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ABSTRACT

Policy Space Response Oracles (PSRO) interleaves empirical game-
theoretic analysis with deep reinforcement learning (DRL) to solve
games too complex for traditional analytic methods. Tree-exploiting
PSRO (TE-PSRO) is a variant of this approach that iteratively builds
a coarsened empirical game model in extensive form using data
obtained from querying a simulator that represents a detailed de-
scription of the game. We make two main methodological advances
to TE-PSRO that enhance its applicability to complex games of
imperfect information. First, we introduce a scalable representation
for the empirical game tree where edges correspond to implicit
policies learned through DRL. These policies cover conditions in
the underlying game abstracted in the game model, supporting
sustainable growth of the tree over epochs. Second, we leverage
extensive form in the empirical model by employing refined Nash
equilibria to direct strategy exploration. To enable this, we give
a modular and scalable algorithm based on generalized backward
induction for computing a subgame perfect equilibrium (SPE) in
an imperfect-information game. We experimentally evaluate our
approach on a suite of games including an alternating-offer bar-
gaining game with outside offers; our results demonstrate that
TE-PSRO converges toward equilibrium faster when new strategies
are generated based on SPE rather than Nash equilibrium, and with
reasonable time/memory requirements for the growing empirical
model.
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1 INTRODUCTION

Empirical game-theoretic analysis (EGTA) [16, 18] reasons about
complex game scenarios through empirical game models esti-
mated from simulation data. A popular form of EGTA is the policy
space response oracles (PSRO) framework [9] (Fig. 1), in which
the empirical game is iteratively extended by adding best responses
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(BRs) derived from deep reinforcement learning (DRL). The vast
majority of prior work on EGTA and PSRO [1, 19] represents the
empirical game in normal form even though the real underlying
game consists of agents’ strategies interacting via sequential de-
cisions under various unknowns. McAleer et al. [12] introduced
XDO as an alternative to PSRO that maintains an empirical game
in extensive form, to capture a combinatorial space of strategies
with the choice of actions at each decision point in the game tree.
We originally proposed and evaluated a tree-exploiting version of
EGTA (TE-EGTA) that maintains an empirical game in an extensive
form based on a coarsening of the underlying game [8]. This work
demonstrated that a significant improvement in model accuracy
and strategy exploration, compared to normal-form EGTA, can
be achieved by using the tree structure to model even a little of
the information-revelation and action-conditioning patterns of the
underlying game.

Empirical 
Game
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DRL
p1*, p2*,…

target best responses
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s*
solutionEVAL

TE-PSRO
Follows basic structure 
of PSRO algorithm 
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Figure 1: Basic PSRO loop. In each iteration (or epoch), an empirical

game model is extended, based on best responses (BRs) to target

profile �̃�∗
derived from the current empirical game by the solver

MSS. The BRs are computed using deep RL applied to the game

simulator. EVAL is a solver (not necessarily the MSS) applied to a

model to assess its quality.

Akey step in PSRO is augmenting the empirical gamemodel with
new BR results. This is straightforward for a normal-form model:
add the new strategies to the game matrix, and estimate payoffs for
new profiles using simulation. For PSRO using an extensive-form
model, where we can no longer treat a BR as an atomic entity, we
face new questions such as the following. In what precise sense
does the empirical game tree coarsen or abstract the underlying mul-
tiagent scenario? Relatedly, how should we incorporate elements
of the BRs (detailed policy specifications) at appropriate places in
the empirical game tree? In our previous approach towards tree-
exploiting PSRO (TE-PSRO) [8], we addressed these challenges by
systematically coarsening away select (non-strategic) stochastic
events in the underlying game. This approach is not general or
scalable in the sense that it relies on the use of stochastic events to
model imperfect information in the underlying game. In this paper,
we reformulate TE-PSRO by developing a method to abstract broad
swaths of the state and observation spaces of the underlying game,
providing a more implicit rendering of games with complex infor-
mation structure, including high degrees of imperfect information.
We also introduce other methodological advances that enhance the
power of TE-PSRO in many directions.
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First, to address the abstraction issue, we use two distinct formu-
lations for the game of interest. The underlying game as represented
by the simulator is defined in terms of a state space, agent actions,
and the observations, successor states, and rewards (stochastically)
resulting from applying actions in a given state. This formulation
is the natural one for DRL algorithms, which can interact directly
with the simulator. On the other hand, the empirical game model
employs an extensive-form tree representation, which is the natural
object of game-solving algorithms. To bridge the two formulations,
the edges in the empirical game tree correspond to abstract poli-
cies executable in the simulator. These abstract policies, derived
through DRL, map agent observations to actions.1 The empirical
game includes only select elements of this history, rendering much
of the simulator state space and observation space implicit in this
abstracted formulation. At what level to incorporate observation
details in the game model is a design choice, entailing tradeoffs in
computation and fidelity.

Second, we face additional computational tradeoffs regarding
howmuch to elaborate the gamemodel based on DRL computations.
In each iteration (or epoch), PSRO solves the current empirical game
using ameta-strategy solver (MSS). It then derives an approximate
best response for each player using DRL, assuming the other players
follow the latest MSS solution. A straightforward approach would
apply the derived response throughout the empirical game [8, 12].
This, however, could lead the game tree to grow at an exponential
rate, severely limiting the feasible number of PSRO epochs. We
propose to control this growth by adding the new DRL policies to
only a select set of information sets in the empirical game.

