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ABSTRACT
Reinforcement learning (RL) can be formulated as a sequence mod-

eling problem, where models predict future actions based on histor-

ical state-action-reward sequences. Current approaches typically

require long trajectory sequences to model the environment in

offline RL settings. However, these models tend to over-rely on

memorizing long-term representations, which impairs their abil-

ity to effectively attribute importance to trajectories and learned

representations based on task-specific relevance. In this work, we

introduce AdaCred, a novel approach that represents trajectories as

causal graphs built from short-term action-reward-state sequences.

Our model adaptively learns control policy by crediting and prun-

ing low-importance representations, retaining only those most

relevant for the downstream task. Our experiments demonstrate

that AdaCred-based policies require shorter trajectory sequences

and consistently outperform conventional methods in both offline

reinforcement learning and imitation learning environments.
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1 INTRODUCTION
Transformer-based approaches, such as Decision Transformer (DT)

[3] and its variants [8, 22, 26], have redefined offline reinforcement

learning (RL) as a supervised learning problem by leveraging ex-

tended historical contexts to relax the strict Markov assumption.

These models use self-attention mechanisms to process entire tra-

jectory sequences, enabling the capture of dependencies across long

temporal horizons. Despite their advantages, these methods face

three primary challenges: (a) Long Sequence Memory: The require-
ment for long trajectory sequences to predict individual actions

[22, 31], (b) Suboptimal Trajectories: Limited adaptability in pro-

cessing datasets containing suboptimal trajectories [2, 6, 27], and (c)

Credit Assignment: Lack of an explicit mechanism to assess and

weigh the importance of trajectories and representations according

to task-specific relevance [7, 19]. These challenges arise primarily
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Figure 1: POMDP view of RL

from the inherent limitations of Transformers in RL, which, while

proficient at memorizing sequences, struggle to assign appropriate

importance to task-relevant trajectories [19]. Consequently, DT and

its variants often require extended sequences—spanning 30 to 50

past trajectories—just to generate a single action. Moreover, these

methods exhibit poor adaptability in scenarios involving subopti-

mal trajectories. By attending to entire sequences indiscriminately,

they risk learning policies based on suboptimal behavior, thereby

limiting overall performance. Recent advancements, such as Elas-

tic Decision Transformer [26], aim to address these shortcomings

by selectively "stitching" optimal segments from suboptimal tra-

jectories. These methods estimate the expected reward for each

segment and selectively attend to recent observations when the esti-

mated reward is low. However, the exclusion of earlier observations

when a trajectory is deemed suboptimal risks diluting essential

relational information or overemphasizing redundant recent data

points, which can ultimately hinder performance.

Unlike prior works that focus on learning and retaining all rep-

resentations, we recast the problem as learning a parsimonious
causal graphical representation. Each representation learned

from the observations is treated as a node in a causal graph, and

we reformulate the original task as identifying and pruning causal

variables that are redundant for policy learning, based on the dy-

namically evolving causal structure. This adaptive approach allows

the model to capture essential dependencies while discarding irrel-

evant data. Figure 1a illustrates the MDP perspective of reinforce-

ment learning when the full state is available, whereas Figure 1b

depicts the causal structure of representations when the full state is
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Figure 2: Our model design

not accessible. This representation explicitly encodes the structural

relationships among different observations across the temporal

domain. The core hypothesis of our approach is that, by structuring
the learned representations as a causal graph, not all representations
contribute to the future reward. Consequently, low-credit represen-
tations—those that do not influence future rewards—can be pruned
without negatively impacting the agent’s performance. This pruning
mechanism selectively filters out irrelevant state components, allow-
ing the model to focus on the most informative parts of the trajectory.
Our approach significantly reduces the effective memory length
of the sequence, allowing the model to allocate computational re-

sources more efficiently by prioritizing high-credit representations.

By selectively pruning low-credit representations, our framework

not only mitigates the negative impact of suboptimal trajectories

but also reinforces critical relationships within the sequence, thus

enhancing decision-making quality. Figure 2 illustrates the over-

all design of spatial and temporal credit assignment for decision

transformer models.

We support our framework with rigorous theoretical results,

where we prove that the proposed credit assignment mechanism

leads to the identification of a minimal set of latent state compo-

nents that are sufficient for effective policy learning. We formally

demonstrate that the pruning process does not negatively impact

the agent’s ability to maximize future rewards, as irrelevant fea-

tures are effectively removed while preserving the necessary struc-

tural relationships in the causal graph. We empirically validate

our method on well-established benchmarks, including the Atari

and Gym environments, where our model demonstrates superior

decision-making and sequence generation capabilities compared

to Decision Transformer and its variants. The experimental results

reveal that our credit assignment and pruning mechanisms lead to

more effective policy learning while maintaining computational ef-

ficiency. Our method introduces minimal overhead during training,

yet yields significant improvements in performance. By surpass-

ing state-of-the-art methods in both offline and imitation learning

tasks, our approach opens new avenues for future research in rein-

forcement learning models that emphasize structured and efficient

representation learning.

