompts, see appendix B. For supplementary results

in Colonel Blotto, Prisoners dilemma, Eleven-Twenty, Tennis coach

and First-bid all-pay auction, see appendices C to G respectively.

3.2.1 Colonel Blotto. LMNS & COT In order to evaluate our

frameworks, we set LMNS as our baseline model for comparison.

Running LMNS according to Algorithm 1, we generated its mixed

strategy, which we found has full support (see Figure 2).

The LLM has a bias towards weak strategies: 12 out of 13 of the

strategies LMNS favours are easily defeated; The two most likely

strategies have two empty fields, preventing them from winning

any games, and reaching a draw at best. This makes them poor

strategies to pick, as they provide no opportunity for victory. The

majority of the remaining favoured strategies have one empty field,

which while not guaranteeing a loss, puts these strategies at a clear

disadvantage by reducing the winning possibilities.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1092

(a) BRIRLM strategy
evolution

(b) FPIRLM strategy
evolution

(c) PSROLM strategy
evolution

Figure 3: Heatmap of mixed strategy evolution of Colonel
Blotto tournament, from left to right for BRIRLM, FPIRLM
and PSROLM . We ran BRIRLM and FPIRLM for 10 rounds,
while PSROLM for 25 rounds. The vertical axis represents the
various strategies that appeared at least once in the mixed
strategy. The horizontal-axis represents the round number.
The colour bar represents the probability of each strategy in
the round’s mixed strategy.

Given the limitation of the baseline LMNS, we explored common

approaches to improve its result at the prompt level. Specifically, we

implemented COT prompting to see if it could enhance the quality

of the generated strategies. The mixed strategy results of this COT

implementation can be seen in Figure 2 (b).

We ran COT up to level 2. Level 1 involves the LLM anticipating

and responding to its opponent’s play, while level 2 extends this by

responding to its own level 1 suggestion. We found no significant

improvement in the mixed strategy quality above level 1, with level

2 results in appendix C. Notably, the LLM’s task understanding is

limited when comparing ultimate and penultimate strategies, with

only a 2% success rate. COT reasoning improves over LMNS in

generating strategies surpassing random selection, but falls short in

producing consistently strong strategies. Moreover, it does not effec-

tively mitigate the hallucinations and misunderstandings inherent

in the reasoning tasks.

Our frameworksWe implemented BRIRILM, FPIRLM and PSROLM

as described in Algorithms 3, 4 and 5 respectively. BRIRILM and

FPIRLM ran for 10 rounds each, while PSROLM was extended for

25 rounds. The progression of the resulting mixed strategies for all

three frameworks can be seen in Figure 3. Our tournament structure

followed the schema illustrated in Figure 1.

For BRIRLM and FPIRLM, the initial iteration (𝑘 = 1) was played

against a uniform-random distribution of strategies. In subsequent

rounds, competing strategies were selected from the mixed strategy

of the previous levels. Due to the nature of these frameworks, there

is no difference in results between 𝑘 = 0 and 𝑘 = 1 of BRIRLM

and FPIRLM. However, subsequent levels reveal distinct differences

among all three frameworks. PSROLM (Figure 3, left) shows a pro-

gression towards more diffuse mixed strategies (i.e., with higher

support). In (Figure 3, middle), BRIRLM exhibits a cyclic pattern,

where strategies defeat the immediately previous level, but per-

forms poorly against those that appear before it (i.e. level 𝑘 defeats

level 𝑘 − 1, but may lose to 𝑘 − 2). These cycles follow a three-

round periodicity, shown in Figure 5(b). In (Figure 3, right), the

FPIRLM tournament shows that as the rounds progress, the weight

of any single strategy diminishes. This is due to the absence of a

(a) All vs LMNS

(b) All vs COT

(c) All vs All

Figure 4: Comparison of expected payoff across all rounds
of three frameworks (BRIRLM,FPIRLM,PSROLM) against
LMNS (a) and COT (b), respectively. Values are from the per-
spective of the left framework (i.e. Positive values for left
superiority, negative for right superiority) Figure (c) com-
pares each of the three frameworks against each other. The
comparison of expected payoffs among the frameworks is
complex, particularly due to the cyclic nature of BRIRILM.
While BRIRLM achieves the highest single expected payoff
value, its performance is unstable. FPIRILM demonstrates a
better expected payoff compared to PSROLM formost rounds,
but this advantage decreases over time.

single dominant strategy for the game, resulting in an increasingly

complex mixed strategy comprising all previous rounds.

