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ABSTRACT
Constrained maximization of submodular functions poses a central

problem in combinatorial optimization. In many realistic scenarios,

a number of agents need to maximize multiple submodular objec-

tives over the same ground set. We study such a setting, where the

different solutions must be disjoint, and thus, questions of algo-

rithmic fairness arise. Inspired from the fair division literature, we

suggest a simple round-robin protocol, where agents are allowed

to build their solutions one item at a time by taking turns. Unlike

what is typical in fair division, however, the prime goal here is to

provide a fair algorithmic environment; each agent is allowed to

use any algorithm for constructing their respective solutions. We

show that just by following simple greedy policies, agents have

solid guarantees for both monotone and non-monotone objectives,

and for combinatorial constraints as general as 𝑝-systems (which

capture cardinality and matroid intersection constraints). In the

monotone case, our results include the first approximate EF1-type

guarantees under such general constraints. Further, although fol-

lowing a greedy policy may not be generally optimal, we show that

consistently performing better than that is computationally hard.
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1 INTRODUCTION
Dealing with competing interests of selfish agents poses the main

challenge at the heart of many directions of research, where we

need to manage the agents’ private agendas in pursuit of a different,
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global goal. For instance, in auction design, one might aim to elicit

honest bidding to reach a welfare-maximizing assignment of items;

in social choice, typically the goal is to map individual preferences

to outcomes that serve society as a whole; in fair division, one
attempts to serve the agents’ interests in a way that satisfies some

notion of equal treatment. We consider a natural setting that shares

a similar flavor: there is a number of agents, each of whom aims to

obtain a subset of discrete resources that maximizing their objective

function. Of course, in general, the agents’ objective functions

cannot all be maximized at the same time, as they compete over

some of the common resources. What differentiates our setting is

that we do not want to explicitly solve a complicated combinatorial

optimization problem on behalf of the agents.

As an illustrating example, consider the problem of influence

maximization, e.g., as defined in Breuer et al. [13]. The goal here

is to pick a number of vertices, such as popular users on a social

network graph, which maximizes the influence on the rest of the

users, assuming that users are independently influenced by their

neighbors. Now consider a network (e.g., Facebook) on which mul-

tiple companies want to advertise their competing products (i.e.,

solve an influence maximization problem each, on disjoint sets of

nodes). How could one implement a solution that all parties agree is

“algorithmically fair”? What is more, how should one formalize and

exploit the fact that, in large-scale instances like this, the optimal

value of an agent is not expected to be particularly affected by the

controlled removal of resources? Typically, it is taken for granted

that the central authority of the (potentially vast) network is willing

to collect all the relevant information from their clients and then

micromanage the outcome of every single such transaction.

Here we assume that the role of such a central authority is not

that of deciding everyone’s final outcome, but rather of setting an

instance-independent algorithmic environment that gives to all

the agents a fair chance to attain their goal. That is, all agents are

required to adhere to a certain protocol while they try to maximize

their objective functions. Specifically, inspired from the fair division

literature, we investigate the probably most intuitive protocol of

having agents take turns, picking resources in a round-robin fashion.
So, contrary to classic approaches in social choice or auctions,

we never collect the valuations, nor are we interested in eliciting

truthful reports. Instead we opt for the much simpler solution of
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defining a selection protocol and then show that it is possible for

every agent to have a guarantee on the quality of their final solution,

even by following a simple policy. Note that we do not imply any

specific way this should be done; whether the agents indeed realize

their potential, or what algorithms are actually used in the back-

ground, is of no direct interest. Rather, the aim here is to provide the

participants with an agreeable framework that reasonably limits

the negative effects of competition and avoids a possible winner-
takes-all situation. This approach has the additional advantage of

delegating any computational task to the agents rather than the

protocol itself, making it both easy to implement and transparent /

explainable to its users.

A further advantage of our approach is that there is an easy

way for an agent to get a reasonably good solution. Assuming

there are 𝑛 agents, each with an objective function 𝑓𝑖 over a set

of items 𝑀 , note that no algorithmic framework for the problem

can guarantee an approximation factor of more than 1/𝑛 to all

the agents with respect to the optimal value they could obtain

without competition, even when randomization is allowed. This is

straightforward to see in the example where 𝑓𝑖 (𝑆) = |𝑆 |, for all 𝑆 ⊆
𝑀 and 𝑖 ∈ [𝑛]. The best worst-case guarantee for the least satisfied
agent is 1/𝑛 and, thus, wewould like an algorithmic frameworkwith

comparable guarantees for highly competitive instances like this,

which ideally can significantly improve for “nicer” instances. What

we show is that by following a simple greedy policy throughout

our Round-Robin protocol, an agent can achieve such guarantees,

even when they have strong feasibility constraints. And while we

are not interested in enforcing any specific policy, we show that

improving over these greedy policies is NP-hard for the agents, even

in the very simplest of settings. Interestingly, as one moves towards

instances that are more robust to competition—under a large market
flavored assumption we call (𝛼, 𝛽)-robustness (Definition 2.4)—the

guarantees of the protocol improve up to the point where constant

approximation guarantees can be achieved for everyone.

There are obvious connections of our problem with fair divi-

sion, even in the choice of the protocol itself. Fully exploring these

connections or using fairness criteria as our benchmarks is not

our primary goal here. Nevertheless, there are implications of our

results on fair division which we do discuss in Section 4.1.

Our Contribution.We initiate the study of coordinated maximiza-
tion protocols for the problem where 𝑛 agents want to maximize a

submodular function each, say 𝑓𝑖 for agent 𝑖 , subject to a combinato-

rial constraint; all the functions are defined over a common ground

set𝑀 and the agents’ solutions should be disjoint. We suggest and

analyze a natural Round-Robin protocol (Protocol 1), as well as

a randomized variant of it (Protocol 2), that allow the agents to

take turns in adding at most one item from the ground set to their

solution sets at a time. In particular, we show that:

• By employing a simple greedy policy (Policy 1), an agent 𝑖 with

a monotone submodular objective and a 𝑝𝑖 -system constraint

can achieve a good approximation of the optimal solution that

is still available when they first get to choose an item, OPT
−
𝑖 .

In particular, they achieve a value of at least OPT
−
𝑖 /(𝑛 + 𝑝𝑖 )

(Theorem 4.1) or OPT
−
𝑖 /𝑛 for a cardinality constraint (Theorem

4.3). As one moves to “nicer” instances that are less affected

by competition (see Definition 2.4), these guarantees gracefully

improve beyondOPT𝑖/(𝑝𝑖 +2) orOPT𝑖/3, respectively (Theorem
4.10 and Corollary 4.11), which is almost what is possible in

polynomial time, even without any competition!

• Moreover, if agent 𝑖 follows Policy 1, then the value they secure

(disregarding any items picked before they get their first turn) is

at least 1/(𝑝𝑖 + 2) times the value for any feasible subset of any

other agent’s solution (Theorem 4.4). An immediate implication

of this, is the first EF1-type result for settings with so strong

constraints on the allocation (Corollary 4.8).

• An agent 𝑖 with a non-monotone submodular objective and a 𝑝𝑖 -

system constraint can still achieve a value of at leastOPT
−
𝑖 /(4𝑛+

4𝑝𝑖 +2) (or OPT−
𝑖 /(4𝑛+2) for a cardinality constraint) (Theorem

6.1) by simultaneously building two greedy solutions (Policy 2).

