
GUIDE-CoT: Goal-driven and User-Informed Dynamic Estimation
for Pedestrian Trajectory using Chain-of-Thought

Sungsik Kim
Kookmin University

Seoul, Korea

Janghyun Baek
Korea University
Seoul, Korea

Jinkyu Kim
Korea University
Seoul, Korea

jinkyukim@korea.ac.kr

Jaekoo Lee
Kookmin University

Seoul, Korea
jaekoo@kookmin.ac.kr

ABSTRACT
While Large Language Models (LLMs) have recently shown impres-
sive results in reasoning tasks, their application to pedestrian tra-
jectory prediction remains challenging due to two key limitations:
insufficient use of visual information and the difficulty of predicting
entire trajectories. To address these challenges, we propose Goal-
driven and User-Informed Dynamic Estimation for pedestrian trajec-
tory using Chain-of-Thought (GUIDE-CoT). Our approach integrates
two innovative modules: (1) a goal-oriented visual prompt, which
enhances goal prediction accuracy combining visual prompts with a
pretrained visual encoder, and (2) a chain-of-thought (CoT) LLM for
trajectory generation, which generates realistic trajectories toward
the predicted goal. Moreover, our method introduces controllable
trajectory generation, allowing for flexible and user-guided mod-
ifications to the predicted paths. Through extensive experiments
on the ETH/UCY benchmark datasets, our method achieves state-
of-the-art performance, delivering both high accuracy and greater
adaptability in pedestrian trajectory prediction. Our code is publicly
available at https://github.com/ai-kmu/GUIDE-CoT.
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1 INTRODUCTION
Pedestrian trajectory prediction has emerged as a critical task in
various applications, including autonomous driving and urban plan-
ning [40]. In autonomous driving, vehicles or robots must dynami-
cally adjust their paths by predicting and responding to the move-
ments of nearby pedestrians [33]. The inability of an autonomous
agent to accurately predict future pedestrian trajectories can lead
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(a) Conventional LLM-based approaches

(b) Our proposed approach (GUIDE-CoT)

Figure 1: Comparison between conventional LLM-based
methods and our approach for pedestrian trajectory pre-
diction. (a) Conventional approaches often leverage LLM’s
reasoning capability to predict pedestrians’ future trajecto-
ries conditioned on textual contexts, which contain their
past observations and scene descriptions (from an off-the-
shelf image captioning model). (b) Our proposed method,
called GUIDE-CoT, further improves the model’s prediction
performance by predicting pedestrians’ final goal position
given the scene image with overlaid visual prompts (i.e., a
red arrow). Such predicted goal position is then augmented
into an LLM in a similar manner to Chain-of-Thought (CoT),
offering rich intermediate reasoning contexts.

to severe consequences, such as collisions, posing significant safety
risks [20]. Furthermore, in the context of urban planning, partic-
ularly in smart cities, accurately understanding and predicting
pedestrian flow is crucial. This insight enables the optimization of
transportation networks and infrastructure, leading to smoother
traffic management and greater overall efficiency [17].
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Deep learning has led to substantial breakthroughs in pedestrian
trajectory prediction, with recent studies showing that deep learn-
ing models trained on large-scale datasets can accurately predict a
wide range of pedestrian behaviors [46]. While existing approaches
have focused on modeling pedestrian interactions and environmen-
tal factors, there has been growing interest in goal-based pedestrian
trajectory prediction [10, 13, 30, 31]. These methods aim to predict
a pedestrian’s future destination based on their past trajectory and
map information. Since the accurate prediction of a pedestrian’s
goal is crucial for trajectory estimation, improving goal predic-
tion accuracy has become a central focus in trajectory prediction
research.

In this work, we propose a novel approach by leveraging large
language models (LLMs), which have recently been applied to a va-
riety of reasoning and predicting tasks across domains [27, 28, 48].
Building on prior work, which has shown that converting a pedes-
trian’s past trajectory into a natural language format and feeding
it into an LLM can result in state-of-the-art (SOTA) trajectory pre-
diction performance [4], we propose a method that significantly
enhances LLM-based methods by incorporating goal prediction
as a key step in the chain-of-thought (CoT) reasoning process. As
illustrated in Figure 1, unlike existing LLM-based methods that
predict trajectories directly from historical trajectories and scene
image caption, our approach first predicts CoT reasoning of the
pedestrian’s goal to guide the final trajectory generation.