In this paper, we make the following key contributions:

• We introduce AdaCred: Adaptive Causal Decision Trans-

formers, a novel approach that addresses the challenge of sub-

optimal sequence representations in Decision Transformer

and related models by leveraging causal latent graph struc-

tures with feature crediting.

• The causal latent graph representation allows AdaCred to

assign credit to individual sequence representations and

prune low-importance components, identifying optimal se-

quences even from suboptimal trajectories, thereby improv-

ing decision-making efficiency.

• We provide a rigorous theoretical framework for our model

and our experimental results on standard benchmarks demon-

strate the superior performance of AdaCred in both offline

and imitation learning settings.

2 RELATEDWORK
Transformer-based RL Methods. One of the most notable Trans-

former based models for offline RL is the Decision Transformer

(DT) [3], which recasts RL as a supervised learning task, treating

trajectory sequences as input and predicting the optimal actions.

The DT and its variants [8, 22, 26] have demonstrated strong per-

formance across a range of benchmarks, thanks to their ability to

model long-term dependencies via self-attention mechanisms. How-

ever, these methods face challenges when applied to suboptimal

trajectories or when dealing with long sequences, often requiring

the model to attend to up to 50 past trajectories to generate a single

action. Recent efforts, such as Elastic Decision Transformer (EDT)

[26], address these limitations by selectively attending to optimal

trajectory segments and dynamically stitching together segments

with high estimated rewards. However, such approaches may lose

essential information by prematurely discarding earlier observa-

tions, particularly in long-horizon tasks. Our approach extends

the Transformer-based RL framework by introducing adaptive
credit assignment to mitigate the reliance on long sequences

and suboptimal data, allowing the model to focus on task-relevant

representations.

Reinforcement Learning with Suboptimal Data Incorporating sub-

optimal trajectories into RL models has proven to be a challenging

task, as suboptimal data can significantly degrade the quality of

learned policies. Methods such as Conservative Q-Learning (CQL)

[12] have attempted to mitigate the effects of suboptimal data by

introducing conservative constraints during policy optimization.

Similarly, Data-Driven Offline RL [18] aims to learn policies from

imperfect datasets while minimizing the impact of suboptimal ac-

tions and states. Recent works have also explored sequence stitching
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techniques [26] to combine high-reward segments from subopti-

mal trajectories, improving overall performance. However, these

methods often fail to adapt dynamically to the changing relevance

of different parts of the sequence.

3 ADAPTIVE CAUSAL DECISION
TRANSFORMER

3.1 Theoretical Discussion
In this section, we present a formal theoretical framework that

underpins our AdaCred model. The motivation for this analysis is

to rigorously define the representation of latent states in reinforce-

ment learning, introduce a feature credit assignment mechanism,

and study the effects of pruning latent representations on policy

learning.

POMDPs in Offline Reinforcement Learning. We consider a par-

tially observableMarkov decision process𝑀 = (𝑆,𝑂,𝐴, 𝑃, 𝑍, 𝑅,𝛾,𝑇 ),
where at each time step 𝑡 ∈ {1, . . . ,𝑇 }, an agent is in a state 𝑠𝑡 ∈ 𝑆 ,
receives an observation 𝑜𝑡 ∈ 𝑂 , selects an action, 𝑎𝑡 ∈ 𝐴 and

receives a reward 𝑟𝑡 . The reward is distributed as 𝑟𝑡 ∼ 𝑅(𝑠𝑡 , 𝑎𝑡 ),
and the environment transitions to the next state according to

𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ). The next observation 𝑜𝑡+1 is sampled from the

observation model 𝑍 (·|𝑠𝑡+1). The initial state 𝑠1 is sampled from

the distribution 𝑃 (𝑠1), and the initial observation 𝑜1 is sampled

from 𝑍 (𝑜1 |𝑠1). The problem is characterized by a time horizon

𝑇 ∈ N+∪{+∞} and a discount factor𝛾 ∈ [0, 1]. In the offline setting,

the agent has access to a trajectory 𝜏 = {𝑜1, 𝑎1, 𝑟1, . . . , 𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 },
which reflects the agent’s experience of the environment. For se-

quence modeling in offline RL, we employ Transformer architec-

tures, treating observations, actions, and rewards as input tokens

to approximate the optimal action 𝑃 (𝑎𝑡 |𝑜1:𝑡 , 𝑎1:𝑡−1, 𝑟1:𝑡−1).

Graphical Representation of Latent State Transitions. We denote

the underlying latent states for 𝑜𝑡 as g𝑡 = (𝑔1,𝑡 , . . . , 𝑔𝑑,𝑡 )⊤, where
𝑑 is the dimensionality of the latent states. The environment’s

generative process can be described by the following transition,

observation, and reward functions for each dimension of g:

𝑔𝑖,𝑡 = 𝑓𝑖 (𝑐𝑔→𝑔

𝑖
⊙ g𝑡−1, 𝑐

𝑎
𝑖 · a𝑡−1, 𝑐

𝑟
𝑖 · r𝑡−1, 𝜖

𝑔

𝑖,𝑡
), for 𝑖 = 1, . . . , 𝑑,

𝑜𝑡 = 𝑔(𝑐𝑔→𝑜 ⊙ g𝑡 , 𝜖𝑜𝑡 ),
𝑟𝑡 = ℎ(𝑐𝑔→𝑟

𝑟 ⊙ g𝑡−1, 𝑐
𝑎→𝑟 · a𝑡−1, 𝜖

𝑟
𝑡 ),

where ⊙ represents element-wise multiplication, and 𝜖
𝑔
𝑡 , 𝜖

𝑜
𝑡 , 𝜖

𝑟
𝑡

are independent noise terms. The terms 𝑐 .→.
are binary masks

indicating causal relationships between variables. The latent states

g𝑡+1 form a Markov decision process (MDP): given g𝑡 and a𝑡 , the
next latent state g𝑡+1 is independent of previous states and actions.

