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ABSTRACT
Machine Ethics decisions should consider the implications of un-

certainty over decisions. Decisions should be made over sequences

of actions to reach preferable outcomes long term. The evaluation

of outcomes, however, may invoke one or more moral theories,

which might have conflicting judgements. Each theory will require

differing representations of the ethical situation. For example, Util-
itarianism measures numerical values, Deontology analyses duties,

and Virtue Ethics emphasises moral character. While balancing po-

tentially conflicting moral considerations, decisions may need to be

made, for example, to achieve morally neutral goals with minimal

costs. In this paper, we formalise the problem as a Multi-Moral
Markov Decision Process and a Multi-Moral Stochastic Shortest Path
Problem. We develop a heuristic algorithm based onMulti-Objective
AO*, utilising Sven-Ove Hansson’s Hypothetical Retrospection pro-

cedure for ethical reasoning under uncertainty. Our approach is

validated by a case study from Machine Ethics literature: the prob-

lem of whether to steal insulin for someone who needs it.
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1 INTRODUCTION
As our lives are increasingly impacted by the decisions of ma-

chines [39], one objective of Machine Ethics is to develop computa-

tional techniques to incorporate ethical behaviour with decision-

making, preserving human values into the future [1]. A major

concern for Machine Ethics comes from situations with uncertainty

over outcomes, commonplace in the real world. Most existing ap-

proaches either assume actions are deterministic or they use ex-

pected utility maximisation [38]. This can yield disagreeable results

(see Section 3 and [10]), demanding a more sophisticated handling
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𝜋 𝜋 ′

From 𝑠0, 𝜋 was correct,

given greater beauty

care production

with probability 1.

From 𝑠0, 𝜋
′
was correct,

resulting in a new drug

with probability 0.5.

From 𝒔0, 𝜋 ′ was
correct, resulting

in no new drug

with probability 0.5.

NEGATIVE

RETROSPECTIO
N

Figure 1: A company may produce a beauty care product or
research a drug with 50% probability of saving lives. Beauty
care has negative retrospection (like regret) for missing the
chance to save lives; if research is unsuccessful, there is no
negative retrospection since risk was accepted at decision-
time. Arguments are generated from each outcome. Directed
edges are attacks indicating negative retrospection.

of outcome uncertainty. Decisions are further complicated by moral
uncertainty [18]. Philosophy has no universal consensus over which
decisions are correct in all situations: moral theories may conflict,

leading to moral dilemmas. While we defer the choice of theories

to stakeholders, who must approve a system before deployment

(owners, regulators, or affected individuals), there are likely to be

conflicts or uncertainty between stakeholder approved theories.

Implementations must handle these situations gracefully.

Another issue is the integration of ethical behaviour into existing

systems with non-moral goals. For example, an autonomous vehicle

must balance risk to other road users with reaching its destination.

As the Automated Planning community demonstrates, many en-

vironments require sequences of actions (action plans or policies)

to achieve desired goals and the most rewarding outcomes [19].

Machine Ethics implementations, therefore, should consider fu-

ture decisions, rather than selecting immediately preferred actions

greedily as is the case in most existing systems [38].

Hypothetical Retrospection is an ethical procedure for handing

outcome uncertainty [22]. It suggests we judge decisions by the

circumstances under which they were made. In [25],Machine Ethics
Hypothetical Retrospection (MEHR) is formalised as a framework

for single action decisions with outcome uncertainty and multiple

moral theories under moral uncertainty. Arguments are generated

in support of each action from the hypothetical perspective of their

outcomes. An argument is attacked if there is negative retrospection
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for missing an ethically preferred outcome. An action with minimal

attacks on its supporting arguments is selected. An example is in

Figure 1, details in Section 2.

In this paper, we formalise uncertain ethical planning problems

as a variant of the Markov Decision Process (MDP). Our Multi-Moral
Markov Decision Process (MMMDP) may contain a number of poten-

tially conflicting moral theories. Stakeholders may express prefer-

ence or moral uncertainty over theories with a weak lexicographic
ordering. A theory’s space of morally relevant information is general

and inclusive to many ethical perspectives. We extend our formal-

ism to the Multi-Moral Stochastic Shortest Path Problem (MMSSP)

for non-moral situations. Preferable solutions act ethically subject

to goals and costs. We produce an offline heuristic planning algo-

rithm to solve these problems based on AO* [31], Multi-Objective

heuristic planning [11] and MEHR [25]. We evaluate the algorithm

with a case study from Ethics and Machine Ethics literature: the

problem of whether to steal insulin for someone who needs it [2].

2 BACKGROUND
Markov Decision Process. Uncertain decision making problems can

be described as a Finite Horizon Markov Decision Process (MDP).

We represent them as a tuple ⟨𝑆,𝐴, 𝑃, 𝑅, 𝐻 ⟩, where 𝑆 is a finite set

of states, and 𝐴 is a finite set of actions. The state space is tra-

versed through discrete sequential transitions. The probabilistic

transition function 𝑃 : 𝑆 × 𝐴 × 𝑆 → [0, 1] defines the probabil-

ity one state transitions to another via an action. Transitions are

valued by a reward function 𝑅 : 𝑆 × 𝐴 × 𝑆 → R. An optimal

solution is a non-stationary policy 𝜋 : 𝑆 × {0, ..., 𝐻 − 1} → 𝐴

that maps a state and timestamp to an action with maximum ex-

pected reward. The horizon 𝐻 ∈ N is the number of state transi-

tions before the problem terminates. Policies are evaluated with

a non-stationary value function defined recursively: 𝑉 𝜋 (𝑠, 𝑡) =∑
𝑠′∈𝑆 𝑃 (𝑠, 𝜋 (𝑠, 𝑡), 𝑠′) [𝑅(𝑠, 𝜋 (𝑠, 𝑡), 𝑠′) +𝑉 𝜋 (𝑠′, 𝑡 + 1)]. By Bellman’s

optimality principle [5],if a policy’s value can be measured by

its expected additive utility, then there exists a policy 𝜋∗ opti-
mal at all sates and it satisfies the Bellman optimality equation
𝑉 𝜋∗ (𝑠, 𝑡) = max𝑎∈𝐴

∑
𝑠′∈𝑆 𝑃 (𝑠, 𝑎, 𝑠′) [𝑅(𝑠, 𝑎, 𝑠′) +𝑉 𝜋∗ (𝑠′, 𝑡 +1)]. Sto-

chastic Shortest Path (SSP) problems are MDPs with goal states

𝐺 ⊆ 𝑆 that are terminal, meaning there are no transitions away

from them: ∀𝑠∈𝐺,𝑎∈𝐴, 𝑃 (𝑠, 𝑎, 𝑠) = 1∧𝑅(𝑠, 𝑎, 𝑠) = 0; all other rewards

are strictly negative. SSPs also have an initial state 𝑠0. Optimal poli-

cies are proper if there is 1.0 probability of reaching a goal from 𝑠0.

Improper policies have an expected cost of∞.

MDP Algorithms. MDPs can be solved using Dynamic Programming
algorithms, e.g. Policy Iteration [7, 23] or Value Iteration (VI) [7]. VI

refines an arbitrary value function 𝑉0 with Bellman backups: iter-
ative applications of the Bellman optimality equation [5]. Values

propagate until the maximum absolute difference between values in

𝑉𝑖 and 𝑉𝑖+1 (the residual) is below a constant 𝜖 > 0 (𝜖-consistency).

This requires full sweeps across the state space. Heuristic algorithms

(RTDP [4], AO* [31], LAO* [21] and LRTDP [9]) improve perfor-

mancewhen there is an initial state 𝑠0 by only iterating on reachable,

high value states. They also use a heuristic function to initialise 𝑉0
to an estimate of each state’s optimal reward.

