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ABSTRACT
We extend concurrent game structures (CGSs) with a simple no-
tion of preference over computations and define a minimal notion
of rationality for agents based on the concept of dominance. We
use this notion to interpret a CL and an ATL languages that extend
the basic CL and ATL languages with modalities for rational capa-
bility, namely, a coalition’s capability to rationally enforce a given
property. For each of these languages, we provide results about the
complexity of satisfiability checking andmodel checking as well as
about axiomatization.
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1 INTRODUCTION
The field of logics for multi-agent systems has been very active
in the last twenty years. Different logics have been proposed and
their proof-theoretic, complexity and algorithmic aspects for satis-
fiability and model checking studied in detail. The list of logics in
this area is long. It includes alternating-time temporal logic (ATL)
[2, 21], its “next”-fragment called coalition logic (CL) [19, 41], the
logic of agency STIT [10, 12], and the more expressive strategy
logic (SL) [15, 38]. A widely used semantics for interpreting these
logics is based on concurrent game structures (CGSs), transition
systems in which state-transitions are labeled by joint actions of
agents. A CGS allows us to represent the repeated interaction be-
tween multiple agents in a natural way as well as their choices and
strategies. It is similar to the game-theoretic concept of dynamic
game in which players move sequentially or repeatedly. But an el-
ement that is missing from CGSs compared to dynamic games is
the preference of the agents. Indeed, most logics for multi-agent
systems including ATL, CL, SL and STIT abstract away from the
agents’ preferences as they are only interested in representing and
reasoning about the game form, namely, the way an outcome is
determined based on the agents’ concurrent choices over time.

In this paper we extend CGSs with a basic concept of preference.
This is in order to have a semantics that allows us to represent a
game in its entirety, capturing both its aspects (the game form and
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the agents’ preferences), and consequently to reason about ratio-
nal choices and strategies in the game. Specifically, we introduce
a new class of structures called CGS with preferences (CGSP) that
includes one preference ordering for each agent at each state in the
underlying CGS. An agent’s preference at a given state is relative
to the set of computations (or histories) starting at this state. We
consider an interesting subclass of CGSP with stable preferences in
which agents’ preferences do not change over time. This reminds
the notion of time consistency of preferences studied in econom-
ics, in opposition to time inconsistency [18]. We employ CGSP to
interpret two novel languages R-ATL and R-CL (ATL/CL with min-
imal rationality) that extend the basic ATL and CL languages with
modal operators for rational capability, namely, a coalition’s capa-
bility to enforce a given outcome by choosing a rational strategy.
The notion of rationality that we use to define these operators is
based on strong dominance: the collective strategy of a coalition
is rational insofar as the individual strategies that compose it are
not strongly dominated. It is aminimal notion of rationality since it
does not require the agent to reason about what others will choose.
It simply requires an agent not to play a strategy that is beaten by
another of its strategies regardless of what the others choose. In
[28], it is shown that this minimal dominance-based requirement
of rationality is particularly suitable for defining the deontic no-
tion of obligation, namely, what an agent or coalition ought to do.
The general idea of refining the capability operators of ATL by re-
stricting quantification to the agents’ rational strategies is shared
with Bulling et al. [14]. But unlike us, they do not extend CGSswith
an explicit notion of preference. In their semantics sets of plausi-
ble/rational strategies can be only referred to via atomic plausibil-
ity terms (constants) whose interpretation is “hardwired” in the
model. A similar idea can also be found in [36] in which rational
STIT (“seeing to it that”) modalities are introduced.

For each of the languages we introduce, results about the com-
plexity of satisfiability checking and model checking as well as
about axiomatization are provided. In particular, the following are
the main results of the paper:

• tree-like model property for R-ATL;
• polynomial embeddings of R-ATL into ATL under the stable
preference assumption, and of R-CL into CL both under the
stable preference assumption and with no assumption;

• thanks to the embeddings, tight complexity results of satis-
fiability checking for R-ATL and R-CL;

• a sound and complete axiomatization for the logic R-CL;
• a model checking algorithm for R-ATL for the class of con-
current game structures with short-sighted preferences.

The paper is organized as follows. In Section 2, we discuss re-
lated work. In Section 3, we present the semantic foundation of
our framework. Then, in Section 4, we introduce the languages of
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R-ATL and R-CL. Section 5 is devoted to the tree-like model prop-
erty, the embeddings and the complexity results for our logics. In
Section 6 we deal with axiomatization, while in Section 7 we move
to model checking. Detailed proofs are available on [32].