A final question we address regards the choice of MSS for TE-
PSRO. Previous research has considered a range of MSSs that oper-
ate on normal-form games, and observed a significant impact on
PSRO efficacy [9, 17]. We now have the opportunity to consider
new MSSs that exploit the tree structure of an empirical game in
extensive form, in particular, refined Nash equilibria.

To illustrate and evaluate our upgraded TE-PSRO approach, we
employ two (perfect-recall) games with significantly different im-
perfect information structures that non-trivially extend stylized
games from the literature. In our first game that we call Bargain,
two players with private valuations over a set of indivisible items ne-
gotiate how to split the set up between them through an alternating-
offer protocol. The scenario features imperfect information about
the other party’s valuation as well as choices for signaling regarding
the value of a private outside option that each player has recourse
to in the event of negotiation failure. This sequential bargaining
game extends a well-known two-party multi-issue negotiation task
[3, 4, 10, 11].

The second game is a general-sum abstraction of the card game
Goofspiel [5] that we call GenGoof. As a clean model of multi-
round multiagent interactions with considerable strategic depth,
Goofspiel has been extensively analyzed in the game-theory lit-
erature, more recently serving as a testbed for game-playing AI
algorithms [2]. GenGoof proceeds over an arbitrary number of

1McAleer et al. [12] define a variant of XDO called Neural XDO that likewise employs
policies represented as neural networks. Rather than incorporate these as abstract
policies in an empirical game tree, Neural XDO instead relies on methods like neural
fictitious self-play [6] that perform game analysis directly in the space of neural
network policies.

rounds, each including a discrete stochastic event (defined over a
support diminishing every round by the single realized outcome)
followed by all players choosing one discrete action each (effectively
simultaneously); the payoff of each player at game termination is
the sum of arbitrary per-round rewards.

Our key contributions are:
• A general scheme for abstract policy representation that
supports flexible implementation of TE-PSRO for complex
games of imperfect information (§4.1 and §4.2).
• An approach to control the growth of empirical game trees
through selective incorporation of best responses at particu-
lar information sets (§4.3 and App. B.1).
• A new algorithm that computes a subgame perfect equilib-
rium (SPE) of an imperfect-information game (§5).
• Experimental demonstration of the efficacy of SPE over NE
as MSS for TE-PSRO on a variety of complex sequential
games of imperfect information (§3 and §6); our experiments
address three aspects of the complete TE-PSRO loop: the ef-
fectiveness of our augmentation heuristic in controlling the
empirical game growth rate, the power of our SPE computa-
tion algorithm, and a comparison of MSS choices including
refined equilibria which are feasible only for extensive-form
empirical games.

All appendices referenced below are available in the full version of
the paper at https://arxiv.org/abs/2502.02901. The code base used
for our experiments is available at https://github.com/ckonicki-
umich/AAMAS25.

2 TECHNICAL PRELIMINARIES

An extensive-form game (EFG) is a tuple

𝐺 = ⟨ 𝑁, 𝐻, 𝑉 , {I𝑗 }𝑛𝑗=0, {𝐴 𝑗 }
𝑛
𝑗=1, 𝑋, 𝑃, 𝑢 ⟩,

where 𝑁 = {0, . . . , 𝑛} is the set of players or agents; 𝐻 is a finite
tree of histories divided into subsets of terminal nodes or leaves
𝑍 and decision nodes 𝐷 ; 𝑉 is a function assigning each decision
node ℎ to an acting player; A 𝑗 (·) is the set of actions available at
each decision node; 𝑢 is a function mapping each 𝑧 ∈ 𝑍 to a utility
vector {𝑢 𝑗 (𝑧)}𝑛𝑗=1; in games of imperfect information, the set I𝑗
is a partition of 𝑉 −1 ( 𝑗) where each 𝐼 ∈ I𝑗 is an information set
(or infoset) of 𝑗 . All nodes ℎ ∈ 𝐼 are indistinguishable to player 𝑗 ,
meaning their action spaces are also indistinguishable and denoted
𝐴 𝑗 (𝐼 ). The directed edge connecting anyℎ ∈ 𝐼 to its child represents
a transition resulting from 𝑉 (ℎ)’s move. We assume perfect recall
[15, Definition 5.2.3]. A node ℎ where 𝑉 (ℎ) = 0 is called a chance
node controlled by Nature, with a set of possible outcomes 𝑋 (ℎ)
and probability distribution 𝑃 (· | ℎ) over 𝑋 (ℎ).

Since the underlying or true game corresponding to the simula-
tor is too large to be represented directly with a tree, we instead
express it in a state-action formulation. A play of the game is a
sequence of actions taken by the players (including Nature), where
each action leads to a world state 𝑤 ∈ W. The joint space of
actions is given by A =

⊗𝑛
𝑗=1A 𝑗 , and the set of legal actions

for agent 𝑗 at world state 𝑤 is given by A 𝑗 (𝑤) ⊆ A 𝑗 . The prob-
ability distribution of the world state 𝑤 ′ following joint action
𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ A taken in world state 𝑤 is given by a tran-
sition function T (𝑤, 𝑎) ∈ ΔW . Upon transitioning to 𝑤 ′ from 𝑤
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via 𝑎, agent 𝑗 makes a partial observation 𝑜 𝑗 = O𝑗 (𝑤, 𝑎,𝑤 ′) in-
stead of fully observing𝑤 ′. A reward R 𝑗 (𝑤) is given to agent 𝑗 at
each 𝑤 ∈ W, and the game ends when a terminal world state
is reached. In this formulation, a history at time 𝑡 is the sequence
of world states and actions given by ℎ = (𝑤1, 𝑎1, . . . ,𝑤𝑡 ); histories
𝑧 ∈ 𝑍 where𝑤𝑡 is a terminal world state are terminal histories. It
follows that 𝑅 𝑗 (ℎ) and A 𝑗 (ℎ) are the reward and action space for
agent 𝑗 in the last world state of history ℎ. An information state
(or infostate) for agent 𝑗 , denoted 𝐼 𝑗 , is a sequence of agent 𝑗 ’s
observations and actions up to a point 𝑡 in the game, given by
𝐼 𝑗 (ℎ) = (𝑎1