The observed signals 𝑜𝑡 are generated from the latent states g𝑡 , and
rewards are determined by both the latent states and actions.

Definition 1 (Graphical Representation of Latent State Tran-
sitions). Given a causal graph 𝐺 = (𝑉 , 𝐸), where the nodes 𝑉

represent the latent state components g𝑡 = (𝑔1,𝑡 , . . . , 𝑔𝑑,𝑡 )⊤, and
edges 𝐸 ⊆ 𝑉 × 𝑉 represent causal relationships between them,

a binary mask c𝑔→𝑔 ∈ {0, 1}𝑑×𝑑 encodes the presence of edges.

The 𝑖, 𝑗-th entry of c𝑔→𝑔
is 1 if 𝑔𝑖,𝑡+1 is influenced by 𝑔 𝑗,𝑡 , and 0

otherwise. Similarly, binary masks c𝑎→𝑔, c𝑟→𝑔 ∈ {0, 1}𝑑 represent

causal effects of actions and rewards on latent states.

For each latent state component 𝑔𝑖,𝑡 , the crediting mechanism

outputs a binary mask 𝑐𝑖,𝑡 ∈ {0, 1}, where 𝑐𝑖,𝑡 = 1 if 𝑔𝑖,𝑡 contributes

to the future reward 𝑟𝑡+𝑘 for some 𝑘 > 0, and 0 otherwise. The

binary mask is learned through a credit assignment process that

leverages causal relationships encoded in c, as well as the temporal

dependence of state features on rewards. We now present key theo-

retical results, starting with the minimal sufficient representations

[10, 25] required for policy learning.

Theorem 1 (Minimal Sufficient Representations for Policy
Learning). Under the assumption that the causal graph𝐺 is Markov
and faithful to the observed data, the set of minimal latent states
gmin

𝑡 ⊆ g𝑡 is defined as: 𝑔𝑖,𝑡 ∈ gmin

𝑡 if 𝑐𝑔→𝑟

𝑖
= 1 or 𝑔𝑖,𝑡 has a directed

path to a future reward through other latent states This set forms a
minimal and sufficient representation for policy learning, ensuring
that only these latent state components are necessary to maximize
the expected future rewards. (For full proof, please refer to Appendix
B.1 [17])

Proof Sketch. The proof follows from the Markov property,

which ensures that future rewards depend only on the current latent

states and actions. By d-separation, any state 𝑔𝑖,𝑡 that is not part

of gmin

𝑡 is conditionally independent of future rewards given gmin

𝑡 ,

and thus, pruning these states does not affect the policy’s ability to

predict future rewards. The remaining states in gmin

𝑡 are those that

directly or indirectly contribute to future rewards, making them

both necessary and sufficient for policy learning. □

Theorem 2 (Structural Identifiability). Suppose the underlying
latent states g𝑡 are observed, i.e., the environment follows a Markov
Decision Process (MDP). Then, under the Markov condition and faith-
fulness assumption, the structural matrices c𝑔→𝑔, c𝑎→𝑔, c𝑔→𝑟 , c𝑎→𝑟

are identifiable. (For full proof, please refer to Appendix B.2 [17])

Proof Sketch. The identifiability of the structural matrices fol-

lows from conditional independence relations in the data. By the

faithfulness assumption, the observed conditional independencies

reflect the structure of the causal graph 𝐺 . Since the dynamic

Bayesian network (DBN) is time-invariant and adheres to theMarkov

property, the causal dependencies encoded in the matrices c can be

identified by analyzing the conditional distributions of the latent

states, actions, and rewards. This guarantees the identifiability of

the structural matrices. □

Causal Graph Pruning As previously discussed, not all latent

states contribute directly to future actions and rewards. During

learning, we can identify minimal sufficient state representations

that are essential for task performance. Based on the theoretical

results above, we can classify the state representations and prune

the causal graph accordingly. This pruning process aims to reduce

redundancy in the latent space, thus improving both the efficiency

and generalization capability of the model.

Following the structural analysis of latent states, we define two

classes of state representations, adapted from [29, 30]:

1. Compact State Representation (g𝑐𝑡 ): This class includes
latent state variables that either influence the observation 𝑜𝑡 , con-

tribute to the reward 𝑟𝑡+1, or affect other latent states 𝑔 𝑗,𝑡+1 at
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Figure 3: a.) Spatial Transformer with Crediting. Output of
spatial transformer is sent to the next spatial transformer.
b.) Temporal Causal Transformer with Crediting

the next time step. Formally, a state variable 𝑔𝑖,𝑡 is part of this

compact set if any of the following structural dependencies hold:

𝑐𝑔→𝑜 = 1 or 𝑐𝑔→𝑟 = 1 or 𝑐𝑔→𝑔𝑗 = 1, ∀𝑗 ≠ 𝑖 . These vari-

ables form the core of the latent state space that is essential for

policy learning and prediction of future rewards.