Multi-Objective MDP. Many decision scenarios cannot be modelled

by a single reward function. A Multi-Objective Markov Decision
Process (MOMDP) generalises MDP rewards into vectors 𝑹 : 𝑆 ×
𝐴 × 𝑆 → R𝑛

for a number of objectives 𝑛 > 0. A given policy

may be optimal with respect to one objective, but not the others.

Thus, we are interested in the set of undominated policies: policies

where no objective can be improved with no detriment to another

objective. For notation, we treat value functions interchangeably

with ordered sets: 𝑣𝑖 = 𝑉 (𝑠𝑖 ) for 𝑠𝑖 ∈ 𝑆 . Thus, a single-objective

function 𝑉 dominates 𝑈 if ∀𝑖 ∈ [1, . . . , 𝑛], 𝑣𝑖 < 𝑢𝑖 , written 𝑉 ≺
𝑈 . A set of vectors 𝑽 dominates 𝑼 if ∀𝑉 ∈ 𝑽 there exists 𝑈 ∈
𝑼 such that 𝑈 ≺ 𝑉 . Finally, a policy 𝜋 dominates 𝜋 ′ if 𝑽𝜋 ′ ≺
𝑽𝜋

. The set of undominated policies is the maximal set Π∗ where
∀𝜋 ∈ Π∗, 𝜋 ′ ∉ Π∗ : 𝑽𝜋 ⊀ 𝑽𝜋 ′

.

MDP algorithms are adapted for MOMDPs using two distinct ap-

proaches [33]. Outer-loop algorithms repeatedly run single-objective

solvers on scalarised versions of the problem. Inner-loop approaches

generalise the backup operation for multiple objectives e.g., the

value function generalises neatly with vector addition 𝑽𝜋 (𝑠, 𝑡) =∑
𝑠′∈𝑆 𝑃 (𝑠, 𝜋 (𝑠, 𝑡), 𝑠′) [𝑹 (𝑠, 𝜋 (𝑠, 𝑡), 𝑠′) ⊕ 𝑽𝜋 (𝑠′, 𝑡 + 1)]. This paper

adapts an inner-loop approach for heuristic planning [11].

Hypothetical Retrospection. Hansson’s Hypothetical Retrospection
procedure systematises human ethical decision-making in scenarios

with uncertain outcomes [22]. Hansson suggests we extend our

perspective with future perceptions of actions. He argues to view

the ethics of decisions from perspectives up to the endpoint of all

major foreseeable outcomes. In other words, we imagine the moral

reaction to our decision in every eventuality. By hypothetically

retrospecting on potential branches of future development, we can

build ethical arguments about what to do in the present.

Kolker et al. adapted this procedure intoMachine Ethics Hypothet-
ical Retrospection (MEHR) [25], described in Figure 1. In summary,

an Ethical Decision Problem contains a set of states, actions and

potential branches of future development. Based on a Value-Based

Argumentation Framework [3, 17], arguments in favour of each

action are generated from the perspective of their branches of de-

velopment using an argument scheme:

“From initial state 𝐼 , it was acceptable to perform action
a, resulting in consequences b with probability P."

Attacks are generated between arguments in support of different

actions by two critical questions. For every moral theory under

consideration, the argument from branch b1 in support of action a1
attacks the argument from branch b2 in support of action a2 when
the following are affirmative:

CQ1: Did b2 violate a moral theory that b1 did not?
CQ2: Did a2 hold a greater probability of violating the
moral theory than a1?

Here, the moral theory is a free variable, intentionally non-specific

to generalise across theories. MEHR has been demonstrated with

Utilitarianism, assigning numeric values to outcomes and Deon-
tology, assigning binary duties to actions. Other theories should

be compatible [25]. Argument attacks can be generated from mul-

tiple, potentially conflicting moral theories, meaning MEHR ex-

tends Hansson’s procedure for problems with moral uncertainty.
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When an argument is attacked, it represents negative retrospec-

tion: another action could have avoided the violation and this was

foreseeable. This indicates the decision-making was flawed and so

there is negative retrospection. Ideally, an action is selected with

no negative retrospection on any of its potential outcomes. If no

such action exists, the action with minimal probability of resulting

in negative retrospection is selected. This probability is referred

to as non-acceptability. We note that MEHR simplifies hypotheti-

cal retrospection by only considering the perspective of outcome

endpoints without intermediate perspectives.

3 RELATEDWORK
There are different approaches to Machine Ethics planning.

Often, a quantitative approach is usedwithAct-Utilitarianism [16]

and decision theory, i.e., to maximise expected utility. The Utilibot

Project is an architecture for autonomous robots in the home [12].

It integrates Bayesian Networks representing uncertain knowledge

with MDP actions and utilities, using Policy Iteration to maximise

expected utility. Utilitarianism as a sole decision mechanism is

problematic. It assumes all outcomes can be appraised in terms of a

single number
1
without a clear or agreed methodology. Brundage

discusses other critiques of Consequentialism in [10].

Alternatively, there are qualitative approaches. Jedwabny et al. [24]

create a linearization from a ranking over ethical rules. For cog-

nitive agents, Dennis et al. derive a substantive order over plans

from a ranking of formal ethical principles [14]. Lindner et al. de-

velop techniques to evaluate plans using ethical theories [28, 29];

Dennis et al. apply this to cognitive agents [15], However these

approaches assume determinism. Grandi et al. evaluate plans in

a Multi Agent System with ranked logical formulae. Uncertainty

over other agents’ actions is handled optimistically, pessimistically,

or to avoid blame [20], all without probability as in our approach.

Rodriguez-Soto et al. use a Multi-Agent MDP with norms and

an action praiseworthiness function integrated with existing, non-

moral rewards. They adjust penalties and praiseworthiness to en-

sure agents learn ethically aligned policies in Reinforcement Learn-

ing [32]. Outcome uncertainty is handled with utility expectation.

Similarly, the Ethically Compliant Autonomous System (ECAS)

framework represents MDPs with a non-moral reward function and

moral principles [30, 37]. Agents have conflicting value functions

which determine the truth of a moral principle function. The MDP

is solved as a linear program, maximising expected reward subject

to a single moral principle constraint. ECAS may find there is no

moral solution, unlike MEHR which finds the best available policy

with minimal non-acceptability.

For problems with moral uncertainty between moral theories,

Ecoffet and Lehman apply a voting system in Reinforcement Learn-

ing [18]. Moral theories are trained to effectively express their views

at each time step using a limited voting budget. Preference between

theories is represented by some credence 𝑐 ∈ (0, 1] instead of the

weak lexicographic order in our paper. Theory preferences are ex-

pressed by utilities only and outcome uncertainty by expectation.

1
An outcome where a person is injured may have -10 utility and an outcome where

they lose their life may have -100 utility. Thus, 10 injuries is equal to a loss of life,

which does not match intuition.

Stojanovski et al. define an MDP with positive/negative val-

ues that state-action transitions can promote/demote and repair

(treating previous actions). They build an ethical reward function

that lexicographically avoids harm then, then maximises good [36].

They suggest a hierarchy over MDP values and relative strength in

promotion/demotion for future work.

4 MULTI-MORAL MARKOV DECISION
PROCESS

We model our planning problem as a Multi-Moral Markov Decision
Process (MMMDP) based on a MOMDP.

Definition 1 (Multi-Moral Markov Decision Process). A
tuple ⟨𝑆,𝐴, 𝑃, 𝑠0, 𝐻,𝑀,𝐶, 𝐿⟩ with a finite set of states 𝑆 , a finite set of
actions𝐴 and a probabilistic transition function 𝑃 : 𝑆×𝐴×𝑆 → [0, 1].
There is an initial state 𝑠0 ∈ 𝑆 and 𝐻 ∈ N is the finite horizon.