𝑗
, 𝑜2
𝑗
, 𝑎2
𝑗
, . . . , 𝑜𝑡

𝑗
) ≡ 𝐼 𝑗 . Since agent 𝑗 cannot distinguish

between the histories of 𝐼 𝑗 (ℎ), it follows that A 𝑗 (𝐼 𝑗 (ℎ)) = A 𝑗 (ℎ).
The complete set of infostates for player 𝑗 is again given by I𝑗 .
We use hatted symbols to denote components of the empirical
game tree (e.g., Î𝑗 for infosets) to distinguish them from analogous
components of the true game.

A pure strategy for player 𝑗 specifies the action that 𝑗 selects
at each information set. A mixed strategy 𝜎 𝑗 defines a probability
distribution over the action space at each of 𝑗 ’s information sets. A
strategy profile is given by 𝝈 = (𝜎1, . . . , 𝜎𝑛), and 𝝈− 𝑗 denotes the
strategies of all players other than 𝑗 . Σ 𝑗 is the set of all strategies
available to player 𝑗 , and Σ =

>𝑛
𝑗=1 Σ 𝑗 denotes the space of joint

strategy profiles. A terminal history 𝑧 is reached by 𝝈 with a reach
probability 𝑟 (𝑧,𝝈) = ∏

𝑗∈𝑁 𝑟 𝑗 (𝑧, 𝜎 𝑗 ) where 𝑟 𝑗 (𝑧, 𝜎 𝑗 ) is the proba-
bility that player 𝑗 chooses actions that lead to 𝑧, including Nature’s
contribution 𝑟0 (𝑧). The payoff of 𝝈 to player 𝑗 is given by its ex-
pected utility 𝑈 𝑗 (𝝈). Player 𝑗 ’s regret from playing 𝜎 𝑗 as part of 𝝈
is given by Reg𝑗 (𝝈) = max𝜎∈Σ 𝑗

𝑈 𝑗 (𝜎,𝝈− 𝑗 ) − 𝑈 𝑗 (𝝈). The profile
regret of 𝝈 is the sum of player regrets: Reg(𝝈) = ∑𝑛

𝑗=1 Reg𝑗 (𝝈).
A strategy profile 𝝈 with Reg(𝝈) = 0 is a Nash equilibrium (NE).

3 DESCRIPTION OF GAMES STUDIED

Wewill now describe in detail the two games used in our experimen-
tal assessment of TE-PSRO in §6. The game analyst using TE-PSRO
has no direct access to a game description at this level of detail, but
can query a simulator based on such a description for data samples
relevant to game histories induced by input strategy profiles.

3.1 Bargain

In this game, two players negotiate the division of𝑚 discrete items
of 𝜏 types. We represent the item pool by a vector p where the
𝑖th entry 𝑝𝑖 , 𝑖 ∈ {1, . . . , 𝜏} ≡ [𝜏], is the number of items of type 𝑖;∑𝜏
𝑖=1 𝑝𝑖 = 𝑚. Each player 𝑗 ∈ {1, 2} has a private valuation over

the items given by a vector v𝑗 of non-negative integers such that
the 𝑖th entry 𝑣 𝑗,𝑖 is player 𝑗 ’s value for one item of type 𝑖 . In each
game instance, (v1, v2) are sampled uniformly at random from the
collectionV of all vector pairs satisfying three constraints. First,
for both players, the total value of all items is a constant: v𝑗 · p = 𝑉 ,
𝑗 ∈ {1, 2}. Second, each item type must have nonzero value for at
least one player: ∀𝑖 ∈ [𝜏] .𝑣1,𝑖 + 𝑣2,𝑖 > 0. Finally, some item type
must have nonzero value for both players: ∃𝑖 ∈ [𝜏] .𝑣1,𝑖𝑣2,𝑖 > 0.

An additional feature of our game is that each player 𝑗 has a
private outside offer in the form of a vector of items o𝑗 , defining the
fallback payoff the player obtains if no deal is reached. This offer is
drawn from a distribution 𝑃 𝑗 (·) at the start of each game instance.
During negotiation, a player 𝑗 may choose to reveal coarsened

information about its outside offer to the other player in the form
of a binary signal which is 𝐿 (resp.𝐻 ) if the value of the offer o𝑗 ·v𝑗
is at most (resp. greater than) a fixed threshold 𝜈 where 1 < 𝜈 < 𝑉 .

In each of a finite number 𝑇 > 0 of negotiation rounds, the play-
ers take turns proposing a partition of the pool between themselves,
with player 1 moving first in each round. In its turn, a player can
accept the latest offer from the other player (deal), end negotia-
tions (walk), or make an offer-revelation combination of the form
(𝜔, 𝑅). Offer 𝜔 ∈ {(p1, p2) | p1 + p2 = p} is a proposed partition of
the items, with p𝑗 a vector of 𝜏 non-negative integers represent-
ing player 𝑗 ’s share. Revelation 𝑅 ∈ {true, false} represents that
player’s decision to either disclose its signal (true) in that turn or
not (false). We also include a discount factor 𝛾 ∈ (0, 1] to capture
preference for reaching deals sooner. Negotiation fails if a player
chooses walk in any round 𝜌 ∈ {1, . . . ,𝑇 } or 𝑇 rounds pass with-
out any player choosing deal. In case of failure in round 𝜌 , each
player 𝑗 receives a reward of 𝛾𝜌o𝑗 · v𝑗 from its outside offer. If a
proposed partition (p1, p2) is accepted in round 𝜌 , then the reward
to 𝑗 is 𝛾𝜌−1p𝑗 · v𝑗 .
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Figure 2: Part of game tree llustrating the effect of Player 1’s decision

𝑅 on Player 2’s infoset structure.