Following the tournaments, we compared the expected payoff

of the different frameworks against LMNS and COT. The results,

shown in Figure 4, demonstrate that regardless of the round, the

expected payoff of all three frameworks is equal to or better than

both baselines, LMNS and COT. FPIRLM and PSROLM show mod-

erate, but steady progression in their performance against LMNS

and COT across their different rounds. Summarizing BRIRLM’s ex-

pected payoff is more challenging due to its cyclic strategy selection

across levels. Nonetheless, both BRIRLM’s high and low values are

equal or better than both LMNS and COT, with its peaks achieving

the highest absolute expected payoff values amongst the different

frameworks. The tendencies observed in the comparison with the

baselines persist when measuring the expected payoff of the dif-

ferent frameworks against each other, as seen in Figure 4(c). The

evaluation of BRIRLM against the other two frameworks shows in-

consistency due to its cyclic behaviour. In contrast, the comparison

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1093

(a) Tennis. (b) Blotto.

Figure 5: Radar plots showing the BRIRLM strategies cycling
over four-rounds (a) and three-rounds (b).

between FPIRLM and PSROLM reveals a clearer pattern: FPIRLM

consistently demonstrates superior expected payoff, although this

advantage gradually diminishes over successive rounds.

The exploitability results for LMNS, BRIRLM, FPIRLM, PSROLM

can be seen in Figure 7. We show that there exists a tradeoff pattern

between exploitability and expected payoff. LMNS, having a broader

more random approach, has a low exploitability. FPIRLM improves

over LMNS in exploitability, and reaches the lowest exploitability of

all frameworks by round 7. BRIRLM achieves the highest expected

payoff value among the different frameworks. However, as seen in

Figures 4 & 6 the BRIRLM’s mixed strategy changes significantly

each round, alternating between high and low expected payoffs.

This also renders it the most exploitable of the different frameworks.

PSROLM requiresmore rounds than the other frameworks to con-

verge to a viable mixed strategy. Through rounds 0 to 7, PSROLM

has high exploitability, as well as a relatively low expected payoff;

In rounds 7 to 16, we see a steady increase in the expected payoff.

We also see a steady decrease in PSROLM exploitability, suggesting

that the PSROLM’s mixed strategy is adapting with each round;

From rounds 17-20, during which we start switching strategies due

to computation costs, PSROLM exploitability increases again, and

quickly. It is worth noting that while by a small margin, its expected

payoff remains higher compared to all other frameworks.

Our frameworks’ nature can be seen in other games as well, both

when looking at their exploitability and when comparing with the

baseline. For instance, see the results for Tennis Coach and All-Pay

Auction in Figure 6, or Figure 5 left. More detailed results for all

the games are shown in the appendix.

3.3 Theoretical results
We now analyze a stylized version of the PSROLM framework,

shown in Algorithm 6, and prove it converges to a Nash equilibrium.

We can implement the InitialStrategies() and the SuggestRe-

sponse() functions using calls to an LLM. For InitialStrategies(),

we provide the LLM a textual description of the game, and ask it

which strategies it would start with. For the SuggestResponse(), we

prompt the LLM with a list of 𝑘 strategies sampled from 𝐷 (𝑆) and
ask the LLM for a best response to this list. Alternatively, we could

repeat this procedure many times and take the response with the

highest expected payoff against 𝐷 (𝑆).
We now show that under mild assumptions, this “Las Vegas” al-

gorithm indeed converges to the true Nash equilibrium (𝑆∗, 𝐷 (𝑆∗))
of the game.