𝑀 is a finite set of moral theories.𝐶 is a finite set of moral consid-

erations and 𝐿 : 𝑀 → Q is a weak lexicographic ranking.

States and dynamics are identical to ordinary finite-horizon

MDPs (see Section 2). Briefly, moral theories in 𝑀 are internally

consistent moral perspectives, such as Act-Utilitarianism or Deon-

tology [6]. They define an attack relation for MEHR argumentation,

detailed in Section 5. Judgements are based on some moral consider-

ations in𝐶 , such as utility functions or duties. Preferences between

theories are defined with the weak lexicographic order 𝐿. In the

following two sections we will explain each component in detail

with a running example of The Lost Insulin.

States, Actions and Dynamics
We use the ethical dilemma discussed by Coleman [13], adapted to

Machine Ethics by Atkinson and Bench-Capon [2]. Hal is a diabetic

who, through no fault of his own, has lost his insulin supply and

needs some urgently to stay alive. He knows his neighbour Carla

has some, but does not have permission to enter her house and take

it. Is Hal justified in stealing the insulin to save his life?

We model the problem as a MMMDP visualised on the left of

Figure 2. In the initial state 𝑠0 Hal has no insulin. With action 𝑎1 ∈ 𝐴
Hal waits and there is a 𝑃 (𝑠0, 𝑎1, 𝑠1) = 0.6 probability of transition-

ing to 𝑠1 where Hal dies; there is 𝑃 (𝑠0, 𝑎1, 𝑠0) = 0.4 probability that

Hal lives and faces the choice again. In action 𝑎2 ∈ 𝐴, Hal goes

to Carla’s house and takes the insulin. In state 𝑠2, Carla does not

need the insulin and they both live at probability 0.6; in state 𝑠3,

the stolen insulin is insufficient and Hal dies with probability 0.15;

in state 𝑠4, Carla dies without her insulin at probability 0.15; finally,

in state 𝑠5 they both die with probability 0.1. We let the horizon

𝐻 = 2 represent the hours until Hal receives his regular insulin

delivery and the dilemma no longer applies. Thus, while there is a

𝑃 (𝑠0, 𝑎0, 𝑠0) = 0.4 chance Hal survives by waiting through the first

hour, the chance Hal lives until his insulin resupply is 0.42 = 0.16.

If Hal dies before the horizon, all transitions loop to the same state.

A Moral Consideration
Meaning is extracted from the problem using moral considerations

𝐶 which track sources of morally relevant information or moral
worth. We associate states in the MMMDPwith worth using a worth
function𝑊 : 𝑆 → W. For notation, we may interpret the worth
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𝑠0

𝑎1

0.6

𝑠1

𝑎2

0.6

𝑠2

0.15

𝑠3

0.15

𝑠4

0.1

𝑠5

0.4

𝜋2, ℎ4

𝜋2, ℎ5

𝜋2, ℎ6

𝜋2, ℎ7

𝜋1, ℎ1

𝜋1, ℎ2

𝜋1, ℎ3

𝑃 (ℎ2 )=
0.24

+𝑃 (ℎ3 )=
0.6

𝑃 (ℎ4 )=
0.6

+𝑃 (ℎ5 )=
0.15

+𝑃 (ℎ6 )=
0.15

+𝑃 (ℎ7 )=
0.1

=N(𝜋2 )=1.0=N(𝜋1 )=0.84

Figure 2: Left: in 𝑠0 Hal has no insulin; 𝑠1 Hal dies waiting; 𝑠2
both live; 𝑠3 Hal dies; 𝑠4 Carla dies; 𝑠5 both die. Right: MEHR
argumentation graph. Boxes are arguments from policy-
history pairs, 𝐴𝑟𝑔(𝜋,ℎ). Directed edges are attacks, meaning
Ψ𝑚 (𝐴𝑟𝑔(𝜋 ′, ℎ′), 𝐴𝑟𝑔(𝜋 ′, ℎ′)). Red/solid edge for utility attack;
blue/dashed line for no-stealing attack. Probabilities on at-
tacked arguments sum to policy’s non-acceptability N(𝜋).

function as a sequence𝑊 (𝑠𝑖 ) =𝑊𝑖 for 𝑠𝑖 ∈ 𝑆 . We define a moral

consideration formally below.

Definition 2 (Moral Consideration). A Moral Consideration
is a tuple 𝑐 = ⟨W, 𝐽 ,𝑄, ⪯,≈⟩.
• W represents the space of morally information required for
decisions. It is referred to as moral worth.
• 𝐽 : 𝑆 ×𝐴 × 𝑆 →W is a judgement function that extracts the
morally relevant information from a state-action transition.
• 𝑄𝑊

: (W × [0, 1])𝑛 → W aggregates morally relevant
information with probabilities into a single estimate of future
moral worth. It uses a baseline of existing morally relevant
information from a worth function𝑊 : 𝑆 →W, subject to
Assumption 1 (additivity over moral worth).
• ⪯ is a transitive preference relation overW.
• ≈:W ×W → {⊤,⊥} maps to ⊤ when moral worth is con-
sistent, ⊥ otherwise.

A moral consideration represents a source of morally relevant

information in the planning domain. It may be considered a gen-

eralisation of an MDP’s reward function. This is clearest when

formalising the moral consideration of utility associated with Act-

Utilitarianism:W becomes the space of real numbers R repre-

senting utility gained/lost through state transitions 𝐽 (𝑠, 𝑎, 𝑠′). The
aggregation function 𝑄𝑊 (𝑊 ′, 𝑃) = ∑

𝑖∈1... |𝑊 ′ | 𝑃𝑖 · (𝑤 ′𝑖 + 𝑤𝑖 ) cal-
culates expected utility where𝑊 ′ is a set of state utilities, 𝑃 are

associated probabilities, and𝑊 are baseline utilities
2
. Relation ⪯

is the standard for R. Consistency relation 𝑤 ≈ 𝑤 ′ is ⊤ when

|𝑤 ′ −𝑤 | < 𝜖 for some small constant 𝜖 > 0, ⊥ otherwise.

For the Lost Insulin, suppose Act-Utilitarianism appraises death

with−10 utility, i.e., 𝐽 (𝑠0, 𝑎1, 𝑠0) = 0, 𝐽 (𝑠0, 𝑎1, 𝑠1) = −10, 𝐽 (𝑠0, 𝑎2, 𝑠5) =
−20. The expected utility of stealing 𝑎2 at 𝑠0 is expressed by aggre-

gation function 𝑄𝑊 ({𝐽 (𝑠0, 𝑎2, 𝑠′) : ∀𝑠′∈𝑆 }, {𝑃 (𝑠0, 𝑎2, 𝑠′) : ∀𝑠′∈𝑆 }).
This is 0.6(0 +𝑊 (𝑠2)) + 0.15(−10 +𝑊 (𝑠3)) + 0.15(−10 +𝑊 (𝑠4)) +
0.1(−20+𝑊 (𝑠5)) and with baseline𝑊 initialised to 0, this is 0.6(0+
0) + 0.15(−10 + 0) + 0.15(−10 + 0) + 0.1(−20 + 0) = −5 utility3.

2
We assume for simplicity that𝑊 , 𝑃 and𝑊 ′

have equal magnitude.