2. Non-Compact State Representation (g𝑐𝑡 ): This class con-
tains state variables that do not satisfy the criteria for compact

representations. These variables can be pruned without loss of pol-

icy learning capability, as they neither influence the immediate

observations nor the future rewards.

By distinguishing between compact and non-compact state rep-

resentations, we can simplify the causal graph by removing non-

essential latent states. To further facilitate the pruning process,

we introduce a regularization term that promotes sparsity in the

structural masks 𝑐 .→.
by encouraging non-essential dependencies

to be pruned. Inspired by the edge-minimality principle [30], we

define the regularization term as follows:

𝐽reg = −𝜆reg
(
∥𝑐𝑔→𝑜 ∥1 + ∥𝑐𝑔→𝑟 ∥1 + ∥𝑐𝑔→𝑔 ∥1 + ∥𝑐𝑎→𝑔 ∥1 + ∥𝜃 ∥1

)
,

where 𝜆reg is a regularization coefficient, and ∥ · ∥1 represents the ℓ1-
norm, which encourages sparsity. Incorporating this regularization

term into the objective function 𝐽 enables simultaneous pruning and

model training. The presence of this regularization term naturally

leads to the selective removal of non-compact state variables, as

entries in 𝑐 .→.
transition from 1 to 0, promoting a sparse, efficient

representation of the causal relationships. By reducing the number

of latent states and their interactions, the model becomes more

interpretable and generalizes better to new tasks.

3.2 AdaCred Algorithm
To effectively separate the learning of spatial and temporal represen-

tations, we design our causal decision transformer with two distinct

components: (a) a Spatial Transformer and (b) a Causal Temporal

Transformer. The Spatial Transformer learns spatial representations

from the state, action, and reward at each individual time step by

performing self-attention on state-action-reward tokens within a

single time-step window. These spatial representations are then

passed to the Causal Temporal Transformer, which combines them

with the pure state representations to model the entire sequence of

states. The final action predictions are generated by a prediction

decoder. We address the challenge of temporal and spatial feature

credit assignment by introducing a feature crediting mechanism

that quantifies the importance of latent representations over time.

At each time step 𝑡 , the agent observes a partial state and produces

a latent representation 𝑔𝑡 ∈ R𝑑 . We introduce a crediting function

𝜎 : R𝑑 → [0, 1]𝑑 to compute token selection probabilities for each

latent feature, which represent the probability that a given feature

contributes significantly to future rewards. The feature crediting

mechanism outputs a binary mask,𝑚𝑡 ∈ {0, 1}𝑑 , . The resultant
mask𝑚𝑡 serves as a gating mechanism, assigning high values to

those features deemed influential in maximizing future rewards and

low values to those with minimal impact. Each of the spatial and

causal temporal transformer block has this crediting function. In the

following sections, we will discuss the design and implementation

of these components in detail.

Algorithm 1 Feature Crediting and Pruning for Single Spatial and

Temporal Transformer

1. Input: Observations {𝑜𝑡 }, Actions {𝑎𝑡 }, Rewards {𝑟𝑡 }, Time

Horizon 𝑇

2. Initialize parameters 𝜃 for Transformers

3. For each time step 𝑡 = 1 to 𝑇 :

3.1. 𝑔𝑡 ← SpatialTransformer(𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 ;𝜃 )
3.2. 𝜎 (𝑔𝑡 ) ← CreditFunction(𝑔𝑡 ;𝜃 )
3.3. 𝑚𝑡 ← GumbelSigmoid(𝜎 (𝑔𝑡 ))
3.4. 𝑔selected𝑡 ←𝑚𝑡 ∗ 𝑔𝑡
3.5. 𝑔

processed

𝑡 ← TemporalTransformer(𝑔selected𝑡 ;𝜃 )
3.6. 𝜎

temporal
(𝑔processed𝑡 ) ← CreditFunction(𝑔processed𝑡 )