(a) Expected utility vs LMNS in Tennis coach

(b) Expected utility vs LMNS in the all-pay auction

Figure 6: Comparison of expected payoff across all rounds
of three frameworks (BRIRLM, FPIRLM, PSROLM) against
LMNS in Tennis coach (a) and First-bid all-pay auction (b), re-
spectively. Values are from the perspective of the left frame-
work (i.e. Positive values for left superiority, negative for
right superiority)

Algorithm 6 Stylized-PSROLM()

Require: Symmetric Game with |A| actions
Require: Safe: Bool

1: S← InitialStrategies()

2: D(S)← ComputeNash(S)

3: while True do
4: 𝑟 ← SuggestResponse(S,D(S))

5: if ¬Safe and 𝑟 ∉ 𝑆 then
6: D(S)← ComputeNash(S)

7: Return D(S)

8: 𝑆 ← 𝑆 ∪ {𝑟 }
9: D(S)← ComputeNash(S)

10: if |𝑆 | == |A| then
11: Return D(S)

Theorem 1. If SuggestResponse() has full support over all pure
strategies in a finite game, then the above procedure Stylized-PSRO()
(with Safe set to True) converges to the true Nash equilibrium of the
game (i.e. after a sufficient number of iterations, (𝑆, 𝐷 (𝑆)) is a Nash
equilibrium of the game).

Proof. (Sketch) Calling InitialStrategies() returns some set of

strategies in the game. In every iteration of the loop, we have a

non-zero probability of adding the true best response strategy and

thus extending the set of strategies 𝑆 by an additional member (even

if the true best response is not added, we may still uncover a new

strategy and thus add one more strategy to the set). As the set of

strategies keeps growing, we would eventually cover all strategies
in the game, and thus compute the true Nash equilibrium of the

game via ComputeNash(). □

LLMs with softmax distributions over tokens naturally have full

support, however, modern sampling techniques such as nucleus

sampling [16] may break this assumption in certain settings.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1094

Table 1: Summarisation of LLM success rate. Exp measures exploitability; > 𝑏 reports whether the framework is beating the
baseline 𝑏; Stab reports the number of rounds until a stable solution is reached; ∗ indicates unstable results.

Game

BRIRLM FPIRLM PSROLM

Exp >LMNS >COT Stab Exp >LMNS >COT Stab Exp >LMNS >COT Stab

Prisoner’s Dilemma 0 Yes Yes 2 0 Yes Yes 2 0 Yes Yes 2

Eleven-twenty 0 Tied Tied 2 0 Tied Tied 2 0 Tied Tied 2

Colonel Blotto 1 Yes* Yes* NaN 0.22 Yes Yes 5 0.27 Yes Yes 22

Tennis coach 1 Yes* Yes* NaN 0.09 Yes Tied 7 0.6 Yes Tied 6

First-bid all-pay 0.64 * * NaN 0.63 * * NaN 0.059 Tied No 10

(a) Exploitability in Colonel Blotto

(b) Exploitability in Tennis coach

(c) Exploitability in first-bid all-pay auction

Figure 7: Exploitability comparison across rounds between
the frameworks BRIRLM, FPIRLM, PSROLM, as well as
LMNS, COT and a uniform random mixed strategy in (a)
Colonel Blotto, (b) Tennis coach and (c) First-bid all-pay bid-
ding. In all games, either FPIRLM or PSROLM reach the low-
est exploitability, while BRIRLM reaches the highest.

If Stylized-PSRO(Safe=False) is run, the procedure may terminate

early when the LLM fails to return a better response even though

one exists. Increasing the number of best response samples 𝑘 can

drive this probability towards zero.

4 DISCUSSION
Our results demonstrate that while LLMs show promise in many

NLP tasks, their reasoning is still limited when it comes to strategic

interactions between multiple agents. Looking at the results of

LMNS and COT baselines, representing unaided LLMs, in Figure 2,

we see that their mixed strategy is suboptimal and exploitable. LLMs

can produce mixed strategies that favour strategies that are easily

defeated, e.g. leaving one field free of units and easily captured.

We introduced a new family of algorithms based on iterated

reasoning, with three specific algorithms: BRIRLM, FPIRLM and

PSROLM. Each allows LLMs to participate in various games, and

generate viable and optimal strategies. Each one of the frameworks

has its advantages and disadvantages.

The Figures 3, 4 and 5, illustrate the key difference between these

frameworks. BRIRLM shows a narrow and cyclic evolution, while

FPIRLM and PSROLM show wider, more moderate mixed strategies.

As a result of its cyclic nature, the choice of the level of iterative

reasoning (i.e. the number of iterations of refining the policy) has a

very big impact on the resulting strategy. In contrast, FPIRLM and

PSROLM shift their mixed strategy more gradually.