Like in the monotone case, as we move to instances that are

more robust to competition, these guarantees gradually improve

beyond OPT𝑖/(4𝑝𝑖 + 4) or OPT𝑖/8, respectively (Theorem 6.2

and Corollary 6.3), which is within a constant factor from the

best possible guarantee even with a single agent!

• Fix some 𝑗 ∈ [𝑛] and any 𝜀 ∈ (0, 0.3). Even when all agents in

[𝑛] \ { 𝑗} have additive objective functions and follow a greedy

policy, there is no polynomial-time algorithm that can improve

over Policy 1 by a factor of (1 + 𝜀) whenever this is possible,
unless P = NP (Theorem 5.1).

• When randomness is employed in the most natural way, all the

aforementioned worst-case guarantees for an agent 𝑖 translate

into comparable ex-ante guarantees with respect to OPT𝑖 instead

of OPT
−
𝑖 (Theorem 7.1). Further, the assumptions needed to ob-

tain 𝑂 (𝑝𝑖 ) approximation guarantees with respect to OPT𝑖 , are

significantly weaker (Theorem 7.2).

In short, the Round-Robin protocols allow agents with strong

combinatorial constraints to obtain a 1/Θ(𝑛) fraction of the optimal

value available when they enter the process and, in expectation, of

their optimal value overall. This remains true even when moving

to non-monotone objective functions and improves to 1/Θ(𝑝𝑖 ) for
instances that are robust to competition, which is asymptotically

best-possible in polynomial time. The agents can achieve these

guarantees by employing extremely simple greedy strategies, and

going beyond those, while possible, is generally computationally

hard even in very simple cases. Finally, no agent with a monotone

objective who chooses greedily will value someone else’s set much

higher than their own, establishing a formal notion of algorithmi-

cally fair treatment.

Note that none of our results follows in any obvious way from

known results in constrained submodular maximization and that

naively applying standard analyses would result in approximation

factors of order Θ(𝑛𝑝𝑖 ) rather than Θ(𝑛 + 𝑝𝑖 ). Our careful analysis
of greedy policies is combined with novel mappings that associate

items added in the solution of an agent with items “lost” for that

agent (due to myopic choices or other agents) in multiple sets at

once; see Lemma 4.2.

Related Work. There is a vast literature on optimizing a sub-

modular function, with or without constraints, dating back to the

seminal works of Nemhauser et al. [32] and Fisher et al. [22]. For

an overview of the main variants of the problem, we refer the in-

terested reader to the survey of Buchbinder and Feldman [14] and
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the references therein. For maximizing a monotone submodular

function subject to a 𝑝-system constraint, in particular, the simple

greedy algorithm that adds to the solution the item with the highest

marginal value in each step achieves an approximation factor of

1/(𝑝+1) [22], which improves to 1−1/𝑒 for a cardinality constraint
[32]. The latter is the best possible approximation factor, assuming

that P ≠ NP [20]. Moreover, Badanidiyuru and Vondrák [9] showed

that even maximizing an additive function subject to a 𝑝-system

constraint, within a factor of 1/(𝑝 − 𝜀) for any fixed 𝜀 > 0, requires

exponentially many independence oracle queries.

The state-of-the-art for non monotone objective functions sub-

ject to a 𝑝-system constraint is much more recent. Gupta et al. [25]

introduced a repeated greedy framework, which can achieve an

approximation factor of 1/2𝑝 , as shown by Mirzasoleiman et al.

[31]. The best known factor is 1/(𝑝 + √
𝑝 ) by Feldman et al. [21],

using the simultaneous greedy framework. Simultaneous greedy al-

gorithms bypass non-monotonicity by constructingmultiple greedy
solutions at the same time. This idea was first introduced by Amana-

tidis et al. [5] for a knapsack constraint and a 𝑝-system constraint

in a mechanism design setting, and has been used successfully in

a number of variants of the problem since [18, 26, 27, 33, 35]. The

impressive versatility of this approach, however, became appar-

ent in the recent work of Feldman et al. [21], who fully develop

a framework that achieves the best known factors for a 𝑝-system

constraint and multiple knapsack constraints combined.

The very simple Round-Robin algorithm that we use as the basis

for our Protocols 1 and 2 is a fundamental procedure encountered

throughout the fair division literature [8, 16, 30], often modified

[e.g., 7] or as a subroutine of more complex algorithms [e.g., 6, 28].

For a discussion on the connection of our work with fair division

and some further related work, see Section 4.1.

2 PRELIMINARIES
Before we formally state the problem, we introduce some notation

and give the relevant definitions and some basic facts. Let 𝑀 =

[𝑚] = {1, 2, ...,𝑚} be a set of𝑚 items. For a function 𝑓 : 2
𝑀 → R

and any sets 𝑆 ⊆ 𝑇 ⊆ 𝑀 we use the shortcut 𝑓 (𝑇 | 𝑆) for the
marginal value of 𝑇 with respect to 𝑆 , i.e., 𝑓 (𝑇 | 𝑆) = 𝑓 (𝑇 ∪𝑆) − 𝑓 (𝑆).
If 𝑇 = {𝑖} we simply write 𝑓 (𝑖 | 𝑆).

Definition 2.1. A function 𝑓 is submodular if and only if 𝑓 (𝑖 | 𝑆) ≥
𝑓 (𝑖 |𝑇 ) for all 𝑆 ⊆ 𝑇 ⊆ 𝑀 and 𝑖 ∉ 𝑇 .

If 𝑓 is non-decreasing, i.e., if 𝑓 (𝑆) ≤ 𝑓 (𝑇 ) for any 𝑆 ⊆ 𝑇 ⊆ 𝑀 ,

we just refer to it as being monotone in this context. We consider

normalized (i.e., 𝑓 (∅) = 0), non-negative submodular objective

functions, both monotone and non-monotone.

Our algorithmic goal is to maximize multiple submodular func-

tions at the same time, each one with its own constraint, through

simple protocols. As we imply in the Introduction, the term protocol
here refers to a procedure that (a) does not take any general input

about the valuation functions or the constraints of the agents but

is, possibly, allowed to ask a limited number of simple queries, (b)

performs little to no computation itself, and (c) chooses one agent

at a time and allows them to add a number of items to their solution,

possibly from a subset of the available items. The constraints can

be as general as 𝑝-system constraints.

Definition 2.2. Given a set𝑀 , an independence system for𝑀 is a

family I of subsets of𝑀 , whose members are called the independent
sets of 𝑀 and satisfy (i) ∅ ∈ I, and (ii) if 𝐵 ∈ I and 𝐴 ⊆ 𝐵, then

𝐴 ∈ I. We call I a matroid if it is an independence system and it

also satisfies the exchange property (iii) if 𝐴, 𝐵 ∈ I and |𝐴| < |𝐵 |,
then there exists 𝑥 ∈ 𝐵 \𝐴 such that 𝐴 ∪ {𝑥} ∈ I.

Given a set 𝑆 ⊆ 𝑀 , a maximal independent set contained in 𝑆 is

called a basis of 𝑆 . The upper rank ur(𝑆) (resp. lower rank lr(𝑆)) is
defined as the largest (resp. smallest) cardinality of a basis of 𝑆 .