Fig. 2 displays a partial extensive-form representation of a simu-
lation of Bargain after each player’s valuation has already been
sampled. At the first two levels, the simulator samples outside offer
signals for the two players from {𝐻, 𝐿}; if 𝐿 (resp. 𝐻 ) is drawn for
player 𝑗 , its actual outside offer is sampled uniformly at random
from all possible item vectors o of cumulative value o · v𝑗 above
0 and at most the threshold 𝜈 (resp. above 𝜈 and at most 𝑉 ). Thus,
setting 𝑃 𝑗 reduces to picking a probability of the signal being 𝐻 for
player 𝑗 . Next, player 1 chooses an action, comprising an offer 𝜔
and revelation 𝑅. Player 2 now has four distinguishable histories
that result when player 1 reveals its signal and two non-singleton
information sets that result when player 1 chooses not to reveal.
The game continues (not shown) with the action of player 2, and
alternation between the players for another 𝑇 − 1 rounds.

3.2 GenGoof

GenGoof is parametrized by a positive integer𝐾 which determines
the number of game rounds (𝐾 − 1) as well as the size of each
player’s action space (𝐾 ).

First, a discrete stochastic event with 𝐾 outcomes occurs at the
game root, that is, |𝑋 (∅) | = 𝐾 . Let 𝑒1 denote the realized outcome
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of this event. Player 1 observes 𝑒1 and chooses one of 𝐾 actions,
say 𝑎𝑘1 , from A1 (𝐼 (𝑒1)) = {𝑎𝑘1 }

𝐾
𝑘=1. Then, player 2 observes 𝑒1 but

not player 1’s action, say 𝑎𝑘2 , and also chooses one of 𝐾 actions
from A2 (𝐼 (𝑒1𝑎𝑘1 )) = {𝑎𝑘2 }

𝐾
𝑘=1, ending round 1. Round 2 begins

with the realization 𝑒2 of a second stochastic event with support
𝑋

(
𝑒1𝑎𝑘1𝑎

𝑘
2

)
= 𝑋 (∅) \ {𝑒1}. Player 1 then observes the history up

to and including 𝑒2 before choosing one of 𝐾 actions, followed by
player 2 who observes all but player 1’s second chosen action. This
process repeats until the final round 𝐾 − 1 where a stochastic event
with only 2 possible outcomes occurs, followed by player 1 and
player 2 both observing the history until the final stochastic event
realization and picking one of 𝐾 actions each, ending the game.

To complete the game description, we define the probability dis-
tribution of each stochastic event and each leaf utility as follows
(these are also game parameters that are hidden from the game ana-
lyst). For each instance of GenGoof, we sample a single𝐾-outcome
categorical probability distribution uniformly at random for the
stochastic event in round 1; for 𝑘 ∈ {2, 3, . . . , 𝐾 − 1}, the distribu-
tion of the round-𝑘 stochastic event is obtained by renormalizing
the round-(𝑘 − 1) over the residual support after eliminating the
outcome realized in round (𝑘 − 1). For example, the probability
distribution of the round-2 stochastic event given that 𝑒1 occurred
in round 1 is

𝑃

(
𝑒2 | 𝑒1𝑎

𝑘
1𝑎
𝑘
2

)
=

𝑃 (𝑒2 | ∅)∑
𝑒′∈𝑋 (∅)\{𝑒1 }

𝑃 (𝑒′ | ∅) ∀𝑒2 ∈ 𝑋 (∅) \ {𝑒1}.

For each possible combination of the stochastic event outcome
and the two players’ action choices in each round of any game
instance, we choose a reward for each player uniformly at random
from [0, 𝑢max] for a positive real number𝑢max; we set the leaf utility
for each player equal to the sum of the player’s rewards over all
𝐾−1 rounds in the corresponding history. Thus, for every leaf 𝑧 ∈ 𝑍
and player 𝑗 ∈ {1, 2}, 𝑢 𝑗 (𝑧) ∼ U( [0, 𝑢max (𝐾 − 1)]) where U(S)
denotes the uniform distribution over the set S. Figure 7 in App. A
illustrates the first round of gameplay in a particular instance of
GenGoof.

4 TREE-EXPLOITING PSRO

Our domain of interest comprises game instances where expanding
the full game out as an extensive-form tree for the purpose of game
analysis is infeasible. TE-PSRO tackles this challenge by maintain-
ing a coarsened and abstracted (yet extensive-form) version as its
empirical game model. The full game is specified in the form of
a gameplay simulator, which is formalized in terms of the world
state framework (§2). A key question for TE-PSRO (Fig. 1) is how to
translate new best-response results into elements that can be sys-
tematically incorporated into an abstracted empirical game model
as part of the model augmentation operation. Our approach bridges
the detailed state-space model of the simulator and the simplified
game tree using the concept of abstract policies.