2 RELATEDWORK
Several works have studied logics for reasoning about preferences,
without considering the strategic and temporal dimensions. In par-
ticular, van Benthem and Liu [42] proposed a dynamic logic of
knowledge update and preference upgrade, where incoming sug-
gestions or commands change the preference relations. Lorini [35]
presented a general logical framework for reasoning about agents’
cognitive attitudes, which captures concepts of knowledge, belief,
desire, and preference. Grossi et al. [23] investigated four differ-
ent semantics for conditional logics based on preference relations
over alternatives. The semantics differ in the way of selecting the
most preferred alternative, which includes maximality, optimality,
unmatchedness, and acceptability.

Two of the most important developments in logics for strategic
reasoning are ATL [2] and SL [38]. Both these logics have been
considered in the imperfect information setting [7, 8, 29]. Unlike
ATL, SL can express complex solution concepts (such as dominant
strategy equilibrium) and thus capture some notions of rational-
ity. However, in both logics, agents’ preferences are not modeled
intrinsically, instead, their goals can be represented as Boolean
formulas. A way to incorporate preferences in those logics is to
include atomic propositions stating that the utility of an agent is
greater than or equal to a given value [5], which requires an ex-
haustive enumeration for each relevant utility threshold. The ex-
tensions of ATL and SL with quantitative semantics [11, 30] gen-
eralize fuzzy temporal logics and capture quantitative goals. This
approach has been recently used to represent agents’ utilities in
mechanism design [37].

The dominance relation among strategies has been considered
alongside specifications in temporal logics [3, 4]. These works pro-
vide algorithms for synthesizing best-effort strategies, which are
maximal in the dominance order, in the sense that they achieve the
agent goal against a maximal set of environment specifications.

Rationality in concurrent games is typically associated with a-
gents’ knowledge and preferences. Know-How Logic with the In-
telligence [40] captures rational agents’ capabilities that depend
on the intelligence information about the opponents’ actions. The
interplay between agents’ preferences and their knowledge was
described in [39]. A sound, complete, and decidable logical system
expressing higher-order preferences to the other agents was given
in [31]. However, none of these three papers address the connec-
tion between rational agents’ capabilities and their preferences.

Our work is also related to the research on rational verification
and synthesis. The first is the problem of checking whether a tem-
poral goal is satisfied in some or all game-theoretic equilibria of a
CGS [1, 27]. Rational synthesis consists in the automated construc-
tion of such a model [16, 17]. Different types of agent objectives
have been considered, including Boolean temporal specifications
[26], mean payoff [24], and lexicographical preferences [25]

While being able to analyze multi-agent systems with respect to
solution concepts, both rational verification and model-checking

SL specifications face high complexity issues. In particular, key de-
cision problems for rational verification with temporal specifica-
tions are known to be 2Exptime-complete [27] andmodel-checking
SL is non-elementary for memoryful agents [38].

ATL with plausibility [14] allows the specification of sets of ra-
tional strategy profiles, and reason about agents’ play if the agents
can only play these strategy profiles. The approach considers plau-
sibility terms, which are mapped to a set of strategy profiles. The
logic includes formulas of the form (set-pl𝜔)𝜑 , meaning that “as-
suming that the set of rational strategy profiles is defined in terms
of the plausibility terms 𝜔 , then, it is plausible to expect that 𝜑
holds”. This idea was extended in [13] to a variant of SL for im-
perfect information games. However, as emphasized in the intro-
duction, Bulling et al. do not represent agents’ preferences in their
semantics. This is a crucial difference between their work and ours.
Our main focus is on extending CGSs with preferences, studying
the dynamic properties of agents’ preferences in concurrent games,
and defining a logic of rational capability with the help of the se-
mantics combining CGSs with preferences.

3 SEMANTICS
In this section, we first define the basic elements of the semantics:
the notions of concurrent game structure (CGS), computation and
strategy. Then, we extend a CGS with preferences and use the re-
sulting structure to define the notion of dominated strategy.