3
Successor states from 𝑎2 with 0 probability are omitted from the equations for space.

For syntactic sugar, we abstract state-action aggregation as fol-

lows: Q𝑊 (𝑠, 𝑎) = 𝑄𝑊 ({𝐽 (𝑠, 𝑎, 𝑠′) : ∀𝑠′∈𝑆 }, {𝑃 (𝑠, 𝑎, 𝑠′) : ∀𝑠′∈𝑆 }).
And so, Q𝑊 (𝑠0, 𝑎2) = −5. For reasons in Section 5, alternate sets of

states and probabilities may be passed as follows

Q𝑊 (𝑠, 𝑎, 𝑆′, 𝑃 ′) = 𝑄𝑊 ′
({𝐽 (𝑠, 𝑎, 𝑠′) : ∀𝑠′∈𝑆 ′ }, 𝑃 ′)

where𝑊 ′ contains worth for states in 𝑆 ′:𝑊 ′ = {𝑊 (𝑠) : 𝑠 ∈ 𝑆 ′}.
We are interested in non-stationary, deterministic policies 𝜋 : 𝑆×

{0, . . . , 𝐻−1} → 𝐴.We exclude stochastic policies for simplicity and

because, arguably, randomness is not acceptable in ethical decision

making. A moral consideration evaluates a policy with respect to

every state iteratively using a non-stationary worth function. We

interpret this as an 𝐻 + 1 × |𝑆 | matrix where 𝑊 [𝑡] is a worth

function for all states at time step 𝑡 ∈ {0, ..., 𝐻 };𝑊 [𝑡] (𝑠) is the
expected worth at time 𝑡 , state 𝑠 . The worth function is defined as

𝑊 𝜋 [𝑡] (𝑠) = Q𝑊
𝜋 [𝑡+1] (𝑠, 𝜋 (𝑠, 𝑡)),∀𝑠 ∈ 𝑆, 𝑡 ∈ {0, . . . , 𝐻 − 1}

The vector𝑊 [𝐻 ] contains null values inW so as to not affect

aggregation in 𝑄 . One worth function is preferred to another if it

is preferable at every state and time. A consideration-optimal worth
function is the most preferable worth achievable at each state and

time. This is calculated like the Bellman Optimality Equation [5]:

𝑊 ∗ [𝑡] (𝑠) = ⪰
max

𝑎∈𝐴
Q𝑊

∗ [𝑡+1] (𝑠, 𝑎),∀𝑠 ∈ 𝑆, 𝑡 ∈ {0, . . . , 𝐻 − 1}

This assumes moral worth is additive through 𝑄 .

Assumption 1 (Additive Moral Worth). Let 𝑊 ′+,𝑊 ′− ∈
W𝑛 be worth functions, for any 𝑛, and let 𝑃 ′+, 𝑃 ′− be sets of 𝑛
probabilities such that (𝑊 ′+, 𝑃 ′+) is preferred to (𝑊 ′−, 𝑃 ′−), i.e.,
𝑄𝑊 (𝑊 ′+, 𝑃 ′+) ≺ 𝑄𝑊 (𝑊 ′−, 𝑃 ′−) for any baseline𝑊 ∈ W𝑛 .

Furthermore, let𝑊 +,𝑊 − ∈ W𝑛 be worth functions such that
𝑊 + is preferred to𝑊 − , i.e., 𝑄𝑊 + (𝑊 ′, 𝑃 ′) ≺ 𝑄𝑊 − (𝑊 ′, 𝑃 ′) for any
worth function𝑊 ′ ∈ W𝑛 and any probabilities 𝑃 ′ ∈ [0, 1]𝑛 .

It must be the case that 𝑄𝑊 − (𝑊 ′−, 𝑃 ′−) ≺ 𝑄𝑊 + (𝑊 ′+, 𝑃 ′+).

Many Moral Considerations
MMMDPs may have plenty of moral considerations. Suppose an

absolute moral theory where any probability of breaking the law

is wrong. A moral consideration’s worth could be represented by

W = {⊤,⊥} where ⊤ violates the law and ⊤ ≺ ⊥. In the example,

𝐽 (𝑠0, 𝑎2, 𝑠2) = ⊤ and 𝐽 (𝑠0, 𝑎1, 𝑠1) = ⊥. WorthW aggregates with

𝑄𝑊 (𝑊 ′, 𝑃) = ∨
𝑖∈ |𝑊 ′ | (𝑃𝑖 > 0∧𝑤 ′

𝑖
) ∨𝑤𝑖 . Worth is consistent only

if it is equal, 𝑤 ≈ 𝑤 ′ = 𝑤 == 𝑤 ′. Thus, if𝑊 [𝑡] (𝑠) = ⊥ for all

𝑡 ∈ {0, . . . , 𝐻 } and 𝑠 ∈ 𝑆 , then Q𝑊 (𝑠0, 𝑎1) = 𝑄𝑊 ((⊥ ∨ ⊥) ∨ . . . ∨
(⊥ ∨ ⊥)) = ⊥ (no law violated) and Q𝑊 (𝑠0, 𝑎2) = ⊤ (law violated).

For notation, we distinguish moral considerations with sub-

scripts: consideration 𝑐𝑖 ∈ 𝐶 is the tuple ⟨W𝑖 , 𝐽𝑖 , 𝑄
𝑊
𝑖
, ⪯𝑖 ,≈𝑖 ⟩. To

hold the worth for all considerations in 𝐶 , we use a multi-worth
function 𝑾 = {𝑊1, . . . ,𝑊 |𝐶 | } where𝑊𝑖 ∈ 𝑾 is a worth function

for consideration 𝑐𝑖 ∈ 𝐶 . We hold a single element of worth from

all moral considerations using a worth-vector ®𝑤 ∈ 2
{W1,...,W|𝐶 | }

.

We generalise Q for multiple considerations as Q, which returns

expectations as a worth-vector. We bend notation to apply the

worth-vector across a multi-worth function at state 𝑠 and time 𝑡 :

𝑾𝜋 [𝑡] (𝑠) = Q𝜋 (𝑠, 𝜋 (𝑠, 𝑡)) = {Q𝜋
𝑖
(𝑠, 𝜋 (𝑠, 𝑡)) : ∀𝑖 ∈ 1, ..., |𝐶 |}. We

demonstrate in Figure 3.
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𝑊𝑎𝑏𝑠 =


⊤ ⊥ ⊥
⊤ ⊤ ⊥
⊤ ⊥ ⊥


𝑊𝑎𝑏𝑠 [1] = (⊥,⊤,⊥)

𝑊𝑎𝑏𝑠 [1] (𝑠1) = ⊤

𝑊𝑢𝑡𝑖𝑙 =


1 2 0

3 4 0

5 6 0


t =0 1 2

s0
s1
s2

𝑊𝑢𝑡𝑖𝑙 [1] = (2, 4, 6)

𝑊𝑢𝑡𝑖𝑙 [1] (𝑠1) = 4

𝑾 = {𝑊𝑎𝑏𝑠 ,𝑊𝑢𝑡𝑖𝑙 }

𝑾 [1] (𝑠1) = ®𝑤 = {⊤, 4}
{{⊤, 1}} . . . {{⊥, 0}}
{{⊤, 3}} . . . {{⊥, 0}}
{{⊥, 5}} . . . {{⊥, 0}}


®𝑊 =

®𝑊 [1] (𝑠1) = {{⊤, 4}}

Figure 3: Shows notation. Worth function𝑊 maps state-time
to worth. Multi-worth function𝑾 holds many worth func-
tions. Worth-vectors ®𝑤 store worth across considerations.
From Section 7, ®𝑊 maps state-time to a set of worth-vectors.

Moral Theories
A moral theory is a domain-dependent representation of an ethical

perspective. It defines the nature of hypothetical retrospection

based on worth from moral considerations; a moral theory decides

how policies and branches of development are compared.

Definition 3 (Moral Theory). Amoral theory𝑚 ∈ 𝑀 is a tuple
𝑚 = ⟨𝐶𝑚,Ψ𝑚⟩ where𝐶𝑚 ⊆ 𝐶 is a subset of moral considerations from
a MMMDP. Function Ψ𝑚 : 2

𝐴𝑟𝑔 → { † , ◦} determines if arguments
should attack each other according to this theory (see Section 5).