3.7. 𝑚
temporal

𝑡 ← GumbelSigmoid(𝜎
temporal

(𝑔processed𝑡 ))
3.8. 𝑔final𝑡 ←𝑚

temporal

𝑡 ∗ 𝑔processed𝑡

3.9. 𝑎
pred

𝑡 ← ActionDecoder(𝑔final𝑡 ;𝜃 )
3.10. Observe reward 𝑟𝑡 and next observation 𝑜𝑡+1

4. End For
5. Output: Predicted actions {𝑎pred𝑡 }, optimized policy 𝜋

Spatial Transformer We adopt an Observation-Action-Reward

(OAR) grouping mechanism, following a similar approach as in

[22]. Each trajectory is partitioned into segments comprising the

previous action, the corresponding reward, and the current ob-

servation, highlighting the causal interrelationships among these

elements. To obtain a fine-grained representation of the state, we

partition each input state into non-overlapping spatial patches,

thereby enabling localized interactions between actions, rewards,

and regions of the state. The action and reward are linearly em-

bedded to produce corresponding representations, which are then

combined with the observation token embeddings. This results

in an initial representation set of observation, action, and reward

tokens, defined as:𝑆𝑡
0
= {𝑠𝑎𝑡−1

, 𝑠𝑟𝑡 , 𝑠𝑜1,𝑡
, 𝑠𝑜2,𝑡

, . . . , 𝑠𝑜𝑛,𝑡 }, where 𝑠𝑎𝑡−1
,

𝑠𝑟𝑡 , and 𝑠𝑜𝑖,𝑡 represent the embeddings for actions, rewards, and
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observation patches, respectively. This is shown in figure 3a where

spatial crediting function adaptively computes the tokens to be

processed by next layer and prunes the low credit ones .

To process these tokens, we employ a Transformer-based archi-

tecture. Specifically, the Spatial Transformer layermaps token repre-

sentations from the previous layer (𝑆𝑙−1

𝑡 ) to the current layer (𝑆𝑙𝑡 ) us-

ing the transformation:𝑆𝑙𝑡 = 𝐹 𝑙
step
(𝑆selected,𝑙−1

𝑡 ), where 𝑆selected,𝑙−1

𝑡

represents the subset of features selected by a spatial token policy,

which determines the relevant spatial tokens to be processed by

the Spatial Transformer block. This token policy serves as a credit-

ing mechanism, selectively pruning unnecessary spatial features

before passing them to the subsequent layer, thereby enhancing

computational efficiency. For each Spatial Transformer layer 𝑙 , an

aggregated Observation-Action-Reward representation 𝑔𝑙𝑡 ∈ R𝐷

is generated by pooling the output tokens (𝑆𝑙𝑡 ∈ R𝑛×𝑑
), computed

as: 𝑔𝑙𝑡 = FC( [concat(𝑆𝑙𝑡 )]) + 𝑒
temporal

𝑡 , where concat(·) denotes the
concatenation of the tokens within each group, and 𝑒

temporal

𝑡 ∈ R𝐷

is a temporal positional embedding. The resulting OAR representa-

tion 𝑔𝑙𝑡 is then passed to a Temporal Causal Transformer layer for

long-term temporal modeling, effectively capturing both local and

global dependencies across the trajectory.

Temporal Causal Transformer: To effectively model long-term

sequences, we introduce the Temporal Causal Transformer, which

utilizes the learned spatial representations from the Spatial Trans-

former, along with pure state representations embedded without

any explicit action or review, processed by an encoder.

The pure state representations are defined as follows: ℎ0

𝑡 =

Conv(𝑜𝑡 ) + 𝑒temporal

𝑡 , where 𝑜𝑡 represents the image input at time

𝑡 . The output of the Spatial Transformer and the learned con-

volutional state embedding are combined into a sequence, pre-

serving the temporal order in which they were received: 𝑌 𝑙
in

=

{𝑔𝑙
1
, ℎ𝑙−1

1
, 𝑔𝑙

2
, ℎ𝑙−1

2
, . . . , 𝑔𝑙

𝑇
, ℎ𝑙−1

𝑇
}. This Transformer layer takes in-

put from each intermediate spatial layer, rather than only the final

spatial representation after all layers. Similar to the Spatial Trans-

former, we employ a token policy that removes certain tokens

based on the token policy. The intermediate output of the Temporal

Causal Transformer is given by: 𝑌 𝑙
out

= 𝐹 𝑙
sequence

(𝑌 𝑙
in
) where simi-

lar to the spatial transformer the credit function determines which

representations to prune adaptively. This is shown in the figure 3b.

From 𝑌 𝑙
out

, we select tokens at even indices (starting from 1) to be

the pure state tokens ℎ𝑙
𝑖

:= 𝑦𝑙
out;2𝑖

. These tokens are then passed to

the next Temporal Causal Transformer layer. The final output of

the Temporal Causal Transformer layer is used to predict actions

using a linear head, denoted as 𝑎. Algorithm 1 shows the overall

algorithm for our model for single layer networks.

AdaCred Training Method The training process for our Adap-

tive Causal Decision Transformer framework consists of two main

stages: training a static model and co-training the model along with

the crediting mechanism, ensuring that both spatial and temporal

feature assignments are learned effectively.

Stage 1: Static Model Training: The initial phase involves training
the static components of the AdaCred model, comprising the Spatial

Transformer and Temporal Causal Transformer. In this stage, we

focus on learning the basic spatial and temporal representations

that underpin the entire sequence modeling. The training objective

for this stage is to minimize the action prediction loss, which is

defined as: Lstage1 =
∑𝑇
𝑡=1
Laction (𝑎𝑡 , 𝑎𝑡 ) where 𝑎𝑡 represents the

predicted action at time 𝑡 , 𝑎𝑡 is the ground-truth action, and 𝑇 is

the total number of time steps. The action prediction loss, Laction,

measures the discrepancy between the predicted and ground-truth

actions.