In contrast to existing methods that rely on semantic segmen-
tation maps with trajectory heatmaps [10, 30] or dynamic fea-
tures [13] for goal prediction, our approach introduces a goal-
oriented visual prompt that leverages visual cues more effectively.
To be specific, we enhance goal prediction by incorporating visual
prompts, represented as directional arrows on RGB images to in-
dicate pedestrian movement. These visual prompts are processed
by a pretrained model, and rather than solely depending on the
model’s output for direct goal prediction, we combine the visual
features with semantic map-based goal prediction. This approach
enables more accurate and context-aware predictions by utilizing
both spatial and visual information. The predicted goals are then
integrated into the CoT reasoning process, which provides context
for the LLM, guiding it to generate more precise future trajectories
through structured reasoning.

We propose a controllable trajectory generation method by ma-
nipulating the CoT reasoning process. Specifically, we explore how
modifying the goal context during inference can adjust the pre-
dicted trajectory, enabling user-guided control over future path pre-
dictions. Experiments on the ETH/UCY benchmark datasets show
that our method delivers results competitive with state-of-the-art
approaches, while introducing new capabilities in controllability
and reasoning.

Our main contributions are summarized as follows:

• We introduce a goal-oriented visual prompt that effectively
integrates spatial and visual information for superior goal
prediction, enhancing trajectory prediction performance.
• We propose a CoT reasoning prompt that leverages goal pre-
dictions as intermediate steps, enabling the LLM to predict
future trajectories more accurately.

• We enable controllable trajectory generation, allowing users
to modify goal context during inference, providing dynamic
control over the predicted trajectories.

2 RELATEDWORK
2.1 Pedestrian Trajectory Prediction
Pedestrian trajectory prediction has been extensively studied, with
early approaches relying on simple physics-based models [22].
As deep learning advanced, data-driven models that learn pedes-
trian movement patterns and predict future trajectories become
the dominant methodology. A notable example is Social-LSTM [2],
which introduced LSTM-based modeling for pedestrian paths. Fol-
lowing this, a wide variety of learning approaches, including
GANs [3, 12, 20, 42], CVAEs [43, 50], Diffusion models [11, 19, 32],
GCNs [34, 39, 45], and Transformers [52, 53], have been explored
to further improve prediction accuracy.

While these approaches have made significant strides, many
focus solely on predicting the immediate future path based on
historical data and interactions with the environment. However,
goal-based pedestrian trajectory prediction has recently emerged
as an important alternative. This approach assumes that pedestrian
trajectories are heavily influenced by their intended destination,
rather than just local interactions. For instance, Y-Net [30] lever-
ages history trajectories and environmental context (in the form of
heatmaps and semantic segmentation map) and uses U-Net [41] to
predict a goal probability map. This goal-based approach is critical
because predicting the final destination can significantly enhance
trajectory accuracy.

Most existing methods still struggle to effectively incorporate
information of multiple modalities and handle the complexity of
trajectory prediction as a reasoning process. Recent advancements
in LLMs have demonstrated strong reasoning capabilities across
various domains, including pedestrian trajectory prediction. As a
LLM-based SOTA model, the LMTraj model [4] reframed trajectory
prediction as a question-answering task, utilizing LLMs to infer
pedestrian movements, and achieved superior performance over
alternatives. However, LLM-based models [4] have two key limita-
tions: insufficient integration of visual information and difficulty
in predicting the full trajectory.

2.2 Large Language Models for Sequence
Prediction

Large Language Models (LLMs) have driven significant advances
in natural language processing by leveraging large datasets and
transformer architectures. These models have achieved impressive
results across a wide range of applications, such as text generation,
translation, and summarization [15, 37, 38]. Larger LLMs [1, 8]
have shown an enhanced ability to generalize to unseen data and
tasks, demonstrating robust performance even in few-shot and zero-
shot learning scenarios, where limited task-specific examples are
available.