Although LMNS and COT exhibit low exploitability, this stems

from redundancy rather than optimisation. In contrast, FPIRLM

and PSROLM achieve lower exploitability without needing to use

all possible strategies in their mixed strategy (Figure 7). When

comparing expected payoff, (Figures 4a & 6) we show that our

frameworks consistently outperform both LMNS and COT in most

games, and in the few that not, the margin is small.

Unaided LLMs struggle with complex reasoning tasks, especially

when the action spaces are large, or the immediate reward is unclear

(Table 1). Even in simpler tasks, the unaided LLM is prone to fail

sporadically, preventing it from being a reliable tool.

Our implemented frameworks guide the LLM towards relevant,

stable results, while also functioning as a safety net to prevent LLM

mistakes from occurring, thus preventing them from contaminating

the otherwise good LLM outputs.

Overall, our results indicate that one can significantly improve

the quality of LLM reasoning in strategic multiagent domains by

incorporating an outer-loop that iteratively refines the suggested

strategy. Future research could uncover additional methods for

refining the policy, and also consider ways of improving the LLM

training procedure so as to have LLMs be better at strategic settings

without needing to resort to an outer-loop approach (for instance,

one could consider generating synthetic data using our approach

and using it to fine-tune LLMs).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1095

REFERENCES
[1] Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge,

and Eric Schulz. 2023. Playing repeated games with Large Language Models.

arXiv:2305.16867 [cs.CL]

[2] Ayala Arad. 2012. The tennis coach problem: A game-theoretic and experimental

study. B.E. Journal of Theoretical Economics 12, 1 (2012). https://doi.org/10.1515/

1935-1704.1738

[3] Ayala Arad and Ariel Rubinstein. 2012. The 11–20 money request game: A level-k

reasoning study. American Economic Review 102, 7 (2012), 3561–3573.

[4] Ayala Arad and Ariel Rubinstein. 2012. Multi-dimensional iterative reasoning

in action: The case of the Colonel Blotto game. Journal of Economic Behavior &
Organization 84, 2 (2012), 571–585.

[5] Michael R Baye, Dan Kovenock, and Casper G De Vries. 1996. The all-pay auction

with complete information. Economic Theory 8 (1996), 291–305.

[6] George W Brown. 1951. Iterative solution of games by fictitious play. Act. Anal.
Prod Allocation 13, 1 (1951), 374.

[7] Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Alice Yang, Francois Charton,

and Julia Kempe. 2024. Iteration Head: A Mechanistic Study of Chain-of-Thought.

arXiv:2406.02128 [id=’cs.LG’]

[8] Colin F Camerer. 2011. Behavioral game theory: Experiments in strategic interaction.
Princeton university press.

[9] Colin F Camerer, Teck-HuaHo, and Juin-Kuan Chong. 2004. A cognitive hierarchy

model of games. The Quarterly Journal of Economics 119, 3 (2004), 861–898.
[10] Caoyun Fan, Jindou Chen, Yaohui Jin, and Hao He. 2024. Can large language mod-

els serve as rational players in game theory? a systematic analysis. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 38. 17960–17967.

[11] Ian Gemp, Yoram Bachrach, Marc Lanctot, Roma Patel, Vibhavari Dasagi, Luke

Marris, Georgios Piliouras, and Karl Tuyls. 2024. States as strings as strate-

gies: Steering language models with game-theoretic solvers. arXiv preprint
arXiv:2402.01704 (2024).

[12] Uri Gneezy and Rann Smorodinsky. 2006. All-pay auctions—an experimental

study. Journal of Economic Behavior & Organization 61, 2 (2006), 255–275.

[13] Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2023. News Summarization and

Evaluation in the Era of GPT-3. arXiv:2209.12356 [cs.CL]

[14] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang,

and Zhiting Hu. 2023. Reasoning with Language Model is Planning with World

Model. arXiv:2305.14992 [cs.CL]

[15] Nathan Herr, Fernando Acero, Roberta Raileanu, María Pérez-Ortiz, and Zhibin Li.