4.1 Abstract Policies

In the underlying game, the space of possible infostates of player 𝑗
is given byI𝑗 , and a policy 𝜋 𝑗 specifies 𝑗 ’s action 𝑎 ∈ A 𝑗 (𝐼 ) for each
𝐼 ∈ I𝑗 . We represent such policies in our implementation by neural

networks, encoded as a set of weights for a given architecture. In the
empirical game𝐺 , player 𝑗 ’s information possibilities are described
by its infosets Î𝑗 . In general, there need be no particular structural
relationship between I𝑗 and Î𝑗 , though typically they will both
be defined in terms of a shared set of primitive observations. We
capture the connection by a function 𝜙 : I𝑗 → Î𝑗 , where 𝜙 (𝐼 𝑗 ) is
the empirical game infoset corresponding to underlying infostate 𝐼 𝑗 .

Given the distinct formulations, policies 𝜋 𝑗 are executable in the
simulator, but cannot be directly interpreted within the framework
of empirical game 𝐺 . Nevertheless, we can incorporate them as
actions in 𝐺 . For a given policy 𝜋𝑥

𝑗
, we treat the label “𝜋𝑥

𝑗
” as a

potentially allowable action for any infoset Î𝑗 . From the empirical
game perspective, “𝜋𝑥

𝑗
” is an abstract policy. An overall game-tree

strategy specifies an action for every infoset in Î𝑗 . To execute a
game-tree strategy profile in the simulator, we simply trace through
the tree, applying selected abstract policies at each infoset. The
selected abstract policy remains in force for player 𝑗 until a new
infoset is reachedwhere it is 𝑗 ’s turn tomove. Though uninterpreted
in the game tree itself, these abstract policies have full access to the
information state from the simulation needed for execution.

4.2 Best Response: Deep Reinforcement

Learning

With the ability to simulate profiles over the empirical game strat-
egy space, we can employ the simulator within a deep RL algorithm
to derive best responses 𝜋∗

𝑗
. Our implementation employs the DQN

algorithm [13], which combines a feed-forward neural network
parameterized by 𝜗 with temporal difference learning and a second
target network to estimate Q-values over time given 𝐼 ∈ I𝑗 .

As an illustration, we provide details of our deep Q-network
for Bargain. The input to the neural network representing 𝜋∗

𝑗

for this game is an encoding of player 𝑗 ’s current information
state 𝐼 . ⌈log2 (𝑉 )⌉ bits are allotted for player 𝑗 ’s valuation v𝑗 [𝑖], for
each 𝑖 ∈ [𝜏]. One bit is allotted for player 𝑗 ’s outside offer signal.
For each player’s turn in the game, p[𝑖] + 1 bits are allotted per
item type 𝑖 ∈ [𝜏] to represent a partition of p, plus one bit for
the decision to reveal the signal or not. Two bits are allotted to
represent the other player’s signal: 00 means no reveal so far, 01
means 𝐿, and 10means𝐻 . One final bit is allotted to be set to 1when
negotiations are complete. The output of the network is an |A 𝑗 |-
long vector containing the Q-values of each action in A 𝑗 given
the input infostate vector. Our parameter settings, optimized via
hyperparameter tuning, are included in App. G. After successfully
training player 𝑗 ’s DQN, the learned weights of 𝜋𝜗 are saved and
mapped to the abstract policy label “𝜋𝑥

𝑗
” in 𝐺 (§4.1).

4.3 Augmenting the Empirical Game Model

Given BRs 𝜋∗ computed from DRL, the next step is to augment the
empirical game𝐺 (Fig. 1). Though an abstract policy is potentially
applicable at any point in the game tree, adding 𝜋∗

𝑗
to every 𝐼 ∈ Î𝑗

could lead to unsustainable growth in 𝐺 .
Our approach is to select a fixed number𝑀 of infosets to augment

for each player. Our selection is based on an assessment of the
gain Γ of playing 𝜋∗

𝑗
instead of �̃�∗

𝑗
at candidate infosets 𝐼 ∈ Î𝑗
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where �̃�∗ is the BR target at the current TE-PSRO epoch. Recall (§2)
that a terminal history in the underlying game is expressed as a
sequence of world states and actions: 𝑧 = (𝑤1, 𝑎1, . . . ,𝑤𝑡 ), and that
𝑅 𝑗 (𝑧) is the associated reward for player 𝑗 . The reach probability
of 𝑧 given that history ℎ of length 𝑡ℎ was reached is

𝑟 (𝑧 | ℎ, �̂�) =
𝑡∏

ℓ=𝑡ℎ

�̂� (𝜙 (𝑤 ℓ )) (𝜋𝑥 )·1{𝜋𝑥 (𝑤 ℓ ) = 𝑎ℓ }·𝑇 (𝑤 ℓ , 𝑎ℓ ) (𝑤 ℓ+1).

The expected payoff to 𝑗 for playing �̂� 𝑗 in response to �̃�∗
− 𝑗 at 𝐼 ∈ Î𝑗

is given by

𝑈 𝑗 (�̂� 𝑗 , �̃�∗
− 𝑗 , 𝐼 ) =

∑︁
ℎ∈𝐻 |𝜙 (ℎ) ∈𝐼

∑︁
𝑧∈𝑍

𝑟 (𝑧 | ℎ, �̂� 𝑗 , �̃�∗
− 𝑗 )𝑅 𝑗 (𝑧) .