LLMs have been widely utilized in various sequence predic-
tion tasks to enhance inference performance. For example, Time-
LLM [24] leverages a pretrained LLM for time series forecasting and
has demonstrated high performance in both zero-shot and few-shot
settings. Furthermore, recent studies have proposed the use of LLMs
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(a) Goal predictor with visual prompt

(b) LLM-based trajectory prediction with Chain-of-Thought (CoT) reasoning

Figure 2: An overview of our proposed approach, called GUIDE-CoT. (a) Our model first predicts each pedestrian’s final goal
position given (i) pedestrians’ past observations, (ii) semantic BEV map, and (iii) top-down view scene image with visual prompt
(i.e., a red arrow). Our model generates a sentence describing their final positions, such as “Pedestrian 0 will arrive at coordinate
(57, 95) after the next 12 frames.” (b) Such a generated goal description is then augmented into the LLM in a similar way to
Chain-of-Thought reasoning, generating the final trajectory of each pedestrian.

to predict complex biological sequences [25], such as DNA pat-
terns [54] and protein structures [18]. Specifically, DNAGPT [54] in-
troduced a generalized pretrained LLM for modeling and predicting
DNA sequences, while ProtGPT2 [18] presented a GPT-2 [37]–based
protein sequence generation model that samples novel protein se-
quences. Similarly, studies have emerged exploring the use of LLMs
to predict pedestrian trajectories–a sequential prediction task.

2.3 Reasoning via Visual Prompt
To enhance the reasoning capabilities of Large Multimodal Models
(LMMs), additional visual information, known as visual prompts,
has been introduced [9]. Visual prompts provide crucial visual cues
that assist models in making more accurate inferences. One com-
mon approach is to integrate learnable parameters directly into
the visual data. For instance, VPT [23] proposes adding learnable
prompts to the input patches of each layer in the Vision Trans-
former [16]. Another method involves padding image borders with
learnable parameters embedding additional information around the
edges of the image to guide the model’s attention [7].

In addition, visual markers are often employed to highlight spe-
cific objects or regions within an image. For example, CPT [51] uses
unique colors to distinguish objects in region proposals, while Sht-
edritski et al. [44] employs red circles to mark objects, leveraging
CLIP [36] for zero-shot reasoning. ViP-LLaVA [9] expands visual
prompts by incorporating arrows, points, and triangles for more
diverse reasoning tasks.

Inspired by these approaches, we propose a novel method to rep-
resent pedestrian trajectories using visual prompts. Our approach
guides the trajectory of pedestrians, allowing the model to bet-
ter understand movement patterns and predict future paths more
effectively.

3 METHOD
3.1 Problem Definition
Pedestrian trajectory prediction task aims to forecast future tra-
jectories of pedestrians based on their past movements. For each
pedestrian 𝑖 at time step 𝑡 , the observed past trajectory is composed
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(a) without user-provided guidance

(b) with directional user guidance

(c) with positional user guidance

Figure 3: Our goal-conditioned model further allows the user
to provide text-driven guidance, controlling the model’s tra-
jectory prediction process. Such guidance may contain (b)
a directional guide (e.g., “make the pedestrian walk to the
right”) or (c) a positional guide (e.g., “make the pedestrian
join a group with the neighbor”). Compare results with and
without user-provided guidance, i.e., (a) vs. (b) and (c).

of 2D position coordinates 𝑝 spanning a time window of length
𝜏obs. This trajectory is represented as:

X𝑖𝑡 =

{
𝑝𝑖𝑡−𝜏obs+1, . . . , 𝑝

𝑖
𝑡

}
(1)

The input to the model consists of the past trajectories of 𝑁 pedes-
trians in the scene, denoted as:

X𝑡 =
(
X0
𝑡 , . . . , X𝑁−1

𝑡

)
∈ R𝑁×𝜏obs×2 (2)

Additionally, the model is provided with a scene image I𝑠 and a
corresponding semantic map I𝑠sem for the scene 𝑠 .

The goal of task is to predict the future trajectories of these 𝑁
pedestrians over a prediction window of length 𝜏pred. The predicted
future trajectories are represented as:

Ŷ𝑡 =
(
Y0
𝑡 , . . . , Y𝑁−1

𝑡

)
∈ R𝑁×𝜏pred×2 (3)

The objective of learning is to minimize the error between the pre-
dicted future trajectories Ŷ𝑡 and the ground-truth future trajectories
Y𝑡 .

3.2 Goal-oriented Visual Prompt for Trajectory
Building on prior work that demonstrates improvements in rea-
soning tasks through the visual knowledge of pretrained vision
models [47], we propose a novel approach to effectively leverage
visual information from scene images for the goal prediction task.