Definition 2.3. A 𝑝-system for𝑀 is an independence system for

𝑀 , such that max

𝑆⊆𝑀
ur(𝑆)/lr(𝑆) ≤ 𝑝 .

Many combinatorial constraints are special cases of 𝑝-systems

for small values of 𝑝 . A cardinality constraint, i.e., feasible solutions

contain up to a certain number of items, induces a 1-system. A

matroid constraint, i.e., feasible solutions belong to a given matroid,

also induces a 1-system; in fact, a cardinality constraint is a special

case of a matroid constraint. More generally, constraints imposed

by the intersection of 𝑘 matroids, i.e., feasible solutions belong to

the intersection of 𝑘 given matroids, induce a 𝑘-system; matching

constraints are examples of such constraints for 𝑘 = 2.

Constrained Maximization of Multiple Submodular Objectives (for
short,MultiSubmod): For 𝑖 ∈ [𝑛], let 𝑓𝑖 : 2𝑀 → R be a submodular

function and I𝑖 ⊆ 2
𝑀

be a 𝑝𝑖 -system. Find disjoint subsets of 𝑀 ,

say 𝑆1, . . . , 𝑆𝑛 , such that 𝑆𝑖 ∈ I𝑖 and 𝑓𝑖 (𝑆𝑖 ) =max𝑆∈I𝑖 𝑓𝑖 (𝑆) := OPT𝑖 .

We think of 𝑓𝑖 and I𝑖 as being associated with an agent 𝑖 ∈ [𝑛],
i.e., they are 𝑖’s objective function and combinatorial constraint,

respectively. Of course, maximizing all the functions at once may be

impossible as these objectives could be competing with each other.

Naturally, we aim for approximate solutions, i.e., for 𝑆1, . . . , 𝑆𝑛 , such

that 𝑓𝑖 (𝑆𝑖 ) ≥ 𝜌 OPT𝑖 , for all 𝑖 ∈ [𝑛] and a common approximation

ratio 𝜌 (possibly a function of 𝑛). As a necessary compromise in

our setting, we often use OPT
−
𝑖 instead of OPT𝑖 as the benchmark

for agent 𝑖 in the worst-case. We will revisit and formalize this

benchmark in Section 4 but, essentially, if some items have already

been allocated right before anything is added to 𝑆𝑖 for the first time,

then OPT
−
𝑖 is the value of an optimal solution for 𝑖 still remaining

available at that time.

We also intend to evaluate our protocols on instances that are

more robust to competition. We want to capture the behavior one

would expect in large-scale applications of our setting, e.g., in our

running example of multiple firms competing to maximize their

influence on a vast social network. That is, the value of an optimal

solution of an agent should not be greatly affected by the removal

of a reasonably sized subset of items. This is formalizeed below.

Definition 2.4. Let 𝛼 ∈ N, 𝛽 ∈ R+. An instance ofMultiSubmod

is (𝛼, 𝛽)-robust with respect to agent 𝑖 if there are 𝛼 disjoint sets𝑂𝑖1,

. . . ,𝑂𝑖𝛼 ⊆ 𝑀 , so that 𝑂𝑖 𝑗 ∈ I𝑖 and 𝛽 · 𝑓𝑖 (𝑂𝑖 𝑗 ) ≥ OPT𝑖 , for 𝑗 ∈ [𝛼].

That is, if an instance is (𝛼, 𝛽)-robust with respect to agent 𝑖 ,

then it contains at least 𝛼 independent solutions of value within

a factor of 𝛽 from 𝑖’s optimal value. Clearly, any instance is (1, 1)-
robust with respect to any agent. When we refer to instances that

are more robust to competition, we essentially mean instances that

are (Ω(𝑛),𝑂 (1))-robust with respect to everyone.
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Besides the definition of submodularity given above, there are

alternative equivalent definitions that will be useful later. These

are summarized in the following result of Nemhauser et al. [32].

Theorem 2.5 (Nemhauser et al. [32]). A function 𝑓 : 2
𝑀 → R

is submodular if and only if, for all 𝑆,𝑇 ⊆ 𝑀 , 𝑓 (𝑇 ) ≤ 𝑓 (𝑆) +∑
𝑖∈𝑇 \𝑆 𝑓 (𝑖 | 𝑆) −

∑
𝑖∈𝑆\𝑇 𝑓 (𝑖 | 𝑆 ∪𝑇 \ {𝑖}). Further, 𝑓 is monotone sub-

modular if and only if, for all 𝑆,𝑇 ⊆ 𝑀 , 𝑓 (𝑇 ) ≤ 𝑓 (𝑆)+∑𝑖∈𝑇 \𝑆 𝑓 (𝑖 | 𝑆).

As it is common in the submodular optimization literature, we

assume oracle access to the functions via value queries, i.e., for

𝑖 ∈ [𝑛], we assume the existence of a polynomial-time value oracle

that returns 𝑓𝑖 (𝑆) when given as input a set 𝑆 . Similarly, we assume

the existence of independence oracles for the constraints, i.e., for

𝑖 ∈ [𝑛], we assume there is a polynomial-time algorithm that, given

as input a set 𝑆 , decides whether 𝑆 ∈ I𝑖 or not.

3 A ROUND-ROBIN FRAMEWORK
We present our simple protocol, which is aligned with how the ma-

jority of submodular maximization algorithms work (i.e., building

one or more solutions one item at a time): here, the agents take

turns according to a fixed ordering and in each step the active agent

chooses (at most) one available item to add to their solution. Note

that we do not impose how this should be done; it is the agents’

task to decide how an item will be chosen, whether their solution

should remain feasible throughout the protocol or they maintain

a feasible solution within a larger chosen set, etc. We stress again

that this approach has the significant advantage of delegating any

computationally challenging task to the agents.

Note that when we refer to the policy of an agent, we mean

their overall algorithmic strategy; how they make their algorith-

mic choices, given full information about other agents’ objective

functions, constraints, and current solutions. So when we write

A𝑖 (𝑆𝑖 ;𝑄) in line 4 of the description of Protocol 1, in general,A𝑖 (·)
can be a function of all that information. Later, in Section 5, when

we make the distinction and talk about the algorithm of an agent,

we typically consider other agents’ objective functions and policies

fixed. We do not formalize this further, as the main policies we

consider in this work are independent of any information about

other agents.

We could have any ordering fixed by Protocol 1 at its very be-

ginning, i.e., a permutation 𝑠1, . . . , 𝑠𝑛 of [𝑛], such that 𝑠𝑖 is the 𝑖-th

agent to choose their first item. To simplify the presentation, we

assume that 𝑠𝑖 = 𝑖 , for all 𝑖 ∈ [𝑛]. This is without loss of generality,
as it only involves a renaming of the agents before the main part of

the protocol begins. We revisit this convention in Section 7 where

we randomize over all possible agent permutations.

Protocol 1 Round-Robin(A1, . . . ,A𝑛)
(For 𝑖 ∈ [𝑛], A𝑖 is the policy of agent 𝑖 .)