3.1 Preliminaries
LetP be a countable set of atomic propositions andAGT = {1, . . . , 𝑛}
a finite set of agents. A coalition is a (possibly empty) set of agents
from AGT. Coalitions are denoted by 𝐶,𝐶′, . . . AGT is also called
the grand coalition. The following definition introduces the con-
cept of concurrent game structure (CGS), as defined in [10].

Definition 1 (CGS). A concurrent game structure (CGS) is a tu-
ple𝑀 =

(
𝑊,ACT, (R𝛿 )𝛿∈JACT,V

)
with

• 𝑊 a non-empty set of worlds (or states),
• ACT a set of action names and JACT = ACT𝑛 the correspond-
ing set of joint action names,

• R𝛿 ⊆𝑊 ×𝑊 a transition relation for joint action 𝛿 ,
• V :𝑊 −→ 2P a valuation function,

such that for every𝑤 ∈𝑊 and 𝛿 ∈ JACT:
(C1) R𝛿 is deterministic (collective choice determinism),1

(C2) if 𝛿 (1) ∈ C1 (𝑤), . . . , 𝛿 (𝑛) ∈ C𝑛 (𝑤) then R𝛿 (𝑤) ≠ ∅ ( inde-
pendence of choices),

(C3) R is serial (neverending interaction),2

where

R =
∪

𝛿∈JACT
R𝛿 ,

C𝑖 (𝑤) = {𝑎 ∈ ACT : ∃𝛿 ∈ JACT s.t. R𝛿 (𝑤) ≠ ∅ and 𝛿 (𝑖) = 𝑎}.

The previous definition slightly differs from the usual definition
of CGS used for interpreting ATL [21] and strategy logic (SL) [38].
In particular a CGS, as defined in Definition 1, is a multi-relational
structure, alias Kripke model, the kind of structure traditionally
1A relation R is deterministic if ∀𝑤, 𝑣,𝑢 ∈𝑊, if 𝑤R𝑣 and 𝑤R𝑢 then 𝑣 = 𝑢.
2A relation R is serial if ∀𝑤 ∈𝑊, ∃𝑣 ∈𝑊 s.t. 𝑤R𝑣.
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used in modal logic. Every joint action is associated to a binary
relation over states satisfying certain properties, while in the usual
semantics for ATL and SL a transition function is used that maps a
state and a joint action executable at this state to a successor state.
The two variants are interdefinable. We use the multi-relational
variant of CGS since it is particularly convenient for proving the
model-theoretic and proof-theoretic results in the rest of the paper.

The relation R𝛿 with 𝛿 ∈ JACT is used to identify the set of
states R𝛿 (𝑤) = {𝑣 ∈ 𝑊 : 𝑤R𝛿𝑣} that are reachable from state 𝑤
when the agents collectively choose joint action 𝛿 at state𝑤 , that is,
when every agent 𝑖 chooses the individual component 𝛿 (𝑖) at state
𝑤 . R𝛿 (𝑤) = ∅ means that the joint action 𝛿 cannot be collectively
chosen by the agents at state𝑤 . The set C𝑖 (𝑤) in the previous def-
inition corresponds to agent 𝑖’s choice set at state𝑤 , i.e., the set of
actions that agent 𝑖 can choose at state𝑤 (or agent 𝑖’s set of avail-
able actions at 𝑤 ). Note that an agent’s choice set may vary from
one state to another, i.e., it might be the case that C𝑖 (𝑤) ≠ C𝑖 (𝑣)
if 𝑤 ≠ 𝑣 . Constraint C1 captures collective choice determinism: the
outcome of a collective choice of all agents is uniquely determined.
Constraint C2 corresponds to the independence of choices assump-
tion: if agent 1 can individually choose action 𝛿 (1), agent 2 can
individually choose action 𝛿 (2),…, agent 𝑛 can individually choose
action 𝛿 (𝑛), then the agents can collectively choose joint action
𝛿 . More intuitively, this means that agents can never be deprived
of choices due to the choices made by other agents. Constraint C3
corresponds to the neverending interaction assumption: every state
in a CGS has at least one successor, where the successor of a given
state is a state which is reachable from the former via a collective
choice of all agents.

For notational convenience, in the rest of the paper, sometimes
use the abbreviation TRel

def
= (R𝛿 )𝛿∈JACT to indicate a profile of

transition relations, and write 𝑀 = (𝑊,ACT, TRel,V) instead of
𝑀 =

(
𝑊,ACT, (R𝛿 )𝛿∈JACT,V

)
for a CGS.