A naïve approach might consider using top-view video frames of
pedestrians for trajectory prediction via a video encoder. However,
the naïve approach faces three key challenges: (1) obtaining top-
view pedestrian videos is impractical, (2) distinguishing pedestrians
within the scene is challenging, and (3) video processing is compu-
tationally inefficient compared to handling individual images.

To address these challenges while still utilizing the rich visual in-
formation from scene images, we introduce visual prompts—such as
circles, arrows, and points [9, 44]—to designate pedestrian positions
and movements for goal prediction. Specifically, our approach uses
arrow-shaped visual prompts to guide the goal prediction, allowing
the model to better interpret and predict future trajectories.

As shown in Figure 2a, given the past trajectory X𝑖 of the 𝑖-th
pedestrian as input, we generate a visual promptP𝑖 = 𝐷𝑟𝑎𝑤

(
X𝑖

)
by

connecting the 2D coordinates with arrows in the process referred
to as 𝐷𝑟𝑎𝑤 . Next, the visual condition X𝑖vis is constructed through
alpha compositing between the scene image I𝑠 and the visual
prompt.

X𝑖vis = (1 − 𝛼) · I𝑠 + 𝛼 · P𝑖 (4)
Additionally, the past trajectory is represented as a heatmap,

denoted as the history heatmap X𝑖heatmap. The heatmap is concate-
nated with the semantic map X𝑖sem to form the semantic condition
X𝑖sem as follows:

X𝑖sem = X𝑖heatmap ⊕ I
𝑠
sem (5)

where ⊕ denotes channel-wise concatenation.
Finally, we compute the goal probability map Ŷ𝑖

goal, from which

the 2D coordinates of the goal are sampled. The Ŷ𝑖
goal is defined as:

Ŷ𝑖
goal = 𝜎

[
𝜁

(
𝜙
(
X𝑖vis

)
, X𝑖sem

)]
(6)

Here, 𝜁 represents the U-Net-based goal module [41], 𝜙 refers to
the pretrained visual encoder, and 𝜎 is the sigmoid function. Similar
to prior work [10, 30], we adopt a U-Net-based encoder-decoder
architecture [41] for the goal module. However, unlike the orig-
inal designs, we modify the skip connections to concatenate the
encoded features from both X𝑖sem and X𝑖vis before passing them to
the decoder.

To predict pedestrian trajectories using LLMs (Figure 2b), prompt
engineering is needed to convert the past trajectory X𝑖𝑡 from nu-
meric form into a natural language prompt. A tokenization process
is then required to input this prompt into the LLM. For both prompt
generation and tokenization, we adopted the method proposed by
LMTraj [4]. Unlike previous studies, we incorporate the CoT goal
context as input for the LLM. Rather than merely predicting the
goal, CoT extracts a goal prompt by leveraging past trajectory data
to represent the pedestrian’s intended goal. The LLM then focuses
solely on generating a realistic trajectory toward the goal without
performing additional goal prediction. The CoT-based approach al-
lows the model to better understand underlying movement patterns,
enabling more accurate and context-aware future trajectory pre-
dictions. By structuring the trajectory generation process around a
well-defined goal, this method significantly enhances the realism
of the predicted paths.
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3.3 User-guided Trajectory Generation
Unlike existing LLM-based models such as SOTA LMTraj [4], our
approach enables comprehensive trajectory modeling, not limited
to simple trajectory prediction. Notably, our method allows users
to provide high-level guidance, such as direction or group behavior,
without the need to specify exact 2D goal coordinates. This makes
our model more interpretable and adaptable to user input. Figure 3
illustrates examples of user-guided trajectory generation.

To achieve this, we adjust the goal logit map 𝜁
(
𝜙
(
X𝑖vis

)
, X𝑖sem

)
by

incorporating a guidance function G
(
X𝑖𝑡

)
as a regularization term,

allowing for user-guided trajectory adjustments. The modified goal
probability map is computed as follows:

Ŷ𝑖
goal = 𝜎

[
𝜁

(
𝜙
(
X𝑖vis

)
, X𝑖sem

)
+ 𝜆 · G

(
X𝑖𝑡

) ]
(7)

We define guidance functions for two scenarios: direction guid-
ance and group behavior. For direction (Figure 3b), logits, derived by
Gdirection

(
X𝑖𝑡

)
= max

(
0, 1 − |𝜃−𝜃𝑝 |

𝜃max

)
, are added to regions rotated

by a user-defined angle relative to the pedestrian’s current heading.
𝜃 is the target angle for the pedestrian, 𝜃𝑝 is the angle between each
position and the current position, and 𝜃max is the maximum angle
for adding logits. For group behavior (Figure 3c), logits, derived by
Ggroup

(
X𝑖𝑡

)
= max

(
0, 1 − 𝑑𝑝

𝑑max

)
, are added around the predicted

goals of neighboring pedestrian. 𝑑𝑝 represents the distance to the
neighboring pedestrian’s future position, and 𝑑max is the maximum
distance. The level of influence from this guidance is controlled via
the parameter 𝜆, which adjusts the strength of the user input.