1: 𝑄 =𝑀 ; 𝑘 = ⌈𝑚/𝑛⌉
2: for 𝑟 = 1, . . . , 𝑘 do
3: for 𝑖 = 1, . . . , 𝑛 do
4: 𝑗 =A𝑖 (𝑆𝑖 ;𝑄) (where 𝑗 could be a dummy item)

5: 𝑄 =𝑄 \ { 𝑗}

Refining Our Benchmark. Note that even having a guarantee

of OPT𝑖/𝑛, for all 𝑖 ∈ [𝑛], is not always possible (even approxi-

mately) in the worst case. Indeed, let us modify the example from

the introduction so that there are a few very valuable items: for

all 𝑖 ∈ [𝑛], let 𝑓𝑖 (𝑆 ∪𝑇 ) = |𝑆 | + 𝐿 |𝑇 |, for any 𝑆 ⊆ 𝑀1 and 𝑇 ⊆ 𝑀2,

where 𝑀 = 𝑀1 ∪𝑀2 and 𝐿 ≫ |𝑀 |. When |𝑀2 | < 𝑛, then the best

possible value for the least satisfied agent is a 1/(𝑛 − |𝑀2 |) fraction
not of OPT𝑖 but of 𝑖’s optimal value in a reduced instance where the
items in𝑀2 are already gone.

With this in mind, we are going to relax the OPT𝑖 benchmark a

little. As mentioned in Section 2, we define OPT
−
𝑖 to be the value of

an optimal solution available to agent 𝑖 , given that 𝑖 − 1 items have

been lost before 𝑖 gets to pick their first item. Note that, for 𝑖 ∈ [𝑛],

OPT
−
𝑖 ≥ min

𝑀 ′∈( 𝑀
𝑚−𝑖+1)

max

𝑆∈I𝑖 |𝑀 ′
𝑓𝑖 (𝑆) ,

i.e., OPT
−
𝑖 is always at least as large as the pessimistic prediction

that agents before 𝑖 will make the worst possible choices for 𝑖 .

The notation

(𝑀
𝑥

)
used here denotes the set of subsets of 𝑀 of

cardinality 𝑥 and I|𝐴 denotes (the independence system induced

by) the restriction of I on 𝐴, i.e., I|𝐴 = {𝑋 ∩ 𝐴 : 𝑋 ∈ I}. By
inspecting Definition 2.2, it is easy to see that the restriction of a

𝑝-system is a 𝑝-system.

It is worth mentioning that, while OPT
−
𝑖 is defined with respect

to Protocol 1 here, its essence is not an artifact of how Round-Robin

works. No matter which sequential protocol (or even algorithm

with full information) one uses, if there are 𝑛 agents, then it is

unavoidable that someone will get their first item after 𝑟 items are

already gone, for any 𝑟 < 𝑛; this is inherent to any setting with

agents competing for resources.

In the next sections, we show that very simple greedy policies in

Protocol 1 can guarantee value of at least OPT
−
𝑖 /Θ(𝑛 + 𝑝𝑖 ) to any

agent 𝑖 ∈ [𝑛] who follows them. This fact implies novel results in

constrained fair division but also allows for a randomized protocol

where the corresponding ex-anteworst-case guarantees are in terms

of OPT𝑖 instead. Furthermore, is allows us to go beyond worst-case

analysis and obtain much stronger guarantees for (Ω(𝑛),𝑂 (1))-
robust instances that are almost best-possible in polynomial time.

4 THE EFFECTIVENESS OF GREEDY POLICIES
FOR MONOTONE OBJECTIVES

We first turn to monotone submodular objective functions; we deal

with non-monotonicity in Section 6. Simple greedy algorithms,

where in every step a feasible item of maximum marginal utility

is added to the current solution, have found extreme success in a

wide range of submodular maximization problems. Hence, it is only

natural to consider the following question:

What value can an agent guarantee for themselves if
they always choose greedily?

Next we show that an agent 𝑖 can achieve strong bounds with

respect to OPT
−
𝑖 . ‘Strong’ here refers to the fact that both Theo-

rems 4.1 and 4.3 achieve constant factor approximations to OPT
−
𝑖

for constant 𝑛, but also that, for 𝑛 = 1, Theorem 4.1 retrieves the

best-known guarantee of the greedy algorithm for the standard

algorithmic problem [22], which is almost best-possible for polyno-

mially many queries [9]. Further, for (𝛼, 𝛽)-robust instances these
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guarantees improve the larger 𝛼 becomes. In particular, if an in-

stance is (Ω(𝑛),𝑂 (1))-robust with respect to agent 𝑖 , then 𝑖 achieves
a 1/Θ(𝑝𝑖 ) fraction of their optimal value OPT𝑖 instead, which is

asymptotically best-possible.

Formally, when we say that agent 𝑖 chooses greedily we mean

they choose according to the policy G𝑖 below.

Policy 1 Greedy policy G𝑖 (𝑆𝑖 ;𝑄) of agent 𝑖 . (𝑆𝑖 : current solution
of agent 𝑖 (initially 𝑆𝑖 = ∅) ; 𝑄 : current set of available items)

1: 𝐴 = {𝑥 ∈ 𝑄 : 𝑆𝑖 ∪ {𝑥} ∈ I𝑖 }
2: if 𝐴 ≠ ∅ then
3: 𝑆𝑖 = 𝑆𝑖 ∪ { 𝑗}, where 𝑗 ∈ argmax𝑧∈𝐴 𝑓 (𝑧 | 𝑆𝑖 )
4: return 𝑗

5: else
6: return a dummy item (i.e., return nothing)

Theorem 4.1. Any agent 𝑖 with a 𝑝𝑖 -system constraint, who chooses
greedily in the Round-Robin protocol, builds a solution 𝑆𝑖 such that
𝑓𝑖 (𝑆𝑖 ) ≥ OPT

−
𝑖 /(𝑛 + 𝑝𝑖 ).

Proof. Let 𝑂−
𝑖 be an optimal solution for agent 𝑖 on the set𝑀𝑖

of items still available after 𝑖 − 1 steps, i.e., right before agent 𝑖

chooses their very first item; by definition, OPT
−
𝑖 = 𝑓𝑖 (𝑂−

𝑖 ). From
𝑖’s perspective, it makes sense to consider the 𝑘-th round to last

from when they get their 𝑘-th item until right before they choose

their (𝑘 + 1)-th item. We rename the items of 𝑀𝑖 accordingly as

𝑥𝑖
1
, 𝑥𝑖+1

1
, . . . , 𝑥𝑖−1

1
, 𝑥𝑖

2
, . . ., i.e., item 𝑥 ℓ𝑗 is the 𝑗-th item that agent ℓ

chooses from the moment when agent 𝑖 is about to start choosing;

any items not picked by anyone (due to feasibility constraints)

are arbitrarily added to the end of the list. Also, let 𝑆
(𝑟 )
𝑖

denote

the solution of agent 𝑖 right before item 𝑥𝑖𝑟 is added to it. Finally,

set 𝑠 := |𝑆𝑖 |. We are going to need the existence of a mapping

𝛿 : 𝑂−
𝑖 \𝑆𝑖 → 𝑆𝑖 with “nice” properties, as described in the following

lemma for 𝑎 = 1 and 𝑄𝑖1 = 𝑂−
𝑖 ; the general form of Lemma 4.2 is

needed for the proof of Theorem 4.10.