Example 1 (CRossing Road). Assume a model𝑀𝑐𝑟𝑜𝑠𝑠 represent-
ing a system with two vehicles (denoted 𝑣1 and 𝑣2) that need to decide
how to act when approaching intersections. Each vehicle can either go
straight on (𝑀𝑜𝑣𝑒) or wait (𝑆𝑘𝑖𝑝). Their goal is to cross the road, but
they prefer to avoid collisions, which happen when they go straight
at the same time.𝑀𝑐𝑟𝑜𝑠𝑠 is represented by Figure 1. The initial state is
denoted with 𝑖𝑛𝑖𝑡 , while 𝑐𝑟𝑎𝑠ℎ denotes the failure state (i.e., a collision
occurred). The proposition 𝑐1 (similarly, 𝑐2) indicates the situation in
which the vehicle 𝑣1 has crossed (resp., 𝑣2).

The following definition introduces the notions of path and com-
putation, two essential elements of temporal logics and logics for
strategic reasoning.

Definition 2 (Path and computation). A path in a CGS𝑀 =
(𝑊,ACT, TRel,V) is a sequence 𝜆 = 𝑤0𝑤1𝑤2 . . . of states from𝑊
such that𝑤𝑘R𝑤𝑘+1 for all 𝑘 ≥ 0, where we recall R =

∪
𝛿∈JACT R𝛿 .

The set of all paths in 𝑀 is denoted by Path𝑀 . Given a path 𝜆 of
length higher than 𝑘′ and 𝑘 ≤ 𝑘′, the 𝑘-th element of 𝜆 is denoted
by 𝜆(𝑘). A computation (or full path) in 𝑀 is a path 𝜆 ∈ Path𝑀
such that there is no 𝜆′ ∈ Path𝑀 of which 𝜆 is a proper prefix. The
set of all computations in 𝑀 is denoted by Comp𝑀 . The set of all
computations in𝑀 starting at world𝑤 ∈𝑊 (i.e., whose first element
is𝑤 ) is denoted by Comp𝑀,𝑤 .

𝑐𝑟𝑎𝑠ℎ

𝑐2

𝑐1

𝑐1, 𝑐2

𝑞0

𝑞1

𝑞2

𝑞3𝑞4(𝑆𝑘𝑖𝑝,𝑀
𝑜𝑣𝑒) (𝑀

𝑜𝑣
𝑒,
𝑆𝑘
𝑖𝑝
)

(𝑀
𝑜𝑣
𝑒,
𝑀
𝑜𝑣
𝑒)

(𝑀
𝑜𝑣
𝑒,
𝑆𝑘
𝑖𝑝
)

(𝑆𝑘𝑖𝑝,𝑀
𝑜𝑣𝑒)

(𝑀
𝑜𝑣𝑒,𝑀

𝑜𝑣𝑒)

(𝑀𝑜𝑣𝑒,𝑀𝑜𝑣𝑒)
(𝑆𝑘𝑖𝑝, 𝑆𝑘𝑖𝑝)

(𝑆𝑘𝑖𝑝, 𝑆𝑘𝑖𝑝)
(𝑆𝑘𝑖𝑝,𝑀𝑜𝑣𝑒)

(𝑆𝑘𝑖𝑝, 𝑆𝑘𝑖𝑝)
(𝑀𝑜𝑣𝑒, 𝑆𝑘𝑖𝑝)

(∗, ∗)(∗, ∗)

Figure 1: Model 𝑀𝑐𝑟𝑜𝑠𝑠 representing a system with two ve-
hicles approaching an intersection. Arrows represent tran-
sitions between states and are labeled by joint actions of 𝑣1
and 𝑣2. (∗, ∗) denotes any action.

From Constraint C3 in Definition 1, it is easy to prove the fol-
lowing fact.

Fact 1. If 𝜆 ∈ Comp𝑀 then 𝜆 is infinite.

An agent’s individual perfect recall strategy is nothing but the
specification of a choice for the agent at the end of every finite path
in a CGS. It is formally defined as follows.