3.4 Training and Inference Scheme
The proposed approaches are learned through the following loss
functions. First, for a goal-oriented visual prompt (Figure 2a), model
learns to align the predicted goal probability map Ŷgoal with the
ground truth probability map Ygoal, which is generated from the
final 2D coordinates 𝑝𝑡+𝜏pred of the ground truth trajectory Y𝑡 . The
Lgoal is computed using binary cross entropy (𝐵𝐶𝐸) as follows:

Lgoal = 𝐵𝐶𝐸

(
Ŷgoal, Ygoal

)
Next, for the chain-of-thought (CoT)

LLM for trajectory generation (Figure 2b), the predicted text-based
trajectory Ŷtext is compared with the ground truth trajectory Ytext,
represented in text form, using cross entropy (𝐶𝐸) to compute
the Ltext. As a result, the Ltext is expressed as follows: Ltext =

𝐶𝐸

(
Ŷtext, Ytext

)
During training, the LLM uses the ground truth chain-of-thought

from the dataset instead of the one generated by the goal-oriented
visual prompt. This ensures that the goal-oriented visual prompt
and LLM are trained independently, without influencing each other.
The overall training process of the goal-oriented visual prompt
and the CoT LLM is shown in Algorithm 1. At inference time, the
chain-of-thought sampled from the goal-oriented visual prompt is
passed to the LLM to predict the final trajectory.

Algorithm 1 GUIDE-CoT Training Scheme

(Step 1) Goal-oriented visual prompt training scheme
INPUT: Past trajectories of pedestrians X, Future trajectories of
pedestrians Y, Scene image I𝑠 , Semantic map I𝑠sem, Goal module
𝜁 , Pretrained visual encoder 𝜙 , Batch size 𝑁
OUTPUT: Trained goal module 𝜁
for batch in X do

for 𝑖 = 1 to 𝑁 do
P𝑖 ← 𝐷𝑟𝑎𝑤 (X𝑖 )
X𝑖vis ← (1 − 𝛼) · I𝑠 + 𝛼 · P𝑖
X𝑖sem ← X𝑖heatmap ⊕ I

𝑠
sem

Ŷ𝑖
goal ← 𝜎

[
𝜁
(
𝜙
(
X𝑖vis

)
, X𝑖sem

) ]
end for
Lgoal ← BCE(Ŷgoal, Ygoal)
Backprop and update 𝜁

end for
Return: Trained goal module 𝜁
(Step 2) CoT LLM training scheme
INPUT: Past trajectories of pedestrians X, Future trajectories of
pedestrians Y, LLM, Batch size 𝑁
OUTPUT: Trained LLM
for batch in X do

for 𝑖 = 1 to 𝑁 do
CoT prompt← from ground-truth Y𝑖

Ŷ𝑖
text ← LLM(prompt)

end for
Ltext ← CE(Ŷtext, Ytext)
Backprop and update LLM

end for
Return: Trained LLM

Figure 4: Examples of variants of our used visual prompts
with different colors (i.e., red, blue, and green) and shapes
(i.e., arrow and points).

4 EXPERIMENTAL RESULTS
4.1 Implementation and Evaluation Details

Datasets. We evaluated the trajectory prediction performance us-
ing the widely used ETH [35] and UCY [26] datasets. Following
prior works, we adopted the leave-one-out cross-validation setting
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Table 1: Comparison of ADE/FDE across different models on the ETH/UCY datasets. The 1st/2nd best performances are indicated
in boldface and underline. †: Each model is evaluated under the common pedestrian trajectory prediction setting, i.e., consistent
dataset splits and evaluation units (meters). ‡: Results for these models are reproduced.