In this paper, we only consider moral theories with a single moral

consideration, though the formalism supports many. In that case,

the attack relation would define how considerations are balanced.

Moral theories may conflict; stakeholders may believe some

theories more than others. This is expressed with a weak lexico-

graphic order. For theories𝑚,𝑚′ ∈ 𝑀 , if 𝐿(𝑚) < 𝐿(𝑚′), any worth

from considerations 𝐶𝑚
is prioritised over 𝐶𝑚′

. In the running

example, a Utilitarian-optimal worth function has𝑊 ∗
𝑢𝑡𝑖𝑙
[0] (𝑠0) =

−5 by stealing insulin. However, the absolutist optimal worth is

𝑊 ∗
𝑎𝑏𝑠
[0] (𝑠0) = ⊥ by waiting. The same policy cannot optimise

both. If 𝐿(𝑚𝑢𝑡𝑖𝑙 ) < 𝐿(𝑚𝑎𝑏𝑠 ), the Utilitarian’s optimal policy would

be preferable; on the other hand if 𝐿(𝑚𝑢𝑡𝑖𝑙 ) > 𝐿(𝑚𝑎𝑏𝑠 ), then the

absolute no-stealing policy is preferred. If 𝐿(𝑚𝑢𝑡𝑖𝑙 ) = 𝐿(𝑚𝑎𝑏𝑠 ),
the stakeholder has no preference or moral uncertainty. Another

mechanism is required to differentiate the policies such as MEHR.

5 MACHINE ETHICS HYPOTHETICAL
RETROSPECTION OVER POLICIES

Machine Ethics Hypothetical Retrospection (MEHR) [25] is an argu-

mentation procedure [17] for Machine Ethics decision making with

outcome and moral uncertainty. We contribute a novel formalism

for probabilistic planning. It creates an argument in favour of each

policy from the perspective their potential branches of future de-

velopment and models negative retrospection as argument attacks.

We model a branch of development as a history/trajectory in the

MMMDP ℎ = ⟨𝑆ℎ, 𝐴ℎ⟩ where 𝑆ℎ is a sequence of states and 𝐴ℎ
is

a sequence of actions. 𝑆ℎ
1
is the start state, action 𝐴ℎ

1
transitions

to state 𝑆ℎ
2
etc., i.e., ℎ ≡ {𝑆ℎ

1
, 𝐴ℎ

1
, 𝑆ℎ

2
, 𝐴ℎ

2
, . . . , 𝑆ℎ

𝐻+1}. The probability
of a history is 𝑃 (ℎ) = ∏ |𝐴ℎ |

𝑖=1
𝑃 (𝑆ℎ

𝑖
, 𝐴ℎ

𝑖
, 𝑆ℎ

𝑖+1). A history’s worth is

Algorithm 1 Extract history worth and probabilities from policy

Input: Policy 𝜋 , multi-worth function𝑾
Output: Mapping 𝜙 : {W𝑐 : ∀𝑐 ∈ 𝐶} → [0, 1]
1: procedure ExtractHistories(𝑠 , 𝑡 , ®𝑤 , 𝑝𝑟 , 𝜙)

2: if 𝑡 ≥ 𝐻 or {𝑠′ ∈ 𝑆 : 𝑃 (𝑠, 𝑎, 𝑠′) > 0} is ∅ then
3: 𝜙 ( ®𝑤) ← 𝜙 ( ®𝑤) + 𝑝𝑟
4: return
5: for {𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 : 𝑃 (𝑠, 𝑎, 𝑠′) > 0} do
6: 𝑾 ′ ← { ®𝑤𝑐 : 𝑐 ∈ 𝐶} // Set baseline to prev. worth

7: ®𝑤 ′ ← Q𝑾 ′ (𝑠, 𝑎, {𝑠′}, {1.0})
8: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑒𝑠 (𝑠′, 𝑡 + 1, ®𝑤 ′, 𝑝𝑟 · 𝑃 (𝑠, 𝑎, 𝑠′), 𝜙)
9: 𝜙 ( ®𝑤) ← 0 : ∀®𝑤 ∈ 2{W𝑐 :∀𝑐∈𝐶 }

// Set default to map 0.

10: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑒𝑠 (𝑠0, 0, {nullW𝑐 : ∀𝑐∈𝐶 }, 1.0, 𝜙)
11: return 𝜙

found using the same aggregation function as with policies:

𝑊 ℎ [𝑡] (𝑠𝑖 ) = Q𝑊
ℎ [𝑡+1] (𝑠𝑖 , 𝑎𝑖 , {𝑠𝑖+1}, {1.0})

A single successor state is specified and 1.0 probability is passed to

find a history’s worth. For a policy 𝜋 , the worth and probability of

all its histories can be found using Depth-First-Search. The algo-

rithm exploits Assumption 1 by aggregating worth while traversing

from 𝑠0 to the horizon. For transparency, there is pseudocode in

Algorithm 1; we do not examine it since we do not consider it a

notable contribution. For the Lost Insulin running example, the

‘waiting policy’ always selects 𝑎1 and has three potential histories:

ℎ1 ≡ {𝑠0, 𝑎0, 𝑠0, 𝑎0, 𝑠0} (waiting two hours), ℎ2 ≡ {𝑠0, 𝑎0, 𝑠0, 𝑎0, 𝑠1}
(waiting two hours, then collapse), ℎ3 ≡ {𝑠0, 𝑎0, 𝑠1, 𝑎0, 𝑠1} (waiting
one hour, then collapse).

We take the expected worth of a policy as its worth at the initial

state 𝑠0 and time 𝑡 = 0, Q𝜋 (𝑠0, 𝜋 (𝑠0, 0)). Thus, from a selection of

alternate policies, we use MEHR argumentation to select an ethical

policy [25]. The procedure translates naturally. An argument𝐴𝑟𝑔 is

generated from the perspective of each history endpoint in support

of the preceding policy. Arguments are generated by an Argument
Scheme. We define 𝐴𝑟𝑔(𝜋,ℎ) as

“From the initial state 𝑠0, it was right to use policy 𝜋 ,

resulting in the history ℎ = {𝑆ℎ
1
, 𝐴ℎ

1
...𝐴ℎ

𝐻−1𝑆
ℎ
𝐻
} with

probability 𝑃 (ℎ).”
This may be interpreted as the default hypothetical retrospective

argument, though it may be invalidated by other retrospections.

There may be negative retrospection for a policy after an outcome

if an alternate policy is preferred. We define this as an attack re-

lation 𝐶𝑚 for each moral theory𝑚 ∈ 𝑀 . An argument 𝐴𝑟𝑔(𝜋,ℎ),
supporting policy 𝜋 from history ℎ, attacks opposing argument

𝐴𝑟𝑔(𝜋 ′, ℎ′) if it causes negative retrospection: reveals a decision
making flaw in choosing 𝜋 ′. For each moral theory, we define the

attack relation in terms of Critical Questions [2, 25]. There is an

attack when Ψ(𝐴𝑟𝑔(𝜋,ℎ), 𝐴𝑟𝑔(𝜋 ′, ℎ′)) = † and the following are

affirmative:

CQ1: Did ℎ′ violate the moral theory and ℎ did not?

CQ2: Was there greater expectation that 𝜋 ′ would
violate the moral theory than 𝜋?