Stage 2: Policy Network with Feature crediting: In this stage, we

focus on jointly training the model with the crediting mechanism,

optimizing the binary masks𝑚𝑡 ∈ {0, 1}𝑑 that govern feature se-

lection for both Spatial and Temporal Causal Transformers. At

each time step 𝑡 , the Spatial Transformer and the Temporal Causal

Transformer use a feature crediting mechanism 𝜎 : R𝑑 → [0, 1]𝑑 to

compute token selection probabilities for each latent feature repre-

sentation 𝑔𝑡 . The crediting mechanism assigns importance to each

feature, generating binary masks that act as gates, allowing only the

most influential features to pass through. During co-training, we

optimize both the Spatial Transformer and Temporal Causal Trans-

former layers to ensure that the selected features (via binary masks)

maximize the future rewards while maintaining computational effi-

ciency. The training objective for this stage incorporates both the

task prediction loss and an efficiency loss, which accounts for the

number of features selected:Lstage2 = Laction+𝛼Leff
whereLaction

is the total loss across all action predictions, and L
eff

measures

the efficiency of feature selection. The efficiency loss is calculated

as: L
eff

= MSE

(
𝜔𝑑 · 𝑇activ𝑇total

, 𝜔𝑑 ·
𝑇target
𝑇total

)
where 𝑇activ represent the

number of activated tokens, while 𝑇target are the desired activation

percentages. The term 𝜔𝑑 accounts for the different embedding di-

mensions at different layers, ensuring that the efficiency loss reflects

both the number and the size of the selected features, adequately

balancing the computational burden.

4 EXPERIMENTS
Our experiments aim to address the following key research ques-

tions, each corresponding to specific aspects of our study:

• Performance Comparison: Does AdaCred outperform De-

cision Transformers (DT) and its variants in Atari and Gym

benchmarks? (See Section 4.2.1)
• Effectiveness in Feature Pruning: How effective is Ada-

Cred in identifying and pruning both spatial and temporal

features? (See Section 4.2.2)
• Effect of Pruning percentage on performance: How
much can we prune spatially and temporally in Adacred (See

Section 4.2.3)
• Sparse Task Performance: How well does AdaCred per-

form in tasks that require sparse representations? (See Sec-
tion 4.2.4)

4.1 Experimental setting
4.1.1 Dataset. Our experiments encompass both offline reinforce-

ment learning (RL) [9] and imitation learning via behavior cloning.

For offline RL, we use a fixed dataset of sub-optimal trajectory

rollouts, which presents challenges such as distribution shift, a

key difficulty in offline RL compared to standard online RL set-

tings [13, 23, 24]. In the imitation learning scenario, the agent is
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Figure 4: Performance for 75% Spatial and Temporal Crediting

Dataset DT CQL QR-DQN REM Baseline (100% S & 100% T*) Ours (75% S & 75% T* )

Assault 462 ± 139 432 142 350 458 ± 166 658 ± 66
Boxing 78.3 ± 4.6 56.2 14.3 12.7 78 ± 14 78.4 ± 14.5
Breakout 76.9 ± 17.1 55.8 4.5 2.4 52 ± 14 77 ± 12
Pong 12.8 ± 3.2 13.5 2.2 0.0 14 ± 7.68 18 ± 2.54
Qbert 3488 ± 631 14012 0.0 0.0 1612 ±1860 4487 ± 5099

Seaquest 1131 ± 168 685 161 282 890 ± 454 968 ± 505

Table 1: Performance Comparison of Various Methods in Offline RL Setting. (X % S and Y% T means X % of Spatial and Y% of
Temporal tokens have been used for learning the model )

trained without reward signals or real-time environment interac-

tion, which significantly increases the learning difficulty. Unlike

traditional imitation learning, where additional data collection and

Inverse Reinforcement Learning are feasible, we work solely with

sub-optimal trajectories. Following the approach in [22], we derive

the imitation learning dataset by removing rewards from the offline

dataset. We evaluate our model in both discrete and continuous

action space environments. For discrete environments, we use the

Atari benchmark, selecting six games: Assault, Boxing, Breakout,

Pong, Qbert, and Seaquest. We employ 1% (500,000 transitions) of

the DQN replay buffer to facilitate thorough and fair comparisons.

For continuous control tasks, we use the D4RL benchmark [5],

which includes HalfCheetah, Hopper, Walker, and a 2D reacher

task with sparse rewards to explore beyond the typical locomotion

benchmarks. The datasets for these experiments feature three set-

tings: (1) ’Medium,’ which consists of 1 million timesteps generated

by a policy with moderate performance (about one-third of an ex-

pert); (2) ’Medium-Replay,’ which contains the replay buffer data

collected during training of the medium policy; and (3) ’Medium-

Expert,’ combining 1 million timesteps from both medium and

expert policies. We report episodic returns as absolute values, av-

eraged over ten random seeds for the Atari games and gym tasks.

Each seed is evaluated across ten episodes, with random initial

conditions to provide a robust performance assessment.

4.1.2 Baselines. For baseline comparisons, we include our method

using 100% of spatial and temporal tokens, following the approach

in [22]. We evaluate performance by progressively reducing the

proportion of spatial and temporal tokens for action prediction.