Let �̂� |𝐼→𝜋∗
𝑗
denote a strategy profile identical to �̂� except that

player 𝑗 selects 𝜋∗
𝑗
at 𝐼 . Gain 𝐾 is equal to the product of the gain to

player 𝑗 of �̃�∗ |𝐼→𝜋∗
𝑗
, given that 𝐼 is reached, and the probability of

reaching the set of histories in the underlying game that translate
into 𝐼 :

Γ = 𝑟 (𝐼 , �̃�∗) ·
(
𝑈 𝑗 ( �̃�∗

��
𝐼→𝜋∗

𝑗
, 𝐼 ) −𝑈 𝑗 (�̃�∗, 𝐼 )

)
.

We then perform a softmax selection of𝑀 infosets based on the
gains [Γ𝐼 ]𝐼 ∈Î𝑗 . BR policy 𝜋∗

𝑗
is then added as an action edge to each

of these infosets. The process creates new infosets, depending on
the observable effects of the abstract policy. We illustrate how the
empirical game tree is extended by this method in App. B, using
Bargain as an illustrative example.

Finally, TE-PSRO updates payoff estimates for the augmented 𝐺
by simulating the strategy combinations that result from the newly
added edges and recording the sampled payoffs. All epochs are
allocated the same total number of gameplay simulations, called
the simulation budget, distributed equally among all new strategy
profiles. Thus, the number of samples per profile is fixed based on
the TE-PSRO epoch, independent of the choice of𝑀 .

5 COMPUTING REFINED NASH EQUILIBRIA

Tree-based game models afford consideration of solution concepts
specific to the extensive form. We specifically investigate the use of
subgame perfect equilibrium (SPE), a refinement of NE that rules
out solutions containing non-credible threats. To make use of SPE,
we need a definition that applies to games of imperfect information,
and an algorithm that computes such solutions.

Definition 5.1. A subgame of game𝐺 is a directed rooted subtree
given by 𝐺 ′ = ⟨𝑁,𝐻 ′,𝑉 ′, {I′

𝑗
}𝑛
𝑗=0, {𝐴

′
𝑗
}𝑛
𝑗=1, 𝑋

′, 𝑃 ′, 𝑢′⟩ satisfying
the following:
• The root ℎ′ of tree 𝐻 ′ must be the only node in its informa-
tion set.
• As a subtree of 𝐻 , 𝐻 ′ must include all nodes in 𝐻 that suc-
ceed ℎ′.
• For any 𝑗 ∈ 𝑁 and for all 𝐼 ∈ I𝑗 , if 𝐼 ∈ I′𝑗 , then the nodes
ℎ ∈ 𝐼 must all be part of 𝐻 ′; if 𝐼 ∉ I′

𝑗
, then all its nodes must

be part of 𝐻 \ 𝐻 ′.
• 𝑉 ′, {I′

𝑗
}𝑛
𝑗=0, {𝐴

′
𝑗
}𝑛
𝑗=1, 𝑋

′, 𝑃 ′, and 𝑢′ are restrictions to 𝐻 ′ of
𝑉 , {I𝑗 }𝑛𝑗=0, {𝐴 𝑗 }

𝑛
𝑗=1, 𝑋 , 𝑃 , and 𝑢, respectively.

Definition 5.2 ([14]). A subgame perfect equilibrium (SPE) of
game 𝐺 is an NE of 𝐺 that also induces NE play in each of 𝐺 ’s
subgames.

In finite perfect-information EFGs, an SPE always exists in pure
strategies and can be readily computed using the classic backward
induction approach. With imperfect information, however, a sub-
game may not admit a pure-strategy NE at all. Kaminski [7] pro-
posed the generalized backward induction (GBI) approach for
finding the set of SPE for a potentially infinite game of imper-
fect information. A key feature of GBI is the re-expression of the
game tree as a set of its proper subgames organized by their roots.
Other crucial implementation details are not fully specified in the
original article, in particular how to identify NE of subgames that
include non-singleton information sets; a naïve implementation
using exhaustive enumeration of strategy profiles for combinations
of subgames has a runtime that is exponential in game size.

We provide a practical, modular algorithm for finding an SPE
via GBI in a finite, imperfect-information EFG. Our algorithm com-
bines dynamic programming with a Nash solver subroutine, using
Kaminski’s [2019] idea of organizing the game into subgames. Alg. 1
presents our method. ComputeSPE uses subroutines described here
at a high level (see App. C for full pseudocode).

Algorithm 1 : ComputeSPE
Require: Input game𝐺
1: Ψ← GetSubgameRoots(𝐺 )
2: ℓ ← height of ℎ0 in Ψ
3: {Θ𝑘 }ℓ𝑘=1 ← GetSubgameGroups(𝐺,Ψ, ℓ )
4: 𝝈𝑆𝑃𝐸 ← GetInitialSPE(𝐺,Θ1 )
5: for 1 < 𝑘 ≤ ℓ do
6: for 𝜃 ∈ Θ𝑘 do

7: Extract 𝝈𝑆𝑃𝐸
��
𝐺𝜃
← {𝝈𝑆𝑃𝐸 (𝐼 ) | 𝐼 ∈ 𝐺𝜃 ∩ 𝝈𝑆𝑃𝐸 }

8: 𝝈𝑆𝑃𝐸 ← 𝝈𝑆𝑃𝐸 ∪ NashSolver(𝐺𝜃 , 𝝈
𝑆𝑃𝐸

��
𝐺𝜃
)