Model
ETH HOTEL UNIV ZARA1 ZARA2 AVG

ADE (↓) / FDE (↓) ADE (↓) / FDE (↓) ADE (↓) / FDE (↓) ADE (↓) /FDE (↓) ADE (↓) / FDE (↓) ADE (↓) / FDE (↓)

Social-GAN (18’ CVPR) [20] 0.77 / 1.40 0.43 / 0.88 0.75 / 1.50 0.35 / 0.69 0.36 / 0.72 0.53 / 1.04
PECNet (20’ ECCV)1† [31] 0.61 / 1.07 0.22 / 0.39 0.34 / 0.56 0.25 / 0.45 0.19 / 0.33 0.32 / 0.56
Trajectron++ (20’ ECCV)† [43] 0.61 / 1.03 0.20 / 0.28 0.30 / 0.55 0.24 / 0.41 0.18 / 0.32 0.31 / 0.52
AgentFormer (21’ ICCV)† [53] 0.46 / 0.80 0.14 / 0.22 0.25 / 0.45 0.18 / 0.30 0.14 / 0.24 0.23 / 0.40
MID (22’ CVPR)† [19] 0.57 / 0.93 0.21 / 0.33 0.29 / 0.55 0.28 / 0.50 0.20 / 0.37 0.31 / 0.54
Goal-SAR (22’ CVPRW)1†‡ [10] 0.60 / 0.81 0.19 / 0.18 0.85 / 0.59 0.20 / 0.30 0.21 / 0.27 0.41 / 0.43
NPSN (22’ CVPR) [6] 0.36 / 0.59 0.16 / 0.25 0.23 / 0.39 0.18 / 0.32 0.14 / 0.25 0.21 / 0.36
SocialVAE (22’ ECCV) [50] 0.41 / 0.58 0.13 / 0.19 0.21 / 0.36 0.17 / 0.29 0.13 / 0.22 0.21 / 0.33
EqMotion (23’ CVPR) [49] 0.40 / 0.61 0.12 / 0.18 0.23 / 0.43 0.18 / 0.32 0.13 / 0.23 0.21 / 0.35
EigenTrajectory (23’ ICCV) [5] 0.36 / 0.53 0.12 / 0.19 0.24 / 0.43 0.19 / 0.33 0.14 / 0.24 0.21 / 0.34
LED (23’ CVPR) [32] 0.39 / 0.58 0.11 / 0.17 0.26 / 0.43 0.18 / 0.26 0.13 / 0.22 0.21 / 0.33
LMTraj-SUP (24’ CVPR)2 [4] 0.41 / 0.51 0.12 / 0.16 0.22 / 0.34 0.20 / 0.32 0.17 / 0.27 0.22 / 0.32

GUIDE-CoT (Ours)1,2 0.38 / 0.43 0.13 / 0.15 0.34 / 0.48 0.19 / 0.29 0.16 / 0.21 0.24 / 0.31
1: Goal-based methods. 2: LLM-based methods

Table 2: Ablation study with (a) different types of visual
prompts, (b) different combinations of visual conditions, and
(c) different pretraining strategies (with the same ResNet-
50 [21] backbone). We use ETH/UCY datasets and report FDE
scores (lower is better).

(a) Effect on types of visual prompts

ETH HOTEL UNIV ZARA1 ZARA2 Avg.

Blue points 0.46 0.17 0.50 0.28 0.22 0.33
Blue arrow 0.46 0.17 0.50 0.28 0.22 0.33

Green points 0.43 0.16 0.50 0.29 0.21 0.32
Green arrow 0.44 0.16 0.50 0.28 0.22 0.32

Red points 0.46 0.17 0.50 0.28 0.22 0.33
Red arrow 0.43 0.15 0.48 0.29 0.21 0.31

(b) Effect on combinations of visual prompts

Xsem Xvis ETH HOTEL UNIV ZARA1 ZARA2 Avg.

✓ 0.66 0.22 0.64 0.36 0.24 0.42
✓ 0.66 0.32 1.22 0.60 0.33 0.51

✓ ✓ 0.43 0.15 0.48 0.29 0.21 0.31
(c) Effect on pretraining strategies

ETH HOTEL UNIV ZARA1 ZARA2 Avg.

ImageNet-1K [14] 0.44 0.18 0.49 0.30 0.22 0.33
Remote-CLIP [29] 0.41 0.17 0.49 0.28 0.22 0.31
CLIP [36] 0.43 0.15 0.48 0.29 0.21 0.31

for our experiments. We also followed the previous experimental
settings [4–6], i.e., dataset splits.