Lemma 4.2. Let𝑄𝑖1, . . . , 𝑄𝑖𝑎 ∈ I𝑖 be disjoint feasible sets for agent
𝑖 . There is a mapping 𝛿 :

⋃
𝑗∈[𝑎] 𝑄𝑖 𝑗 \ 𝑆𝑖 → 𝑆𝑖 with the following two

properties, for all 𝑥𝑖𝑟 ∈ 𝑆𝑖 , 𝑥 ∈ ⋃
𝑗∈[𝑎] 𝑄𝑖 𝑗 \ 𝑆𝑖 :

(1) if 𝛿 (𝑥) = 𝑥𝑖𝑟 , then 𝑓𝑖 (𝑥 | 𝑆 (𝑟 )
𝑖

) ≤ 𝑓𝑖 (𝑥𝑖𝑟 | 𝑆
(𝑟 )
𝑖

), i.e., 𝑥 is not as
attractive as 𝑥𝑖𝑟 when the latter is chosen;

(2) |𝛿−1 (𝑥𝑖𝑟 ) | ≤ 𝑛 + 𝑎𝑝𝑖 − 1, i.e., at most 𝑛 + 𝑎𝑝𝑖 − 1 items of⋃
𝑗∈[𝑎] 𝑄𝑖 𝑗 \ 𝑆𝑖 are mapped to each item of 𝑆𝑖 .

For now, we assume the lemma and apply the second part of

Theorem 2.5 for 𝑂−
𝑖 and 𝑆𝑖 :

𝑓𝑖 (𝑂−
𝑖 ) ≤ 𝑓𝑖 (𝑆𝑖 ) +

∑︁
𝑥∈𝑂−

𝑖
\𝑆𝑖

𝑓𝑖 (𝑥 | 𝑆𝑖 )

≤ 𝑓𝑖 (𝑆𝑖 ) +
𝑠∑︁

𝑟=1

∑︁
𝑥∈𝛿−1 (𝑥𝑖𝑟 )

𝑓𝑖 (𝑥 | 𝑆𝑖 )

≤ 𝑓𝑖 (𝑆𝑖 ) +
𝑠∑︁

𝑟=1

∑︁
𝑥∈𝛿−1 (𝑥𝑖𝑟 )

𝑓𝑖 (𝑥 | 𝑆 (𝑟 )
𝑖

)

≤ 𝑓𝑖 (𝑆𝑖 ) +
𝑠∑︁

𝑟=1

(𝑛 + 𝑝𝑖 − 1) 𝑓𝑖 (𝑥𝑖𝑟 | 𝑆
(𝑟 )
𝑖

)

= 𝑓𝑖 (𝑆𝑖 ) + (𝑛 + 𝑝𝑖 − 1) 𝑓𝑖 (𝑆𝑖 ) = (𝑛 + 𝑝𝑖 ) 𝑓𝑖 (𝑆𝑖 ) .
where the second inequality follows from observing that 𝑂−

𝑖 \ 𝑆𝑖 =⋃𝑠
𝑟=1 𝛿

−1 (𝑥𝑖𝑟 ), the third follows from submodularity, and the fourth

from Lemma 4.2. We conclude that 𝑓𝑖 (𝑆𝑖 ) ≥ OPT
−
𝑖 /(𝑛 + 𝑝𝑖 ). □

Here one has to deal with the fact that an agent may miss “good”

items not only by their own choices (that make such items in-

feasible), but also because others take such items in a potentially

adversarial way. This complication calls for very careful mapping

in Lemma 4.2 which concentrates most of the technical difficulty of
the proof of Theorem 4.1. Note that the lemma allows for a mapping

from the union of multiple disjoint feasible subsets, not just 𝑂−
𝑖 .

This comes handy for proving Theorem 4.10 but adds an extra layer

of complexity in keeping track of different kinds of items in its

proof. The proof is deferred to the full version of our paper [3] (as is

the case for any other missing proof), but we give here the general

idea, at least for the special case of a single set, 𝑂−
𝑖 , as it is used for

Theorem 4.1. An agent 𝑖 may miss items from their optimal solution

𝑂−
𝑖 for two reasons: (i) because of greedy choices that make them

infeasible, and (ii) because other agents take them. It is easy to see

that between any two greedy choices of 𝑖 , there are at most 𝑛 − 1

such lost items of type (ii) and all have marginals that are no better

than the marginal of the former choice. The next step is to show

that after the first ℓ greedy choices, for any ℓ , there are at most ℓ𝑝𝑖
lost items of type (i). Finally, we argue that this allows us to map at

most 𝑝𝑖 of them to each greedy choice of 𝑖 so that they never have

a larger marginal value than that greedy choice.

Specifically for cardinality constraints (which are 1-system con-

straints and include the unrestricted case when the cardinality

constraint is at least ⌈𝑚/𝑛⌉), we can get a slightly stronger version

of Theorem 4.1. Note that Theorem 4.3 assumes that 𝑛 ≥ 2, and

thus it does not contradict the inapproximability result of Feige

[20] for the case of a single objective function. Here the analysis of

the greedy policy for Protocol 1 is tight for any 𝑖 , as follows by the

example from the introduction (e.g., for𝑚 = 𝑛).

Theorem 4.3. For 𝑛 ≥ 2, any agent 𝑖 with a cardinality constraint,
who chooses greedily in the Round-Robin protocol, builds a solution
𝑆𝑖 such that 𝑓𝑖 (𝑆𝑖 ) ≥ OPT

−
𝑖 /𝑛.

A reasonable question at this point is whether this is a strong

benchmark in general. The answer is both yes and no! On one hand,

in Section 4.8 below, we get an EF1-type guarantee for any agent

who chooses greedily, no matter what other agents do. On the other

hand, there are instances where an agent can improve their solution

by a factor of order Ω(𝑛) by choosing items more carefully and

taking other agents’ objective functions into consideration (see also

[36]). Yet, in Section 5 we show that it is NP-hard to consistently

improve on Policy 1 by a non-trivial factor.

4.1 Implications in Fair Division
Despite the fact that the Round-Robin allocation protocol is known

to produce EF1 allocations for agents with additive valuation func-

tions and no constraints, showing analogous guarantees in our

setting is non-trivial. Theorems 4.4 and 4.5 are in this direction and
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have implications on constrained fair division as we will see below.

Note that the analysis of Theorem 4.5 is tight, as it is known that

Round-Robin as an algorithm cannot guarantee more than 0.5-EF1

for submodular valuation functions even without constraints [2].