9: end for

10: end for

return 𝝈𝑆𝑃𝐸

We first call GetSubgameRoots to find the roots of all sub-
games in the input game 𝐺 and arrange them into a tree Ψ rooted
at ℎ0, the root of 𝐺 . A root in Ψ has a height 1 ≤ 𝑘 ≤ ℓ where
the subgames closest to the leaves of 𝐺 have height 1 and ℎ0 has
height ℓ . To find the roots, it is sufficient to check which nodes in
𝐻 are roots of subtrees satisfying the conditions of Definition 5.1.
GetSubgameGroups collects all subgame roots in Ψ at height 𝑘
into a set Θ𝑘 , for 1 ≤ 𝑘 ≤ ℓ . Then, we use dynamic programming
to iterate over the subgames of each Θ𝑘 and solve each subgame
at height 𝑘 directly via a chosen NashSolver. The union 𝝈𝑆𝑃𝐸

of all SPE found for the subgames in 𝐺 with height less than 𝑘 is
updated with each new partial SPE.𝐺𝜃 denotes the subgame rooted
at node 𝜃 ∈ Θ𝑘 . The union of all SPE across all subgames in 𝐺 by
definition must be the SPE of 𝐺 . In order to avoid overwriting the
SPE that have been computed for any subgames at smaller heights
in𝐺𝜃 , we pass the partial SPE 𝝈𝑆𝑃𝐸

��
𝐺𝜃

in as input to NashSolver
and restrict the solver to find a solution only for the information
sets within 𝐺𝜃 that are not already included in 𝝈𝑆𝑃𝐸

��
𝐺𝜃

. This en-
sures that the runtime of ComputeSPE is linear with respect to the
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size of 𝐺 and thus scalable modulo the runtime of NashSolver
(see App. D for runtime analysis). For our experiments (§6), we de-
vised an adaptation of the counterfactual regret (CFR) minimization
algorithm [20], called SubgameCFR, as our NashSolver.

6 EXPERIMENTS

We now report experiments that we conducted to evaluate our
TE-PSRO approach by applying it to the two games described in §3.

6.1 Parameter settings

For Bargain (§3.1), we set 𝜏 = 3, 𝑉 = 10, 𝜈 = 5, 𝛾 = 0.99, 𝑇 = 5,
and 𝑛 ∈ {5, 6, 7}. We generated five unique sets of the remaining
parameters p, (v1, v2), 𝑃1, 𝑃2 uniformly at random from their re-
spective supports in order to evaluate TE-PSRO’s performance on
a variety of game instances. For GenGoof (§3.2), we set 𝐾 = 4,
𝑢max = 10, calling this instance GenGoof4. The simulator budget
was 100 samples for Bargain and 200 samples for GenGoof4.

We ran all experiments on our local computing cluster using
a single core. Runtime and memory requirements depend on the
choice of𝑀 ∈ {1, 2, 4, 8, 16}, which determines the rate of growth
of 𝐺 across TE-PSRO epochs (see App. E for details). Unless oth-
erwise stated, every experiment was performed for five randomly
seeded trials for each setting. Error bars in our plots correspond to
a 95% confidence interval.

6.2 Results

Our first set of experiments assesses space requirements for the em-
pirical game𝐺 as a function of the number𝑀 of infosets augmented
per epoch. At each epoch of TE-PSRO, we recorded the total number
of information sets across players in 𝐺 and the memory required
by the emprical model. We report the average empirical game size
for each of the two games studied in terms of the number of player
information sets of all players and memory required in megabytes
(MB) in Fig. 3 and Fig. 15 in App. F.1 respectively, for representative
values of 𝑀 ; each curve for Bargain is averaged over 100 trials
per value of 𝑀 across all five sets of bargaining parameters. The
broad takeaway from all plots in this set is the following. Although
the rate of increase in the size of the 𝐺 steepens with 𝑀 in the
plots, its size is still manageable after many epochs of TE-PSRO. If
we had added a new policy to all information sets rather than to
only a subset of size𝑀 , 𝐺 would grow to as many as 3000 or 4000
information sets after only five epochs of TE-PSRO, which is an
unsustainable trajectory. See App. F.1 for further insights on the
difference between the two games.

Our second set of experiments provides evidence for the effective-
ness of our algorithm ComputeSPE(§5) as well as the non-triviality
of obtaining an SPE of an imperfect-information extensive-form
game. We ran two suites of TE-PSRO on each of Bargain and Gen-
Goof4: each suite consisted of 50 trials for each 𝑀 setting, using
NE as the MSS for 25 trials and SPE as the MSS for the remaining 25.
In one suite, we evaluated intermediate and final𝐺 (EVAL in Fig. 1)
by NE computed using CFR, and the other by SPE using Alg. 1. We
computed the regret of the respective solutions with respect to each
subgame of 𝐺 and reported the maximum over subgames, that is,
the worst-case subgame regret; a solution with a lower value of
this quantity is a better SPE approximation. Thus, Figs. 4b and 4d

(a) Bargain

(b) GenGoof4

Figure 3: Total number of information sets of both players in empir-

ical game �̂� over the course of TE-PSRO’s runtime, averaged over

all combinations of all parameters (except𝑀) and seeds.

verify that Alg. 1 does indeed produce an approximate SPE Figs. 4a
and 4c demonstrate that our regular Nash solver does not happen to
stumble upon NE that are also subgame-perfect. Additionally, the
worst-case subgame regret increases with the complexity of 𝐺 , re-
flected in both setting of𝑀 and epochs of TE-PSRO. Note that these
experiments are not for gauging the quality of the models produced
by TE-PSRO; instead, TE-PSRO is used to generate a sequence of
empirical games of increasing size and complexity (in terms of the
number of non-singleton information sets) that serve as more and
more challenging test cases for our game-solving algorithms.