This represents that an alternative history was preferable and ex-

pected to be preferable, resulting in negative retrospection and
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undermining the target argument. Each moral theory determines

the meaning of a violation and violation expectation. For Act-

Utilitarianism, the questions are CQ1: Did ℎ have greater utility

than ℎ′? CQ2: Did 𝜋 have greater expected utility than 𝜋 ′? For
each theory the attack is defined as Ψ(𝐴𝑟𝑔(𝜋,ℎ), 𝐴𝑟𝑔(𝜋 ′, ℎ′)) =

† if 𝐶𝑄1 ∧𝐶𝑄2 otherwise ◦ when

𝐶𝑄1 =𝑊 ℎ [0] (𝑠0) ≻𝑊 ℎ′ [0] (𝑠0)

𝐶𝑄2 = Q𝜋 (𝑠0, 𝜋 (𝑠0, 0)) ≻ Q𝜋
′
(𝑠0, 𝜋 ′ (𝑠0, 0))

Thus, there is a supportive argument generated from the outcome

of every policy; moral theories suggest attacks between arguments

that support different policies. For each argument, we define its

attackers as a set of argument and moral theory pairs:

X(𝐴𝑟𝑔(𝜋,ℎ)) =
{(𝑚,𝐴𝑟𝑔(𝜋 ′, ℎ′)) : ∀𝑚 ∈ 𝑀,

Ψ𝑚 (𝐴𝑟𝑔(𝜋 ′, ℎ′), 𝐴𝑟𝑔(𝜋,ℎ)) = † ∧ �𝑚′ ∈ 𝑀, 𝐿(𝑚′) < 𝐿(𝑚)∧

Q𝜋
′

𝑚′ (𝑠0, 𝜋
′ (𝑠0, 0)) ≺ Q𝜋𝑚′ (𝑠0, 𝜋 (𝑠0, 0))}

In words, there is a potential attack on an argument for every other

policy 𝜋 ′, each of their histories ℎ′, and every moral theory 𝑚.

MEHR attacks are based the moral theories’ attack relation Ψ𝑚 , but

an attack is blocked if there is a lexicographic preferred theory such

that 𝜋 is preferred. Note, there can be multiple attacks from one

argument to another, unlike traditional argumentation [17].

The non-acceptability of a policy is its probability of reaching an

outcome with negative retrospection for each moral theory. Equiv-

alently, it is the number of attacks on each supporting argument

multiplied by the argument history’s probability:

N(𝜋) =
∑︁

ℎ from 𝜋

𝑃 (ℎ) · |X(𝐴𝑟𝑔(𝜋,ℎ)) |

A policy with 0 non-acceptability should be selected if one exists.

Otherwise, there is a ‘generalised case of a moral dilemma’ [22] and

we choose the policy with minimal non-acceptability instead. We

define the morally acceptable policies as those minimising non-

acceptability Π∗ = {𝜋 : N(𝜋) = min𝜋 ′ N(𝜋 ′)}. We visualise

MEHR with The Lost Insulin example on the right of Figure 2.

We note this formalism’s philosophical assumptions. First, that

an action’s moral worth can be aggregated and combined with

probabilities–that an aggregation function Q can be expressed for

moral theories. As in MEHR, we assume the perspective of the end-

point of action outcomes is sufficient for moral decision-making.

Hansson’s original Hypothetical Retrospection argues relevant in-

formation can be described in terms of consequences, though Hans-

son considers all perspectives up to an action’s endpoint, rather

than the endpoint perspective alone. MEHR also differs by allowing

conflicting moral theories under moral uncertainty.

6 A NON-MORAL EXTENSION
Wemake our formalism compatible with non-moral costs and goals

using ideas from the Stochastic Shortest Path (SSP) Problem [5].

Definition 4 (Multi-Moral Stochastic Shortest Path Prob-

lem). A Multi-Moral Stochastic Shortest Path Problem (MMSSP) is
a tuple ⟨𝑆,𝐴, 𝑃, 𝑠0, 𝐻,𝑀,𝐶, 𝐿, 𝑅, 𝑏,𝐺⟩ with components identical to
a MMMDP. Additionally: a non-moral cost consideration 𝑅 ∈ 𝐶 ,

defined as a special type of moral consideration; a positive budget
𝑏 ∈ R+; and a set of goal states𝐺 ⊆ 𝑆 that are absorbing: 𝑃 (𝑠, 𝑎, 𝑠′) =
0,∀𝑠 ∈ 𝐺, 𝑎 ∈ 𝐴, 𝑠′ ∈ 𝑆\𝐺 and 𝑃 (𝑠, 𝑎, 𝑠) = 1,∀𝑠 ∈ 𝐺, 𝑎 ∈ 𝐴.

A MMSSP has competing moral theories and quantified costs

over state transitions. For simplicity, costs are a moral consider-

ation, almost identical to the utility consideration discussed in

Section 4. This consideration is not associated with any moral the-

ory. Also, state transitions must cost more than 0, i.e., 𝐽𝑅 (𝑠, 𝑎, 𝑠′) >
0,∀𝑠 ∈ 𝑆\𝐺, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. This is a standard assumption for SSPs [8].

There is a budget 𝑏 ∈ R+ which we interpret as the cost an agent

is willing to spend on morality before reaching a goal state 𝑠 ∈ 𝐺 .
One potential issue when integrating non-moral objectives and

moral considerations is the presence of positive moral loops. Take
the example of an autonomous system managing investments for

a private business. A policy ought to invest funds ethically while

achieving goals, otherwise stakeholders will not adopt it. A truly

ethical policy may get caught in a positive moral loop and never

achieve its goals (donating to charity until bankruptcy). Thus, we

prune policies over budget 𝑏. Stationary policies 𝜋 : 𝑆 → 𝐴, typi-

cal for SSPs, would prune moral loops entirely once they exceed

the budget (no money for charity), which is why we chose non-

stationary solutions 𝜋 : 𝑆×{0, . . . , 𝐻−1} → 𝐴. Our solutions follow

the moral loop for some number of cycles while leaving budget to

pursue the goal afterwards. The budget is similar to the bound vec-

tor used for Multi-Objective SSPs [11], though we bound solutions

with respect to just one consideration instead of all objectives.

Solutions to infinite horizon SSPs are assumed to be proper,

meaning the probability of reaching a goal from 𝑠0 is 1.0. In finite

horizon problems, stochasticity may prevent the policy from reach-

ing a goal within the horizon. Thus, we say proper policies reach a

goal from 𝑠0 under the budget 𝑏 with non-zero probability.

Assumption 2 (Weak Budgeted Improper Policies). For a
MMSSP ⟨𝑆,𝐴, 𝑃, 𝑠0, 𝐻,𝑀,𝐶, 𝐿, 𝑅, 𝑏,𝐺⟩ all improper policies 𝜋 have
an expected cost that exceeds the budget: Q𝜋

𝑅
(𝑠0, 𝜋 (𝑠0, 0)) > 𝑏. Also,

there exists a proper policy 𝜋 with an expected cost under the budget:
Q𝜋
𝑅
(𝑠0, 𝜋 (𝑠0, 0)) ≤ 𝑏.

We define optimal moral non-stationary policies for a MMSSP:

Π𝑏 = {𝜋 ∈ Π : Q𝜋
𝑅
(𝑠0, 𝜋 (𝑠0, 0)) ≤ 𝑏},

Π𝑏∗ = {𝜋 : N(𝜋) = min

𝜋 ′∈Π𝑏
N(𝜋 ′)}, 𝜋∗ = argmin

𝜋∈Π𝑏∗
Q𝜋
𝑅
(𝑠0, 𝜋 (𝑠0, 0))

The set Π𝑏
are all the proper policies whose expected cost is under

the budget 𝑏. The set of moral proper policies Π𝑏∗
are those proper

policies with minimal non-acceptability. The optimal moral policy
is the moral proper policy with minimal expected cost.