Theorem 4.4. Let 𝑖 be an agent with a 𝑝𝑖 -system constraint I𝑖
who chooses greedily in the Round-Robin protocol. Also, let 𝑗 be any
other agent and 𝑔 be the first item added to 𝑆 𝑗 . Then,

𝑓𝑖 (𝑆𝑖 ) ≥
1

𝑝𝑖 + 2

· max

𝑆∈I𝑖 |𝑆 ′𝑗
𝑓𝑖 (𝑆) ,

where 𝑆 ′𝑗 = 𝑆 𝑗 if 𝑖 < 𝑗 , and 𝑆 ′𝑗 = 𝑆 𝑗 \ {𝑔} otherwise.
Theorem 4.5. Let 𝑖 be an agent with a cardinality constraint I𝑖

who chooses greedily in the Round-Robin protocol. Also, let 𝑗 be any
other agent and 𝑔 be the first item added to 𝑆 𝑗 . Then,

𝑓𝑖 (𝑆𝑖 ) ≥ 0.5 · max

𝑆∈I𝑖 |𝑆 ′𝑗
𝑓𝑖 (𝑆)

where 𝑆 ′𝑗 = 𝑆 𝑗 if 𝑖 < 𝑗 , and 𝑆 ′𝑗 = 𝑆 𝑗 \ {𝑔} otherwise.
If the items in𝑀 were allocated in a centralized way, one could

interpret the monotone case of our problem as a fair division prob-

lem where the agents have submodular valuation functions as well

as feasibility constraints over the subsets of goods. The problem of

fairly allocating goods subject to cardinality, matroid, or even more

general, constraints has been studied before; see Suksompong [34]

for a recent survey. Also, there is a rich line of work on discrete fair

division beyond additive valuation functions, e.g., [2, 11, 17, 23, 24];

see also [1] and references therein.

Here we focus exclusively on (an appropriate generalization of)

envy-freeness up to an item (EF1), a notion which was introduced by

Budish [15] (and, implicitly, by Lipton et al. [29] a few years earlier).

An allocation is a tuple of disjoint subsets of 𝑀 , 𝐴 = (𝐴1, . . . , 𝐴𝑛),
such that each agent 𝑖 ∈ [𝑛] receives the set 𝐴𝑖 . Note that here we

do not assume the allocation to be complete, i.e.,

⋃
𝑖∈[𝑛] 𝐴𝑖 = 𝑀 ,

because of the presence of the feasibility constraints in our setting.

Definition 4.6. An allocation 𝐴 is 𝛼-approximate envy-free up to
one item (EF1) if, for every pair of agents 𝑖, 𝑗 ∈ [𝑛], there is some

𝑔 ∈ 𝐴 𝑗 , such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝛼 𝑣𝑖 (𝐴 𝑗 \ {𝑔}).
When 𝛼 = 1, we just refer to EF1 allocations. Round-Robin, if

implemented as an algorithm with all agents choosing greedily,

is known to produce EF1 allocations when agents have additive

valuation functions [16] and 0.5-EF1 allocations when agents have

submodular valuation functions [2], assuming no constraints at all.

Although it is possible to have EF1 allocations under cardinality

constraints for agents with additive valuation functions [12], this

definition that ignores feasibility is way too strong for our general

constraints. What we need here is the notion of feasible EF1 intro-
duced recently by Dror et al. [19] and others (see, e.g., Barman et al.

[10]), or rather its approximate version.

Definition 4.7. An allocation𝐴 is𝛼-approximate feasible envy-free
up to one item (𝛼-FEF1) if, for every pair of agents 𝑖, 𝑗 ∈ [𝑛], there
is some 𝑔 ∈ 𝐴 𝑗 , such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝛼 𝑣𝑖 (𝐴′

𝑗 ) for any 𝐴′
𝑗 ⊆ 𝐴 𝑗 \ {𝑔}

that is feasible for agent 𝑖 .

By simulating a run of Round-Robin(G), i.e., our Protocol 1 with
greedy policies for all agents, Theorems 4.4 and 4.5 give us the

following direct corollaries.

Corollary 4.8. For agents with submodular valuation functions
and 𝑝-system constraints, we can efficiently find a 1

𝑝+2 -FEF1 allocation,
such that adding any unallocated item to any agent’s set is infeasible.

Corollary 4.9. For agents with submodular valuation functions
and cardinality constraints, we can efficiently find a 0.5-FEF1 alloca-
tion, such that the allocation is complete or the maximum cardinalities
of all agents have been met.

Similarly to Theorem 4.5, Corollary 4.9 is tight even without

constraints [2]. We suspect that the tight result for Corollary 4.8

would be 𝑝𝑖 + 1 instead.

4.2 Improved Guarantees for Robust Instances
A natural next question now is: is it possible for an agent to choose
items optimally—or at least, in a way that significantly improves
over choosing greedily? In Section 5, we show that this poses a

computationally hard task. Before doing so, however, we divert the

question to under what circumstances is it possible for an agent to

choose items (approximately) optimally by choosing greedily. We

turn our attention to the special case of (𝛼, 𝛽)-robust instances (see
Definition 2.4), for which the results of Theorems 4.1 and 4.3 can

be significantly improved.

We begin with a parameterized result about a specific agent,

which will imply, as a corollary, a strong guarantee for instances

that are (Ω(𝑛),𝑂 (1))-robust with respect to everyone. Note that 𝛾

and 𝛽 in the following statement can be functions of 𝑛; in particular,

we assume that 𝛾 is such that 𝛾𝑛 + 𝑖 − 1 is always an integer.

Theorem 4.10. Assume that an instance is (𝛾𝑛 + 𝑖 − 1, 𝛽)-robust
with respect to agent 𝑖 (who has a 𝑝𝑖 -system constraint). If 𝑖 chooses
greedily in the Round-Robin protocol, they build a solution 𝑆𝑖 such
that 𝑓𝑖 (𝑆𝑖 ) ≥ OPT𝑖/𝛽 (𝑝𝑖 + 1 + 1/𝛾).

Proof. Our notation will be consistent with the one introduced

in the proof of Theorem 4.1. That is, item 𝑥 ℓ𝑗 is the 𝑗-th item that

agent ℓ chooses from the moment when agent 𝑖 is about to start

choosing, 𝑆
(𝑟 )
𝑖

is the solution of agent 𝑖 right before item 𝑥𝑖𝑟 is added

to it, and 𝑠 := |𝑆𝑖 |.
Since the instance is (𝛾𝑛+𝑖−1, 𝛽)-robust with respect to 𝑖 , by the

time 𝑖 gets to pick their first item, there are at least 𝑎 := 𝛾𝑛 disjoint

subsets of 𝑀 , say 𝑄𝑖1, . . . , 𝑄𝑖𝑎 , such that 𝑄𝑖 𝑗 ∈ I𝑖 and 𝛽 𝑓𝑖 (𝑄𝑖 𝑗 ) ≥
OPT𝑖 , for any 𝑗 ∈ [𝑎], and no item in ∪𝑎

𝑗=1𝑄𝑖 𝑗 has been allocated

to any of the agents 1 through 𝑖 − 1 yet.