Our final experiment set characterizes TE-PSRO performance
in terms of the MSS choice (SPE vs. NE) and different values of𝑀 .
To compare MSS choices, we computed the profile regret (§2) with
respect to the underlying game of the solution 𝝈∗ returned by
EVAL in each epoch of TE-PSRO epoch; we used both NE and SPE
as EVAL, giving us two sets of comparison metrics.

Fig. 5 depicts our average regret results for Bargain under var-
ious settings. We ran TE-PSRO for 25 trials per value of 𝑀 and
four combinations of choices for EVAL and MSS. In each trial, TE-
PSRO was allowed to run for at most 30 epochs, terminating early
when the computed best responses did not yield an improvement
greater than 0.1 over the current solution 𝝈∗. Fig. 5a shows that
TE-PSRO outperforms the normal-form version NF-PSRO, regard-
less of EVAL/MSS choice, even for𝑀 = 1. Figs. 5b and 5c show that
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(a) Bargain: Empirical NE
(b) Bargain: Empirical SPE

(c) GenGoof4: Empirical NE (d) GenGoof4: Empirical SPE

Figure 4: Average worst-case subgame regret of NE and SPE solutions to empirical game �̂� for the two games studied. Note that the scale of

vertical axis of (b) is finer than that of (a) by a factor ≈ 103
while the corresponding factor ≈ 10 for (d) and (c).

SPE beats NE as an MSS for𝑀 ∈ {4, 8}, converging faster to near-
zero regret regardless of EVAL. Finally, Fig. 5d compares results for
different𝑀 settings, with NE as EVAL and SPE as MSS. The main
takeaway is that intermediate values𝑀 = 4 and𝑀 = 8 outperform
lower and higher settings. Intuitively, a higher 𝑀 produces 𝐺 with
broader coverage earlier, but with a fixed sampling budget, each
tree path is estimated less accurately, resulting in a non-monotonic
performance with respect to𝑀 . App. F presents the full set of plots
over combinations of EVAL, MSS, and𝑀 .

We assessed the statistical significance of the MSS comparisons
for Bargain using a permutation test, for each setting of 𝑀 and
EVAL. Our figure of merit is the area AMSS under the regret curve,
calculated starting from TE-PSRO epoch 5 to avoid the noisy startup
phase. Our test statistic is ΔMSS = ANE − ASPE, resampled over
1000 permutations of the MSSs. The 𝑝-value is the fraction of times
the difference under permutation (i.e., a null hypothesis that the
MSSs are equally effective) is greater than the observed ΔMSS. For
𝑀 = 4, the superiority of SPE as MSS is significant (𝑝 = 0.007) with
NE as EVAL. For𝑀 = 8, SPE as MSS is significantly better both for
NE (𝑝 = 0.006) and SPE (𝑝 = 0.021) as EVAL. The results are less
consistent and less significant for non-optimal𝑀 values (App. F.5).

For experiments on GenGoof4, we additionally constrained the
space of empirical game models induced by TE-PSRO by coarsening
away the stochastic events in the last one two rounds of the full
three-round underlying game. We indicate this by 𝐼𝑅 that stands for

included rounds; it may take values [0], [0, 1] or [0, 1, 2] indicating
that each empirical game tree can include (a) stochastic event(s) only
in its first round, first two rounds, and all three rounds respectively.
In Fig. 6, we see that 𝐼𝑅 = [0] and 𝐼𝑅 = [0, 1] tended to yield the
best performance regardless of MSS and that, for both of these
settings, SPE outperformed NE as the MSS. App. F.6 offers insights
on how 𝐼𝑅 and𝑀 jointly impact TE-PSRO performance.

7 CONCLUSIONS

We introduced multiple extensions of Tree-Exploiting PSRO, en-
abling its application to complex games of imperfect information.
Our main innovation is the treatment of best responses computed
by DRL as abstract policies, incorporated as actions in the empir-
ical game tree. To manage growth of the empirical game as BRs
are generated over the course of TE-PSRO, we introduced a hy-
perparameter 𝑀 which controls the number of infosets that can
be expanded per epoch. Finally, we demonstrated that having an
extensive-form empirical game model can be leveraged in the form
of new meta-strategy solvers based on Nash refinements. Toward
that end, we developed a modular algorithm for identifying SPE
solutions in imperfect-information games. We demonstrated these
methods on two carefully constructed complex games, featuring
multiple rounds of offer/counteroffer with signaling options. We
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(a)𝑀 = 1, varying EVAL and MSS, NF-PSRO as baseline (b)𝑀 = 8, varying EVAL and MSS

(c)𝑀 = 4, varying EVAL and MSS
(d) NE for EVAL, SPE for MSS, varying𝑀

Figure 5: Average regret of solution 𝝈∗ of empirical game for Bargain over iterations of TE-PSRO, using NE or SPE as the MSS or EVAL and

different values of𝑀 .

(a)𝑀 = 2 (b)𝑀 = 4

Figure 6: Average regret of 𝝈∗ evaluated in GenGoof4 over the course of TE-PSRO’s runtime, using NE or SPE as the MSS.

showed that TE-PSRO easily outperforms normal-form PSRO in
this environment, and that intermediate values of𝑀 perform best.

Particularly intriguing is our finding that exploiting Nash refine-
ment in an MSS offers promise for improving strategy exploration.
Even when the goal is not to find a subgame-perfect solution (i.e.,
EVAL is NE rather than SPE), targeting best response to SPE rather
than NE can be beneficial. Further work is required to confirm
the scope of and understand the reasons for this advantage. One
intuitive explanation is that empirical game equilibria containing

non-credible threats may be particularly exploitable in the under-
lying game and thus not the most promising lines to pursue in
strategy exploration.
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