2024. Are Large Language Models Strategic Decision Makers? A Study of Perfor-

mance and Bias in Two-Player Non-Zero-Sum Games. arXiv:2407.04467 [cs.AI]

https://arxiv.org/abs/2407.04467

[16] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. [n.d.]. The

Curious Case of Neural Text Degeneration. In International Conference on Learning
Representations.

[17] Jie Huang and Kevin Chen-Chuan Chang. 2022. Towards reasoning in large

language models: A survey. arXiv preprint arXiv:2212.10403 (2022).
[18] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence,

Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. 2022.

Inner monologue: Embodied reasoning through planning with language models.

arXiv preprint arXiv:2207.05608 (2022).
[19] Pushmeet Kohli, Michael Kearns, Yoram Bachrach, Ralf Herbrich, David Stillwell,

and Thore Graepel. 2012. Colonel Blotto on Facebook: The effect of social

relations on strategic interaction. In Proceedings of the 4th Annual ACM Web
Science Conference. 141–150.

[20] Vijay Krishna and John Morgan. 1997. An Analysis of the War of Attrition

and the All-Pay Auction. Journal of Economic Theory 72, 2 (1997), 343–362.

https://doi.org/10.1006/jeth.1996.2208

[21] Rolf Kümmerli, Caroline Colliard, Nicolas Fiechter, Blaise Petitpierre, Flavien

Russier, and Laurent Keller. 2007. Human cooperation in social dilemmas: Com-

paring the Snowdrift game with the Prisoner’s Dilemma. Proceedings. Biological
sciences / The Royal Society 274 (09 2007), 2965–70. https://doi.org/10.1098/rspb.

2007.0793

[22] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-

theoretic approach to multiagent reinforcement learning. Advances in Neural
Information Processing Systems 30 (2017).

[23] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu,

Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan

Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan

Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. 2023. AgentBench: Evaluating

LLMs as Agents. arXiv:2308.03688 [cs.AI]

[24] Yang Liu, Peng Sun, and Hang Li. 2024. Large Language Models as Agents in

Two-Player Games. arXiv:2402.08078

[25] R. Duncan Luce and Howard Raiffa. 1957. Games and decisions: Introduction and
critical survey. J. Wiley & Sons.

[26] Shaoguang Mao, Yuzhe Cai, Yan Xia, Wenshan Wu, Xun Wang, Fengyi Wang,

Tao Ge, and Furu Wei. 2024. ALYMPICS: LLM Agents Meet Game Theory –

Exploring Strategic Decision-Making with AI Agents. arXiv:2311.03220 [cs.CL]

https://arxiv.org/abs/2311.03220

[27] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. 2003. Planning in

the presence of cost functions controlled by an adversary. In Proceedings of the
20th International Conference on Machine Learning (ICML-03). 536–543.

[28] Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montser-

rat Gonzalez Arenas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. 2023. Large

Language Models as General Pattern Machines. arXiv:2307.04721 [cs.AI]

[29] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,

Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2024. A

Comprehensive Overview of Large Language Models. arXiv:2307.06435 [cs.CL]

[30] Martin J Osborne. 1994. A course in game theory. MIT Press.

[31] Brian Roberson. 2006. The colonel blotto game. Economic Theory 29, 1 (2006),

1–24.

[32] Brian Roberson. 2006. The colonel blotto game. Economic Theory 29, 1 (Jan 2006),

1–24. https://doi.org/10.1007/s00199-005-0071-5

[33] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,

Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer:

Language Models Can Teach Themselves to Use Tools. arXiv:2302.04761 [cs.CL]

[34] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting

Zhuang. 2023. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in

Hugging Face. arXiv:2303.17580 [cs.CL]

[35] James WA Strachan, Dalila Albergo, Giulia Borghini, Oriana Pansardi, Eugenio

Scaliti, Saurabh Gupta, Krati Saxena, Alessandro Rufo, Stefano Panzeri, Guido

Manzi, et al. 2024. Testing theory of mind in large language models and humans.

Nature Human Behaviour (2024), 1–11.
[36] Winnie Street, John Oliver Siy, Geoff Keeling, Adrien Baranes, Benjamin Barnett,

Michael McKibben, Tatenda Kanyere, Alison Lentz, Blaise Aguera y Arcas, and

Robin I. M. Dunbar. 2024. LLMs achieve adult human performance on higher-

order theory of mind tasks. arXiv:2405.18870 [cs.AI]

[37] Weizhi Tang and Vaishak Belle. 2024. Zero, Finite, and Infinite Belief History of

Theory of Mind Reasoning in Large Language Models. arXiv:2406.04800

[38] Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei Teng, and Jingbo Shang.