7 MORAL PLANNER
In the previous sections we construct a Multi-Moral MDP/SSP like

a Multi-Objective MDP, with added lexicographic preferences and

greater freedom over types. We presented a mechanism to evaluate

solution policies ethically using MEHR. The following presents a

heuristic moral planning algorithm with two stages. First, an AO*

Multi-Objective heuristic planning algorithm is adapted from [11]

to find the set of proper Pareto undominated policies. Second, the

undominated policies are evaluated using MEHR argumentation. A
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Algorithm 2 MPlan Algorithm

Input: Multi-Moral SSP ⟨𝑆,𝐴, 𝑃, 𝑠0, 𝐻,𝑀,𝐶, 𝐿, 𝑅, 𝑏,𝐺⟩, heuristic 𝜂
Output: Optimal moral policy, 𝜋

1:
®𝑊 ← {{𝜂𝑐 (𝑠, 𝑡) : ∀𝑐 ∈ 𝐶}}; 𝐹 ← {(𝑠0, 0)}; 𝐼 ← ∅;

2: 𝛼 (𝑠, 𝑡) ← ∅ : ∀𝑠∈𝑆,𝑡 ∈{0,...,𝐻−1} ;𝛼 (𝑠0, 𝑡) ← 𝐴

3: do
4:

®𝑊 ′ ← ®𝑊 ; 𝑍 ← postOrderDFS(𝐼 ∪ 𝐹, 𝛼)
5: for 𝑠, 𝑡 ∈ 𝑍 do
6:

®𝑊 [𝑡] (𝑠) ← {Q𝑾 [𝑡+1] (𝑠, 𝑎) : ∀𝑎 ∈ 𝐴,𝑾 from ®𝑊 }
7:

®𝑊 [𝑡] (𝑠) ← { ®𝑤 ∈ ®𝑊 [𝑡] (𝑠) : ®𝑤𝑅 [𝑡] (𝑠) ≤ 𝑏}
8:

®𝑊 [𝑡] (𝑠) ← pprune( ®𝑊 [𝑡] (𝑠))
9: 𝛼 [𝑡] (𝑠) ← {𝑎 ∈ 𝐴 : Q𝑾 [𝑡+1] (𝑠, 𝑎) ∈ ®𝑊 [𝑡] (𝑠)}
10: 𝐹 ← (𝐹\{(𝑠, 𝑡)}); 𝐼 ← 𝐼 ∪ {(𝑠, 𝑡)}
11: 𝐹 ← 𝐹 ∪ {(𝑠′, 𝑡 + 1) : 𝑡 + 1 < 𝐻 ∧∃𝑎∈𝐴𝑃 (𝑠, 𝑎, 𝑠′) > 0}\𝐼
12: while ((𝐹 ∩ 𝑍 )\𝐺 = ∅) ∧ ( ®𝑊 ≈ ®𝑊 ′)
13: Π ← Extract policies 𝜋 from ®𝑊
14: 𝜙𝜋 ← Extract Histories from 𝜋 , ∀𝜋 ∈ Π
15: return 𝜋 ← MEHR(Π, 𝜙)

policy with minimal non-acceptability (and then minimal expected

cost) is output. We give pseudocode in Algorithm 2. The algorithm

explores the MMMDP as a graph whose nodes are state-time pairs.

It maintains an explicit sub-graph, represented by interior 𝐼 , with

successors inside the sub-graph, and a fringe 𝐹 with successors

outside. The explicit sub-graph grows as the algorithm explores the

MMMDP. A node’s worth across moral considerations is grouped by

a worth vector, ®𝑤 ∈ 2W1×...×W|𝐶 |
where ®𝑤𝑖 is the expected worth

for moral consideration 𝐶𝑖 (see Figure 3). A worth vector Pareto
dominates another if it is preferable by one moral consideration

(including the cost function) and at least as preferable by all others.

This ignores the weak lexicographic order.

Definition 5 (Worth Vector Pareto Dominance). For two
worth vectors ®𝑤 and ®𝑤 ′, then ®𝑤 Pareto dominates ®𝑤 ′ if and only if
∃𝑖 ∈ {1, . . . , |𝐶 |}, ®𝑤𝑖 ≻𝑖 ®𝑤 ′𝑖 and ∀𝑗 ∈ {1, ..., |𝐶 |}, ®𝑤 𝑗 ⪰𝑗 ®𝑤 ′𝑗 .

Each state-time maps to a set of worth vectors, ®𝑊 : 𝑆 ×{0, ..., 𝐻 −
1} → 2

{W1×...×W|𝐶 | }
(see Figure 3). Eachworth vector ®𝑤 ∈ ®𝑊 [𝑡] (𝑠)

represents the expectations of a potential undominated solution at

time 𝑡 , state 𝑠 . On line 1, ®𝑊 gets one worth vector for each node

from a heuristic estimate of the consideration optimal worth func-

tion𝑊 ∗𝑐 [𝑡] (𝑠) (Section 4), 𝜂𝑐 : 𝑆 × [0, ..., 𝐻 − 1] → W𝑐 . Initially,

frontier 𝐹 has initial state 𝑠0 at time 0 and interior 𝐼 is empty (line

1). The sub-graph will grow to contain state-time nodes reachable

in undominated solutions. Specifically, 𝛼 : 𝑆 × {0, . . . , 𝐻 − 1} → 2
𝐴

maps a state-time to their mapped actions from all potential un-

dominated solutions, Initially, any solution could be undominated,

so 𝛼 maps to all actions for state 𝑠0, time 0.

The algorithm performs iterative back-ups on state-time nodes

in the sub-graph. This informs the action mappings of potential

solutions 𝛼 . The sub-graph is backed up via post-order DFS or

descending time order (line 4-5) to maximise each back-up’s effect.

A back-up on a state-time collects the multi-worth function𝑾

(Section 4) from each permutation of expected worth in ®𝑊 , ex-

pressed in pseudocode as ‘∀𝑾 from ®𝑊 ’ (line 6). In an informal

example, say ®𝑊 [𝑡] (𝑠) contains two worth vectors, estimating the

worth of two potential undominated solutions for state 𝑠 , time

𝑡 , ®𝑊 [𝑡] (𝑠) = { ®𝑤1, ®𝑤2}. Given one successor with ®𝑊 [𝑡 + 1] (𝑠′) =
{ ®𝑤 ′

1
, ®𝑤 ′

2
}, 4 multi-worth functions are constructed ( ®𝑤1+ ®𝑤 ′

1
, ®𝑤1+ ®𝑤 ′

2
,

®𝑤2 + ®𝑤 ′
1
, ®𝑤2 + ®𝑤 ′

2
), placing estimate permutations for state 𝑠 , time 𝑡

and state 𝑠′, time 𝑡 + 1 into𝑾 . In a back-up, these multi-worth func-

tions are passed to the worth aggregation function for every action.

This finds the worth vector expectation of applying each action to

a potential undominated solution. For MMSSPs, worth vectors over

the budget are pruned away (line 7). The pprune algorithm [34]

prunes all Pareto dominated worth vectors (line 8).

The actions that generated undominated worth vectors are added

to 𝛼 [𝑡] (𝑠) (line 9). After a back-up, fringe nodes are expanded,

moved from the fringe to the interior and replaced by successors

(lines 10-11). The algorithm reiterates over the expanded sub-graph

(line 3), backing-up state-time nodes reachable through actions in

𝛼 , thus, nodes that are in-budget and promising by some moral con-

sideration. Other nodes are pruned. This focused search avoids full

sweeps across the state space, as required by planning algorithms

like (MO) Value Iteration [5, 40].