Additionally, we compare against the Decision Transformer [3],

its variants with variable-length trajectories [26], a Q-learning-

based method for suboptimal trajectories [28] and EDT [26]. We

further benchmark against state-of-the-art non-Transformer of-

fline RL methods, including CQL[12], QR-DQN[4], REM[1], and

BEAR[11].

4.2 Results
4.2.1 Analysis of Atari Games for Offline Reinforcement Learning
and Imitation Learning. We evaluate the effectiveness of our credit

assignment and pruning mechanism on Atari games, focusing on

both the imitation learning and offline reinforcement learning (RL)

settings. To establish a baseline, we first train a model without any

credit assignment or pruning mechanisms. We then compare it to

a version of the model that incorporates 75% spatial and temporal

pruning. For both models, we use sequence lengths of 10, 20, and 30

steps, consistent with the experimental setup of the Decision Trans-

former (DT). The results for four Atari environments are illustrated

in Figure 4, while Figure 5 presents the results for the offline RL

setting. In both settings, the baseline model exhibits the highest per-

formance when sequence trajectories of 30 time steps are provided,

with a noticeable decline in performance as the sequence length

is reduced. This indicates that the baseline model relies on longer

sequences to capture relevant information for decision-making.

Conversely, our model demonstrates a marked improvement in

efficiency, achieving optimal performance with sequences as short

as 10 time steps and maintaining consistent performance across

all tested sequence lengths. Remarkably, even with just 10 steps,

our model consistently outperforms the baseline model’s best re-

sults with 30-step sequences. This clearly demonstrates that our

approach effectively learns to assign credit and prune unnecessary
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Figure 5: Performance for 75% Spatial and Temporal Crediting for Offline RL

Dataset Environment DT Sparse QDT Sparse BEAR Dense EDT Dense AWR Baseline Dense Ours Dense Baseline Sparse Ours Sparse

Medium-Expert HalfCheetah - - 53.4 - 52.7 77.4 ± 1.2 77.8 ± 1.3 67 ± 1.2 81 ± 1.6
Medium-Expert Hopper - - 96.3 - 27.1 97.9 ± 4.6 102.7 ± 5.6 106.2 ± 2.6 97.33 ± 3.6

Medium-Expert Walker - - 40.1 - 53.8 108.5 ± 7.6 108.8 ± 5.6 108 ± 3.6 109 ± 4.6
Medium HalfCheetah 42.2 ± 0.2 42.4 ± 0.5 41.7 42.5 ± 0.9 37.4 42.4 ± 1.6 42.8 ± 2.6 42.1 ± 0.5 42.7 ± 0.7
Medium Hopper 57.3 ± 2.4 50.7 ± 5.0 52.1 63.5 ± 5.8 35.9 51.2 ± 2.1 55.6 ± 1.2 52.11 ± 0.6 54.47 ± 2.1

Medium Walker 69.9 ± 2.0 63.7 ± 6.4 59.1 72.8 ± 6.2 17.4 72.4 ± 1.8 74 ± 3.9 38.46 ± 3.8 75.15 ± 4.2

Table 2: Performance comparison across datasets and environments in Medium and Medium-Expert settings.

Figure 6: Visualization of our spatial masks with attention
outputs

representations, thereby retaining only the most relevant portions

of the trajectory data. This result is particularly significant for

resource-constrained environments, as the model’s performance

remains robust while processing only 33% of the sequence data

compared to the baseline.

In Table 1, we provide a comprehensive performance compar-

ison between our proposed model with 75% spatial and temporal

pruning and various baseline methods, including Decision Trans-

former (DT), Conservative Q-Learning (CQL), QR-DQN, and REM,

across six different Atari games. The metrics presented reflect the

average rewards obtained, along with the standard deviation where

applicable. Our approach demonstrates superior performance in

nearly all tasks, particularly excelling in games that typically re-

quire longer-term planning and spatial awareness, such as Assault

and Seaquest. For Qbert, which involves complex decision-making

and long-term strategy, our model exhibits an impressive perfor-

mance of 4487 ± 5099, significantly improving upon the baseline

(1612 ± 1860) and outperforming DT (3488 ± 631). The results in-

dicate that our model effectively manages credit assignment over

longer sequences, even in environments with extensive trajectory

dependencies. Overall, Table 1 highlights the competitive advan-

tage of our approach across various environments, outperforming

or matching traditional methods, including DT and CQL. Notably,

while methods like CQL are specifically designed to optimize poli-

cies from suboptimal data, they struggle to generalize effectively in

these environments, achieving suboptimal rewards.

4.2.2 Effectiveness of Spatial and Temporal Crediting. To demon-

strate the model’s capability in assigning credit and pruning rep-

resentations that are not relevant to the task, we present a visu-

alization of the spatial token masks in Figure 6. The figure show-

cases the Breakout game scenario, where the model was trained for

30 timesteps, highlighting key moments and decision-making pro-

cesses during gameplay. The top row of Figure 6 displays the output

of the spatial mask from the first layer of the spatial transformer for

the frames with highest temporal importance based on temporal

token mask. In this visualization, the black regions correspond to

areas of the image that are disregarded by the model, indicating

that they provide little or no useful information for the task at hand.