Evaluation metrics. For quantitative evaluation, we used well-
known metrics: Average Displacement Error (ADE) and Final Dis-
placement Error (FDE). The model predicted 20 possible future
trajectories, from which the one with the smallest error was se-
lected. All results were reported in meters.

Implementation details. For goal-oriented visual prompt, we
employed the CLIP [36] visual encoder based on the ResNet-50 [21].
The goal module utilized a CNN-based U-Net encoder-decoder
architecture. We trained the goal-oriented visual prompt for 50
epochs, with a batch size of 64, on a single RTX-3090Ti GPU, which
took approximately 7 hours. For the LLM, we used the T5 small [38]
model, consistent with LMTraj [4]. The prompt used to transfer
Goal CoT to the LLM is: “Pedestrian 𝑖 will arrive at coordinate
𝑝𝑖𝑡+𝜏pred after the next 𝜏pred frames.”. The experimental code can be
found on our GitHub at https://github.com/ai-kmu/GUIDE-CoT

4.2 Trajectory Prediction Performance
Comparison with Existing Approaches

The results of pedestrian trajectory prediction on the ETH/UCY
datasets are presented in Table 1. The best performance is high-
lighted in bold, and the second-best is underlined. Our proposed
method achieves ADE comparable to existing models and demon-
strates the best performance in terms of average FDE across the
datasets. This demonstrates that the goal-oriented visual prompt
effectively contributes to improving goal prediction performance.
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Figure 5: Visualization of controllable trajectory generation based on user guidance. The red points represent the pedestrian’s
observed trajectory, and the stars indicate the generated goals according to the goal-oriented visual prompt. Points in other
colors show predicted trajectories from goal adjustments, illustrating variations like stopping, turning, and grouping with
nearby pedestrians. These trajectories demonstrate the model’s adaptability to user-guided trajectory generation.

Comparison with LLM-based models. Our method surpasses
LMTraj-SUP [4], which also utilizes an LLM. This demonstrates that
providing the LLM with appropriate context, rather than merely
tasking it with inferring the full trajectory, enables more effective
reasoning and leads to enhanced predictive performance. Further-
more, the incorporation of goal-oriented visual prompts not only
enhances trajectory estimation but also allows the model to lever-
age spatial and visual information more effectively. This leads to
a deeper understanding of pedestrian intent, resulting in more
accurate predictions across diverse environments.

Our method provides flexibility through user-guided trajectory
generation, allowing high-level guidance without precise goal co-
ordinates. This adaptability allows precise handling of complex
pedestrian behaviors and dynamic environments, outperforming
previous models. Its ability to generalize across datasets demon-
strates robustness, ensuring reliable performance under diverse
conditions. Integrating vision-based and semantic map-based goal
prediction creates a synergistic effect, supporting more context-
aware predictions. By leveraging multiple modalities instead of
relying solely on historical data, our approach ensures realistic and
adaptable trajectories suited to complex urban environments. These

strengths enable state-of-the-art performance while introducing
new capabilities for user-informed trajectory generation.

Comparison with goal-based models. GUIDE-CoT shares simi-
larities with existing goal-based pedestrian trajectory prediction
methods, as it predicts both the goal and the trajectory leading to-
ward it. However, our method achieves superior performance over
the representative goal-based approach, Goal-SAR [10], in terms
of goal prediction accuracy, as measured by FDE. Although both
GUIDE-CoT and Goal-SAR [10] employ the same U-Net-based goal
module [41] to process semantic conditions, our results demon-
strate that the introduction of goal-based visual prompts plays a
crucial role in enhancing performance.

These performance improvements offer two key insights. First,
incorporating well-designed visual prompts enables the pretrained
visual encoder to extract more meaningful features. Second, these
enriched features help the model effectively utilize environmental
information for goal prediction, which significantly contributes to
improved overall performance.
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4.3 Effect of Goal-oriented Visual Prompt
We present the first approach to represent pedestrian trajectories as
visual prompts for reasoning. To further analyze the effectiveness
of our approach, we conduct experiments to evaluate the impact
of different combinations of visual prompts and pretrained visual
encoders on model performance.