Here we invoke the full power of Lemma 4.2, as we apply it to

all 𝑄𝑖1, . . . , 𝑄𝑖𝑎 and assume the existence of 𝛿 as in the statement

of the lemma. Further, we apply the second part of Theorem 2.5 for

𝑆𝑖 and each 𝑄𝑖 𝑗 , and we add up these 𝑎 inequalities:

𝑎∑︁
𝑗=1

𝑓𝑖 (𝑄𝑖 𝑗 ) ≤
𝑎∑︁
𝑗=1

𝑓𝑖 (𝑆𝑖 ) +
𝑎∑︁
𝑗=1

∑︁
𝑥∈𝑄𝑖 𝑗 \𝑆𝑖

𝑓𝑖 (𝑥 | 𝑆𝑖 )

≤ 𝑎𝑓𝑖 (𝑆𝑖 ) +
𝑠∑︁

𝑟=1

∑︁
𝑥∈𝛿−1 (𝑥𝑖𝑟 )

𝑓𝑖 (𝑥 | 𝑆𝑖 )

≤ 𝑎𝑓𝑖 (𝑆𝑖 ) +
𝑠∑︁

𝑟=1

∑︁
𝑥∈𝛿−1 (𝑥𝑖𝑟 )

𝑓𝑖 (𝑥 | 𝑆 (𝑟 )
𝑖

)
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≤ 𝑎𝑓𝑖 (𝑆𝑖 ) +
𝑠∑︁

𝑟=1

(𝑛 + 𝑎𝑝𝑖 − 1) 𝑓𝑖 (𝑥𝑖𝑟 | 𝑆
(𝑟 )
𝑖

)

≤ 𝛾𝑛𝑓𝑖 (𝑆𝑖 ) + (𝑛 + 𝛾𝑛𝑝𝑖 ) 𝑓𝑖 (𝑆𝑖 ) = 𝑛(𝛾 + 1 + 𝛾𝑝𝑖 ) 𝑓𝑖 (𝑆𝑖 ) ,

where the second inequality holds because we have

⋃𝑠
𝑟=1 𝛿

−1 (𝑥𝑖𝑟 ) =( ⋃
𝑗∈[𝑎] 𝑄𝑖 𝑗

)
\ 𝑆𝑖 , the third follows from submodularity, and the

fourth from the second property of Lemma 4.2.

On the other hand, by the definition of 𝑄𝑖 𝑗 s, we have

𝑎∑︁
𝑗=1

𝑓𝑖 (𝑄𝑖 𝑗 ) ≥
𝑎∑︁
𝑗=1

OPT𝑖

𝛽
=
𝛾𝑛

𝛽
OPT𝑖 .

We conclude that 𝑓𝑖 (𝑆𝑖 ) ≥ OPT𝑖/𝛽 (𝑝𝑖 + 1 + 1/𝛾), as claimed. □

Although Theorem 4.10 is agent specific, one would expect that,

in applications like our influence maximization running example,

typical real-world instances are extremely robust with respect to

everyone. The rationale here is that the set 𝑀 contains much more

value than what an agent can extract given their constraint. The

following corollary gives strong guarantees with respect to all

agents for such scenarios. Recall that these guarantees are almost

the best one could hope for in polynomial time [9].

Corollary 4.11. Assume that an instance is (⌈(1+𝛾)𝑛⌉, 𝛽)-robust
with respect to every agent for constant 𝛽,𝛾 ∈ R+. Any agent 𝑖 with a
𝑝𝑖 -system constraint who chooses greedily in the Round-Robin proto-
col, achieves a 1/Θ(𝑝𝑖 ) fraction of OPT𝑖 .

A final remark here is that our definition of (𝛼, 𝛽)-robustness
and Theorem 4.10 could possibly lead to simple protocols with ap-

proximate maximin share guarantees. In particular, we suspect that

a variant of Algorithm 3 of Barman and Krishnamurthy [11] (which

essentially falls under our notion of a protocol), combined with

a modified version of our Theorem 4.10, should imply 1/Θ(𝑝𝑖 )-
approximate guarantees with respect to each agent’s maximin

share.

5 IT IS HARD TO OPTIMIZE OVER OTHERS
So far, there was no particular need to talk about computational effi-

ciency. The greedy policy clearly runs in polynomial time, assuming

polynomial-time value and independence oracles, and the Round-

Robin protocol itself delegates any non-trivial computational task

to the agents themselves. Here we need to clarify our terminology a

bit. When we refer to polynomial-time algorithms in the statements

of the next two theorems we mean algorithms that determine the

choices of a single agent, who has full information about all the

objective functions, and whose number of steps and number of

queries to submodular function value oracles are bounded by a

polynomial in the number of agents. Within their proofs, however,

we reduce the existence of such algorithms to polynomial-time ap-

proximation algorithms for constrained submodular maximization,

whose number of steps and number of queries to a submodular

function value oracle are bounded by a polynomial in the size of

the ground set over which the submodular function is defined.

When we say that an algorithmA𝑖 is a 𝜌-improvement of agent 𝑖
over the greedy policy G𝑖 (given the objective functions and policies of
all other agents), we mean that running A𝑖 , while the other agents

stick to their corresponding policies, results in agent 𝑖 receiving a

set 𝜌 times more valuable than the one they receive by choosing

greedily, whenever this is possible.
The main result here is Theorem 5.1. On a high level, we show

that in this setting the inapproximability result of Feige [20] is am-

plified to the point where consistently doing slightly better than

the greedy policy is NP-hard, even when other agents pick ele-

ments in the most predictable way. Specifically, this hardness result

holds even when there are no individual feasibility constraints and

when all other agents (i.e., everyone except the agent to whom the

hardness applies to) use strategies as simple as choosing greedily.

That is, the hardness does not stem from having strong constraints

or hard to analyze policies for everyone else, but rather indicates

the inherent computational challenges of the problem. We find

this to be rather counter-intuitive. The proof of Theorem 5.1 is not

straightforward either. To prove the theorem we do not construct

a general reduction as usual, but rather we deal with a number of

cases algorithmically and we only use a reduction for instances

with very special structure.

Theorem 5.1. Assume𝑛 ≥ 2, let 𝜀 ∈ (0, 0.3) be any small constant,
and fix any 𝑗 ∈ [𝑛]. Even in instances where all agents in [𝑛] \
{ 𝑗} have additive objective functions and greedy policies, there is no
polynomial-time algorithm that is a (1 + 𝜀)-improvement of agent 𝑗
over the greedy policy G𝑗 , unless P = NP.

6 DEALINGWITH NON-MONOTONICITY
When trying to maximize a non-monotone submodular function—

with or without constraints—a naively greedy solution may be

arbitrarily away from a good solution even in the standard setting

with a single agent [4]. Several approaches have been developed to

deal with non-monotonicity, but the recently introduced simulta-
neous greedy approach [5, 21] seems like a natural choice here. The

high-level idea is to bypass the complications of non-monotonicity

by simultaneously constructing multiple greedy solutions. Here we

consider building only two greedy solutions, not just for the sake

of simplicity but also because the technical analysis for multiple

solutions does not translate well into our setting. Although we

suspect that a more elaborate approach with more solutions could

shave off a constant factor asymptotically, we see the results of this

section as a proof of concept that a simple greedy policy can work

well in the non-monotone version of our problem as well.

Policy 2 Simultaneous Greedy policy G+
𝑖 (𝑆𝑖1, 𝑆𝑖2 ;𝑄) of agent 𝑖 .

(𝑆𝑖1, 𝑆𝑖2 : current solutions of 𝑖 (initially 𝑆𝑖1 = 𝑆𝑖2 = ∅) ; 𝑄 : current

set of available items)

1: 𝐴 = {(𝑥,𝑦) ∈ 𝑄 × {1, 2} : 𝑆𝑖𝑦 ∪ {𝑥} ∈ I𝑖 }
2: if 𝐴 ≠ ∅ then
3: Let ( 𝑗, ℓ) ∈ argmax(𝑧,𝑤 ) ∈𝐴 𝑓 (𝑧 | 𝑆𝑖𝑤)
4: 𝑆𝑖ℓ = 𝑆𝑖ℓ ∪ { 𝑗}
5: return 𝑗

6: else
7: return a dummy item (i.e., return nothing)

Coming back to building two greedy solutions, an agent 𝑖 main-

tains two sets 𝑆𝑖1, 𝑆𝑖2 and every time that it is their turn to pick an

item, they pick a single item that maximizes the marginal value with

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

121



respect to either 𝑆𝑖1 or 𝑆𝑖2 among the items that are still available

and for which adding them to the respective solution is feasible.