From the spatial mask, it is evident that the model learns to focus

on the relevant regions containing dynamic elements, such as the

paddle and the ball, while ignoring other static parts of the envi-

ronment. Specifically, the central region of the game screen, which

primarily contains unchanging elements, is discarded, as it does not

contribute to the decision-making process. The spatial transformer

efficiently identifies the regions where important interactions occur,

such as the movement of the ball and paddle, which are assigned
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higher attention scores. This is clearly reflected in the attention

maps, where the ball and paddle are shown to receive the highest

attention, indicating their critical role in the task. Moreover, the

temporal token mask reveals that the model focuses on key events,

which can be categorized into three main interactions: a.)Collision
with the paddle (E1): The ball’s interaction with the paddle is

crucial for determining the next trajectory and is therefore heavily

weighted. b.) Collision with the side wall (E2): The side wall
collision alters the ball’s path and is a significant event that affects

the gameplay. c.) Hitting a game tile (E3): This event results in
a reward, making it an essential moment for credit assignment.

The model successfully learns to emphasize these key interactions,

which are crucial for effective decision-making. By focusing on

these spatial and temporal aspects, the network is able to prune

irrelevant representations and learn efficient action policies. This

targeted credit assignment mechanism enables our model to out-

perform others in similar tasks by prioritizing relevant events and

discarding extraneous information.

4.2.3 Effect of pruning percentage on performance. In Figure 7, we

examine the effect of varying degrees of spatial and temporal prun-

ing on the performance of our model in the Breakout game. The

pruning ratios are defined as (X%, Y%), where X% represents the

percentage of spatial features retained by the model, and Y% rep-

resents the percentage of temporal features retained. We test the

following combinations: (50%, 50%), (50%, 100%), (40%, 80%), and

(100%, 50%), with the baseline model using 100% of both spatial

and temporal features. The model achieves its highest performance

with the (50%, 100%) pruning ratio, where 50% of the spatial fea-

tures are retained while all temporal features are used. This result

supports our hypothesis that, among the 30 sequences analyzed,

the majority of redundancies are spatial rather than temporal. In

the context of Breakout, the spatial redundancies primarily come

from the images, where large portions of the background contain

redundant or irrelevant information that does not contribute to

decision-making. By pruning these less critical spatial features, the

model can generalize better, focusing on the most relevant spatial

information, such as the paddle and ball, while retaining the full

temporal context to capture important trajectory-based decisions.

The combination of spatial pruning and full temporal retention

leads to a significant improvement in performance, with the model

achieving approximately 2.8 times the baseline performance. On

the other hand, the lowest performance is observed with the (100%,

50%) pruning ratio, where all spatial features are used but 50% of

the temporal features are pruned. In this case, retaining all spatial

features introduces redundant spatial information, which in turn

establishes misleading causal relationships in the temporal domain.

The absence of sufficient temporal information exacerbates the is-

sue, leading the model to infer incorrect temporal dependencies. If

proper temporal pruning had been applied, these erroneous tem-

poral relationships could have been removed, allowing for better

decision-making. This pruning ratio significantly underperforms

compared to the baseline, emphasizing the critical role of temporal

features in tasks requiring long-term planning and time-sensitive

decisions. Overall, with the exception of the (100%, 50%) case, all

other pruning strategies outperform the baseline.

Figure 7: Effect of Spatial and Temporal Pruning

4.2.4 Analysis in Sparse Reward Settings. In sparse reward environ-

ments, traditional reinforcement learning methods face significant

challenges in credit assignment due to the delayed nature of re-

wards and the need to track which past actions contributed to

success. Our proposed model addresses this by implementing a

feature crediting mechanism that quantifies the importance of la-

tent features at each decision step, enabling more precise credit

assignment without heavy reliance on memory. The results in Table

2 demonstrate the effectiveness of this approach across Medium

and Medium-Expert environments. Our model consistently out-

performs baselines, such as Decision Transformer (DT) and EDT,

particularly in environments like HalfCheetah, Hopper, andWalker,

where our method excels in sparse reward settings. For example, in

the Medium-Expert HalfCheetah environment, our model achieves

81 ± 1.6, significantly surpassing the baseline (67 ± 1.2). Similarly,

strong performance is observed in Walker and Hopper environ-

ments, demonstrating the robustness of our crediting mechanism

across different tasks.

5 CONCLUSION
In this paper, we introduced AdaCred, a novel framework that

addresses the challenges of suboptimal sequence representations

in reinforcement learning through adaptive credit assignment and

pruning of low-importance latent representations. By leveraging

a causal latent graph structure, our approach efficiently identifies

and retains critical components of the trajectory, improving both

decision-making and computational efficiency. Theoretical analysis

and empirical results on standard benchmarks demonstrate the

effectiveness of AdaCred, surpassing state-of-the-art methods in

both offline and imitation learning settings. In future, we would like

to extend this to transformer based multiagent control [14, 15], as

well as computer vision tasks such as detection and classification[16,

20, 21].
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