For visual prompts. As shown in Figure 4, we test six types of
visual prompts, combining three colors—red, blue, and green—with
two shapes: arrows connecting the pedestrian’s starting and ending
points, and dotted points representing the movement path. Most
visual prompts yield performance comparable to leading methods,
with the red arrow achieving the remarkable results as shown in
Table 2a. These findings suggest that the CLIP [36] visual encoder
effectively interprets a wide range of visual prompts.

For conditions. Table 2b presents the performance evaluation
from ablation experiments, which test the effect of using differ-
ent input conditions for the goal module when generating the goal
probability map. In the experiments where only the visual condition
was applied—consisting of scene images and visual prompts—we
combined a pretrained visual encoder with a CNN-based decoder,
structured similarly to U-Net [41], and trained only the decoder
for evaluation. The results indicate that the best performance was
achieved when both conditions (visual and semantic) were applied
together. This suggests that integrating features extracted by the
pretrained visual encoder into existing goal modules [10, 30] sig-
nificantly improves the model’s ability to predict accurate goals.

For pretraining strategies. Table 2c presents a comparison of
different visual encoder pretraining strategies.We evaluated the per-
formance of the ImageNet-1K [14], CLIP [36], and Remote-CLIP [29]
visual encoders. The results show that CLIP consistently outper-
forms ImageNet-1K across all datasets, highlighting its effectiveness
in extracting relevant features for trajectory prediction. This su-
perior performance can be attributed to CLIP’s ability to leverage
multimodal data and align visual features with contextual informa-
tion more effectively than traditional pretraining methods.

As a result, leveraging visual prompts along with a pretrained
visual encoder has a clear positive impact on goal prediction by
enhancing the model’s contextual understanding of pedestrian in-
tent. Our findings align with prior research using visual prompts
for reasoning tasks [9, 44], indicating that goal prediction shares
key similarities with general reasoning tasks. This suggests that
advancements in reasoning research can further improve goal pre-
diction performance.

4.4 Effect of User-guided Trajectory Generation
We perform a qualitative analysis to evaluate user-guided trajectory
generation using three types of high-level guidance: goal, direction,
and group. The visual results are shown in Figure 5. For goal guid-
ance, a random goal was assigned for the pedestrian. For direction
guidance, we tested three scenarios: stop, left, and right. For group
guidance, a random neighboring pedestrian was selected, and the
model was guided to group the target pedestrian with them. In
Figure 5a, the randomly assigned goal led the LLM to generate
realistic trajectories that followed the given goal accurately.

For direction guidance (Figure 5b), we tested three commands:
stop, left, and right. Without guidance (𝜆 = 0), the predicted trajec-
tory followed a straight path to the nearest goal. As 𝜆 increased,
the trajectory adjusted to the specified direction. Importantly, the
model avoided assigning goals to non-traversable areas like obsta-
cles or off-road locations. This behavior stems from our method,
where the guidance function G

(
X𝑖𝑡

)
modifies the goal logit map,

fine-tuning the path rather than replacing it.
For group guidance (Figure 5c), we selected a random neighbor-

ing pedestrian and guided the target pedestrian to form a group
with them.When 𝜆 = 0, the red and blue pedestrians were predicted
to remain independent. However, as 𝜆 increased, the trajectories
adjusted to bring them closer, successfully forming a group.

5 CONCLUSION
We propose GUIDE-CoT, a novel framework that enhances pedes-
trian trajectory prediction by integrating goal-oriented visual
prompts with a chain-of-thought LLM. Our method leverages vi-
sual prompts and pretrained visual encoders to deliver precise goal
context to the LLM, improving both prediction accuracy and adapt-
ability. Unlike existing LLM-based trajectory prediction methods,
GUIDE-CoT uses the goal context as an input, enabling control-
lable trajectory generation by adjusting the goal dynamically. Ex-
tensive experiments on the ETH/UCY datasets demonstrate the
effectiveness of our approach, showing that GUIDE-CoT not only
outperforms current methods but also introduces new capabilities
for user-guided, context-aware trajectory predictions.

One key limitation of this study is that the effectiveness of visual
information can vary with the environment. In areas with distinct
obstacles, such as trees and buildings, pedestrian future goals can
be predicted with relatively high accuracy. However, in open spaces
like UNIV, where there are few obstacles, predicting these goals
becomesmore challenging (see Table 1). To address this issue, future
work should explore integrating additional contextual cues from
the surrounding environment–beyond just visual information–into
the LLM.
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