Definition 3 (Individual stRategy). Let𝑀 = (𝑊,ACT, TRel,
V) be a CGS. A (perfect recall) strategy for agent 𝑖 in 𝑀 is a func-
tion 𝑓𝑖 that maps every finite path 𝑤0 . . .𝑤𝑘 ∈ Path𝑀 to a choice
𝑓𝑖 (𝑤0 . . .𝑤𝑘 ) ∈ C𝑖 (𝑤𝑘 ) available to agent 𝑖 at the end of this finite
path, where again we recall R =

∪
𝛿∈JACT R𝛿 .

A collective strategy is the assignment of an individual strategy
to each agent.

Definition 4 (Collective stRategy). Let𝑀 = (𝑊,ACT, TRel,
V) be a CGS. A collective strategy for a coalition𝐶 in𝑀 is a function
F𝐶 that associates every agent 𝑖 ∈ 𝐶 to a strategy F𝐶 (𝑖) for 𝑖 in 𝑀 .
The set of collective strategies for coalition𝐶 in𝑀 is denoted by Str𝐶𝑀 .
Its elements are denoted by F𝐶 , F ′

𝐶 , . . .

Given a coalition 𝐶 , F𝐶 ∈ Str𝐶𝑀 and F ′
AGT\𝐶 ∈ Str

AGT\𝐶
𝑀 , we

define F𝐶 ⊕ F ′
AGT\𝐶 ∈ StrAGT𝑀 to be the composition of the two

strategies:
F𝐶 ⊕ F ′

AGT\𝐶 (𝑖) = F𝐶 (𝑖) if 𝑖 ∈ 𝐶,

F𝐶 ⊕ F ′
AGT\𝐶 (𝑖) = F ′

AGT\𝐶 (𝑖) otherwise.
Given an initial state𝑤 and a collective strategy for a coalition𝐶

we can compute the set of computations generated by this strategy
starting at𝑤 .

Definition 5 (GeneRated computations). Let𝑀 = (𝑊,ACT,
TRel,V) be a CGS, 𝑤 ∈ 𝑊 and F𝐶 ∈ Str𝐶𝑀 . The set O𝑀 (𝑤, F𝐶 )
denotes the set of all computations 𝜆 = 𝑤0𝑤1𝑤2 . . . in Comp𝑀 such
that𝑤0 =𝑤 and for every 𝑘 ≥ 0, there is 𝛿 ∈ JACT such that:
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• F𝐶 (𝑖)(𝑤0 . . .𝑤𝑘 ) = 𝛿 (𝑖) for all 𝑖 ∈ 𝐶 , and
• 𝑤𝑘R𝛿𝑤𝑘+1.

O𝑀 (𝑤, F𝐶 ) is the set of computations in 𝑀 generated by coali-
tion𝐶’s collective strategy F𝐶 starting at state𝑤 . Note that the set
O𝑀 (𝑤, FAGT) is a singleton because of Constraint C1 for collec-
tive choice determinism. The unique element of O𝑀 (𝑤, FAGT) is
denoted by 𝜆𝑀,𝑤,FAGT .

Note also that there is a single strategy F∅ for the empty coali-
tion, the onewhichmakes no assignments at all.Thus,O𝑀 (𝑤, F∅) =
Comp𝑀,𝑤 .

3.2 Adding Preferences
In this section, we extend the notion of CGS of Definition 1 with
preferences.

Definition 6 (CGS with pRefeRences). Let 𝑀 = (𝑊,ACT,
TRel,V) be a CGS. A preference structure for 𝑀 is a tuple Ω𝑀 =
(⪯𝑖,𝑤)𝑖∈AGT,𝑤∈𝑊 where, for every 𝑖 ∈ AGT and 𝑤 ∈ 𝑊 , ⪯𝑖,𝑤 is
total preorder over Comp𝑀,𝑤 . We call the pair (𝑀,Ω𝑀 ) a CGS with
preferences (CGSP). As usual, we write 𝜆′ ≺𝑖,𝑤 𝜆 if 𝜆′ ⪯𝑖,𝑤 𝜆 and
𝜆 ⪯̸𝑖,𝑤 𝜆′.

We say that the CGSP (𝑀,Ω𝑀 ) has stable preferences if the fol-
lowing condition holds:

(SP) ∀𝑤, 𝑣 ∈𝑊,∀𝜆, 𝜆′ ∈ Comp𝑀,𝑣, if𝑤R𝑣
then

(
𝜆′ ⪯𝑖,𝑣 𝜆 iff𝑤𝜆′ ⪯𝑖,𝑤 𝑤𝜆

)
.