Formally, saying that agent 𝑖 chooses greedily, now means that they

choose according to the policy G+
𝑖 given above. As we did in the

monotone case, for cardinality constraints we can get a somewhat

stronger guarantee.

Theorem 6.1. Any agent 𝑖 with a non-monotone objective and a 𝑝𝑖 -
system (resp. cardinality) constraint, who follows the greedy policy G+

𝑖

in Protocol 1, builds solutions 𝑆𝑖1, 𝑆𝑖2 such that max𝑡 ∈{1,2} 𝑓𝑖 (𝑆𝑖𝑡 ) ≥
OPT

−
𝑖 /(4𝑛 + 4𝑝𝑖 + 2) (resp. max𝑡 ∈{1,2} 𝑓𝑖 (𝑆𝑖𝑡 ) ≥ OPT

−
𝑖 /(4𝑛 + 2)).

6.1 Improved Guarantees for Robust Instances
Like in Section 4.2 for the monotone case, here we explore what

is possible for robust instances. We show that the linear factors of

Theorem 6.1 can still be removed for instances that are (Ω(𝑛),𝑂 (1))-
robust with respect to everyone. We state the analogs of Theorem

4.10 and Corollary 6.3.

Theorem 6.2. Assume an instance is (𝛾𝑛 + 𝑖 − 1, 𝛽)-robust with
respect to agent 𝑖 (having a non-monotone objective and a 𝑝𝑖 -system
constraint). By choosing greedily in the Round-Robin protocol, 𝑖 builds
𝑆𝑖1, 𝑆𝑖2 such that max𝑡 ∈{1,2} 𝑓𝑖 (𝑆𝑖𝑡 ) ≥ OPT𝑖/2𝛽 (2𝑝𝑖 + 1 + 2/𝛾).

Corollary 6.3. If an instance is (⌈(1+𝛾)𝑛⌉, 𝛽)-robust with respect
to every agent for constant 𝛽,𝛾 ∈ R+, then any agent 𝑖 with a non-
monotone objective and a 𝑝𝑖 -system constraint who chooses greedily
in the Round-Robin protocol, achieves a 1/Θ(𝑝𝑖 ) fraction of OPT𝑖 .

7 IMPROVING ALGORITHMIC FAIRNESS AND
GUARANTEES VIA RANDOMNESS

In this section we rectify the obvious shortcoming of Protocol 1,

namely that not all agents are treated equally due to their fixed order.

Unfortunately, this inequality issue is inherent to any deterministic

protocol which is agnostic to the objective functions (as Protocol 1

is) and it heavily affects agents in the presence of a small number of

highly valued contested items. A natural remedy, which we apply

here, is to randomize over the initial ordering of the agents before

running the main part of Protocol 1. This Randomized Round-Robin
protocol is formally described in Protocol 2:

Protocol 2 Randomized Round-Robin(A1, . . . ,A𝑛)
(For 𝑖 ∈ [𝑛], A𝑖 is the policy of agent 𝑖 .)

1: Let 𝜋 : [𝑛] → [𝑛] be a random permutation on [𝑛]
2: 𝑄 =𝑀 ; 𝑘 = ⌈𝑚/𝑛⌉
3: for 𝑟 = 1, . . . , 𝑘 do
4: for 𝑖 = 1, . . . , 𝑛 do
5: 𝑗 =A𝜋 (𝑖 ) (𝑆𝜋 (𝑖 ) ;𝑄) ( 𝑗 could be a dummy item)

6: 𝑄 =𝑄 \ { 𝑗}

Of course, given a permutation 𝜋 , all the guarantees of Theorems

4.1, 4.3, and 6.1 still hold ex-post, albeit properly restated. That is,

now the guarantee for an agent 𝑖 ∈ 𝑁 are with respect to the value

of an optimal solution available to 𝑖 , given that 𝜋−1 (𝑖) − 1 items

have been lost to agents 𝜋 (1), 𝜋 (2), . . . , 𝜋 (𝜋−1 (𝑖) − 1) before 𝑖 gets
to pick their first item.

The next theorem states that, in every worst-case scenario we

studied in Sections 4 and 6, all agents who choose greedily obtain

a set of expected value within a constant factor of the best possi-

ble worst-case guarantee of OPT𝑖/𝑛 (recall the example from the

Introduction about this being best possible).

Theorem 7.1. Assume agent 𝑖 chooses greedily in the Randomized
Round-Robin protocol. Then, the expected value that 𝑖 obtains (from
the best solution they build) is at least OPT𝑖/𝛽 𝑛, where 𝛽 = 2 + 𝑝𝑖/𝑛
(resp. 𝛽 = 5 + (4𝑝𝑖 + 2)/𝑛), if 𝑖 has a 𝑝𝑖 -system constraint and a
monotone (resp. non-monotone) submodular objective.

In the second result of this section, we show that the assump-

tions needed (in terms of robustness) to obtain𝑂 (𝑝𝑖 ) approximation

guarantees with respect to OPT𝑖 , are significantly weaker. In partic-

ular, Theorem 7.2 provides asymptotically best-possible guarantees

for any instances that are (Ω(𝑛),𝑂 (1))-robust with respect to ev-

eryone, no matter what the hidden constants are.

Theorem 7.2. Assume that an instance is (⌈𝛿𝑛⌉, 𝛽)-robust with
respect to every agent for constant 𝛽, 𝛿 ∈ R+. Also, assume that any
agent 𝑖 , who has a 𝑝𝑖 -system constraint and a submodular objective,
chooses greedily in the Randomized Round-Robin protocol. Then, in
expectation, 𝑖 achieves a 1/Θ(𝑝𝑖 ) fraction of OPT𝑖 .

8 DISCUSSION AND OPEN QUESTIONS
In this work we studied a combinatorial optimization problem,

where the goal is the non-centralized constrained maximization of

multiple submodular objective functions. We showed that Round-

Robin as a coordinated maximization protocol exhibits very desir-

able properties, in terms of individual approximation guarantees,

ease of participation (greedy is straightforward and, in some sense,

the best way to go), as well as transparency (simple, non-adaptive

protocol).

The most natural direction for future work is the design and

study of different protocols that perform better or have different

benchmarks, e.g., a maximin share type of benchmark. Ideally,

we would like such protocols to be easily implemented and at the

same time to provide strong approximation guarantees for agents

that follow easy and simple policies. Also, recall that opposed to

traditional settings, we assumed no knowledge about the functions

or constraints. It would be interesting to also explore adaptive

protocols that perform part of the computational work centrally. A

closely related question is whether the improved approximations

of such protocols, could imply stronger fairness guarantees with

respect to EF1 or other fairness notions. Finally, regardless of the

protocol, another meaningful direction would be to explore what

can be achieved in terms of approximation for objective functions

in richer classes (e.g., subadditive).
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