Iteration continues until there are no unexpanded state-time

nodes that could be in an undominated solution (line 12). Addi-

tionally, the expectations of solutions must be consistent between

iterations. To find this, we generalise the ≈ operator from the moral

considerations to ®𝑊 and a copy before each iteration, ®𝑊 ′. We say

®𝑊 ≈ ®𝑊 ′ if and only if ∀𝑠 ∈ 𝑆, 𝑡 ∈ {0, . . . , 𝐻 }, ∃ ®𝑤 ∈ ®𝑊 and ®𝑤 ′ ∈ ®𝑊 ′
such that ∀𝑐 ∈ 𝐶, ®𝑤𝑐 ≈ ®𝑤 ′𝑐 . In other words, each worth vector from

®𝑊 must correspond to an equivalent in ®𝑊 ′.
After a set of Pareto undominated worth vectors are found, all

policies are extracted on line 13 (algorithm omitted for space). The

worth and probability of policy histories is found on line 16 using

Algorithm 1. These values are passed to the MEHR argumentation

procedure to find the most preferable policies. This is implemented

with the algorithm described in [25], with actions as policies, poten-

tial branches of future development as histories, and moral theories

as described in Section 5.

8 EXPERIMENT
We evaluate our algorithm with experiments based on The Lost

Insulin example. Implementation, MDPs and results are available

on https://github.com/sameysimon/MoralPlanner. All experiments

ran on an 2020, M1 MacBook Air with 8GB of memory.

We expand the scenario for the experiments. Hal urgently needs

insulin. There is a scheduled resupply in 200 minutes. Each time

step represents a 10 minute increment. At each step, there is a 0.6

probability Hal dies without insulin. Hal can wait or go to Carla’s

house. There is a 0.2 chance he is caught, arrested and forced to

wait. If Hal gets to Carla’s, he will begin searching, though he can

go home and wait. While searching, he may compensate Carla: he

can leave a lot of money with a 0.7 chance of covering the insulin

cost; he can leave a small amount, with a 0.1 chance of covering

the cost. Once finding the insulin, he can steal it or leave and go

home. Without insulin, Carla has 0.1 chance of dying at each time

step. We assume Hal replaces Carla’s insulin after the delivery.

We discern a few moral theories. As before, a collective Act-

Utilitarianism measures Hal and Carla’s well-being. This can divide
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Table 2: Table showing number of state-time expansions
(with % of 286 state-time space), backups and iterations per-
formed by the Multi-Moral AO* algorithm.

Config. Expanded Backups Iterations

Hal & Carla 243 (84%) 2472 23

Hal & Carla & Steal 243 (84%) 2472 23

Hal & Carla & Steal_Comp 243 (84%) 2472 23

Non-Moral Hal & Carla 271 (95%) 2822 21

Table 1: Moral Theory for Hal’s Ethical Egoism denoted by
𝐻 ; Carla’s Altruism by 𝐶; absolute no stealing by 𝑆 ; stealing
allowed with compensation by 𝑆𝐶; non-moral cost function
by 𝑅. The superscript denotes lexicographic rank. Shows con-
fig non-acceptability and execution time to 3 s.f.

Config.

Moral Planner

Q𝑊 [1] (𝑠0, 𝜋 (𝑠0, 0)) Non-

acc.

No. of

solns.

Time

(ms)Hal Carla Steal

𝐶0, 𝐻0
-8.9312 -1.1007 N/A 0.109 8 44.5

𝐶0, 𝐻1
-10.211 0 N/A 0 8 44.7

𝐶1, 𝐻0
-8.9312 -1.1007 N/A 0 8 44.0

𝐶0, 𝐻0, 𝑆0 -8.9312 -1.1007 ⊤ 0.237 8 59.2

𝐶1, 𝐻0, 𝑆𝐶0
-8.9312 -1.1007 ⊤ 0.147 8 57.7

𝐶0, 𝑅 -18.387 -0.7705 N/A 0 4 43.6

𝐶0, 𝑆0, 𝑅 -18.387 -0.7705 ⊤ 0 4 58.0

into Ethical Egoism, measuring only Hal’s utility [35], and Altru-
ism [27], measuring only Carla’s well-being. There is an absolute

theory against stealing and another that allows stealing if there is

compensation. For MMSSPs, states where Hal has insulin are goals

and all transitions cost 1. We set the budget 𝑏 to 18.5.

We use domain dependent heuristics for 𝜂 (𝑠, 𝑡). We estimate

Hal’s utility with−0.4when hewaits and 0 otherwise; Carla’s utility
to −0.1 when she loses her insulin and 0 otherwise. For absolute

theories, we estimate ⊥ since Hal can always avoid stealing.

The resulting MDP has 286 state-time pairs. We ran configu-

rations with different moral theories and lexicographic ranks 5

times each and averaged the total run time. Results are in Table 1.

When Hal and Carla’s theories have equal rank, a policy for steal-

ing the insulin is selected, matching intuition since Hal’s life is at

greater risk. The non-acceptability is greater than 0 meaning there

is a moral dilemma. This is likely because it is not guaranteed that

Hal’s life will be saved. From the perspective of the outcomes where

Hal steals the insulin but dies anyway, there would be negative

retrospection. High and low compensation policies yield the same

non-acceptability as these theories are ambivalent. When Hal’s life

is lexicographic preferred, any chance of saving Hal is worth risking

Carla. When Carla’s life is lexicographic preferred, Hal must wait

at home since any risk to Carla is not permissible.

Introducing the law against stealing, the policy where Hal steals

insulin is still preferable though non-acceptability has risen. This

is because more outcomes are indefensible. With the compensation

theory, Hal leaves the maximum amount and non-acceptability

somewhat recovers. Considering the MMSSP examples, in both

cases, a middle ground that is best for Carla while remaining in

budget is selected. We see a trend across the results that a greater

number of moral considerations leads to a greater running time.

In Table 2, we show total back-ups, iterations and state expan-

sions. Absolute moral theories back propagate easily due the sim-

plicity of the moral consideration. The non-moral cost function

causes more backups, but reduces the number of iterations. This

may be because search is directed towards policies that go to Carla’s

house, which contains more states, but makes convergence faster.

9 DISCUSSION
We have formalised moral theories for ethical planning with un-

certainty over decision outcomes and moral theories. While the

theories in this paper are simple (expected utility maximisation and

probabilistic absolutism), we hope our formalism is expressive. One

theory could back-propagate all state-probability information in

its worth typeW, instead of reducing to a ‘single expected’ worth.

This represents a great deal at the cost of exponential blow-up. In

future, we will explore the balance of tractable expression.

Our approach is compatible with non-moral goals and costs with

MMSSPs. We showed solutions must be non-stationary to account

for positive moral loops. Future work may explore eliminating

these loops (like traps [26]) to alleviate this. Our algorithm finds

a proper policy if one exists, unlike the work by Svegliato et al.

which modifies ethical polices towards non-moral goals. If this can

not be done under a threshold, no policy is returned [37]. In future,

we could try to apply this approach to our algorithm.

In some MMMDPs, there is a large number of undominated

policies. Some multi-objective algorithms find the Pareto Front or

the Convex Coverage Set (CCS) which is generally smaller [33].

Unfortunately, these may not include the MEHR optimal policy.

Additionally, policies can have an exponential number of histories

and since MEHR compares each policy’s arguments, we expect

time+space complexity to be exponential. Developing an n-step

lookahead algorithm would help and we may try Monte Carlo

history sampling to limit the number of arguments. We plan to

search for optimisations and recommend our current algorithm for

small scale problems which require more ethical scrutiny.

We hope our novel formalism helps the bridge between proba-

bilistic planning and the expressive realm of Ethics. We integrated

ethical heuristics to guide our search, which we believe is novel

for Machine Ethics. The approach can express moral uncertainty,

shown by experiments sensitive to configurations of moral theories.

Our approach has potential for explainability with MEHR decisions

based on arguments that are reproducible following an inquiry.
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