2024. Can LLMs Learn from Previous Mistakes? Investigating LLMs’ Errors to

Boost for Reasoning. arXiv:2403.20046 [cs.CL]

[39] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, and

Yasmine Babaei et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat

Models. arXiv:2307.09288 [cs.CL]

[40] Tomer Ullman. 2023. Large Language Models Fail on Trivial Alterations to

Theory-of-Mind Tasks. arXiv:2302.08399

[41] Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-

pati. 2022. Large language models still can’t plan (a benchmark for LLMs on

planning and reasoning about change). In NeurIPS 2022 Foundation Models for
Decision Making Workshop.

[42] Max J. van Duijn, Bram M. A. van Dijk, Tom Kouwenhoven, Werner de Valk,

Marco R. Spruit, and Peter van der Putten. 2023. Theory of Mind in Large

Language Models: Examining Performance of 11 State-of-the-Art models vs.

Children Aged 7-10 on Advanced Tests. arXiv:2310.20320

[43] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,

Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. 2024. A survey on large

language model based autonomous agents. Frontiers of Computer Science 18, 6
(2024), 186345.

[44] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain

of Thought Reasoning in Language Models. arXiv:2203.11171 [cs.CL]

[45] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,

Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits

Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning

in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[47] James Wright and Kevin Leyton-Brown. 2010. Beyond equilibrium: Predicting

human behavior in normal-form games. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 24. 901–907.

[48] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and

Nan Duan. 2023. Visual ChatGPT: Talking, Drawing and Editing with Visual

Foundation Models. arXiv:2303.04671 [cs.CV]

[49] Michael Wunder, Michael Kaisers, John Yaros, and Michael Littman. 2011. Using

Iterated Reasoning to Predict Opponent Strategies. Proceedings of the 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems 2, 593–600.

[50] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming

Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. 2023. The rise and potential

of large language model based agents: A survey. arXiv preprint arXiv:2309.07864
(2023).

[51] Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen Dong, Kurt Keutzer,

See Kiong Ng, and Jiashi Feng. 2023. MAgIC: Investigation of Large Language

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1096

https://arxiv.org/abs/2305.16867
https://doi.org/10.1515/1935-1704.1738
https://doi.org/10.1515/1935-1704.1738
https://arxiv.org/abs/2406.02128
https://arxiv.org/abs/2209.12356
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2407.04467
https://arxiv.org/abs/2407.04467
https://doi.org/10.1006/jeth.1996.2208
https://doi.org/10.1098/rspb.2007.0793
https://doi.org/10.1098/rspb.2007.0793
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2402.08078
https://arxiv.org/abs/2311.03220
https://arxiv.org/abs/2311.03220
https://arxiv.org/abs/2307.04721
https://arxiv.org/abs/2307.06435
https://doi.org/10.1007/s00199-005-0071-5
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2405.18870
https://arxiv.org/abs/2406.04800
https://arxiv.org/abs/2403.20046
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2302.08399
https://arxiv.org/abs/2310.20320
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.04671

Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collabo-

ration. arXiv:2311.08562

[52] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and

Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with

large language models. Advances in Neural Information Processing Systems 36
(2024).

[53] Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Man Lan,

and Furu Wei. 2024. K-Level Reasoning with Large Language Models.

arXiv:2402.01521 [cs.CL]

[54] Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju, Aditya Gupta, Kevin R

McKee, Ari Holtzman, Jay Pujara, Xiang Ren, Swaroop Mishra, Aida Nematzadeh,

et al. 2023. How FaR Are Large Language Models From Agents with Theory-of-

Mind? arXiv preprint arXiv:2310.03051 (2023).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1097

https://arxiv.org/abs/2311.08562
https://arxiv.org/abs/2402.01521

	Abstract
	1 Introduction
	1.1 Notation and Preliminaries

	2 Methodology
	2.1 Algorithms

	3 Empirical Analysis
	3.1 Evaluated Games
	3.2 Empirical Results
	3.3 Theoretical results

	4 Discussion
	References