Constraint SP for stable preferences captures the fact that an
agent’s preference is stable over time: an agent prefers a computa-
tion 𝜆 to a computation 𝜆′ starting at the same world 𝑣 if and only
if it prefers the precursor of 𝜆 (i.e., 𝑤𝜆) to the precursor of 𝜆′ (i.e.,
𝑤𝜆′) at each predecessor𝑤 of 𝑣 .

Example 2 (CRossing Road (cont.)). Let us resume our example.
The preference relations ⪯𝑣1,𝑤0 and ⪯𝑣2,𝑤0 of agents 𝑣1 and 𝑣2 (resp.)
in state𝑤0 is illustrated in Figure 2 (preference relation over the other
states are analogous). The intuition of the preference of each agents
𝑣𝑖 is that the less preferred situation for each agent is when there
is a collision (the computation indicated with −𝑖 ). Additionally, the
agents prefer computations in which he crossed (indicated by +𝑖 ) to
the ones he did not (=𝑖 ). We denote by 𝑃𝑐𝑟𝑜𝑠𝑠 = (𝑀𝑐𝑟𝑜𝑠𝑠 ,Ω𝑀𝑐𝑟𝑜𝑠𝑠 )
the CGS𝑀𝑐𝑟𝑜𝑠𝑠 with preferences Ω𝑀 = (⪯𝑖,𝑤)𝑖∈AGT,𝑤∈𝑊 .

The strategies in which the agent performs𝑀𝑜𝑣𝑒 in the initial state
is not dominated, because it may lead to the state where he crossed or
to a collision. On the other hand, the strategy in which the agent waits
(action 𝑆𝑘𝑖𝑝) when only the other agent has crossed is dominated by
the strategy in which he moves whenever agent 𝑣2 has crossed.

The following definition introduces the notion of dominated strat-
egy, the essential constituent of minimal rationality for agents.

Definition 7 (Dominated stRategies). Let 𝑃 = (𝑀,Ω𝑀 ) be
a CGSP with 𝑀 = (𝑊,ACT, TRel,V) a CGS and Ω𝑀 = (⪯𝑖,𝑤
)𝑖∈AGT,𝑤∈𝑊 a preference structure for 𝑀 , 𝑖 ∈ AGT, 𝑤 ∈ 𝑊 , and
F{𝑖 } , F ′

{𝑖 } ∈ Str
{𝑖 }
𝑀 . We say that at world 𝑤 agent 𝑖’s strategy F ′

{𝑖 }
dominates agent 𝑖’s strategy F{𝑖 } iff

∀F ′′
AGT\{𝑖 } ∈ Str

AGT\{𝑖 }
𝑀 , 𝜆

𝑀,𝑤,F{𝑖}⊕F′′
AGT\{𝑖} ≺𝑖,𝑤 𝜆

𝑀,𝑤,F′
{𝑖}⊕F′′

AGT\{𝑖} .
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Figure 2: Representation of the unravelling of 𝑀𝑐𝑟𝑜𝑠𝑠 from
the initial state (𝑤0). Branches represent (groups of) com-
putations. Transitions are labeled by the action taken by 𝑣1
and ∗ denotes any action. Self-loops indicate computations
where the state is repeated. Grey states indicate computa-
tions with an infinite suffix that repeats on the same state.
Labels in the formunder the grey states represent the prefer-
ence relations⪯𝑣1,𝑤0 and⪯𝑣2,𝑤0 of the agents 𝑣1 and 𝑣2, respec-
tively. Computations labeledwith+𝑖 are strictly preferred to
=𝑖 by agent 𝑣𝑖 , and =𝑖 are strictly preferred to −𝑖 by agent 𝑣𝑖
(where 𝑖 = {1, 2}).

Agent 𝑖’s strategy F{𝑖 } is said to be dominated at 𝑤 if there exists
another strategy F ′

{𝑖 } of 𝑖 which dominates F{𝑖 } at 𝑤 . Agent 𝑖’s set

of dominated strategies at𝑤 is denoted by Dom𝑖
𝑀,𝑤 .

In the next section we introduce a novel language that extends
the language of ATL with a family of operators for rational capa-
bility. It will be interpreted by means of the notion of CGSP.

4 LANGUAGE
The language of R-ATL (ATL withminimal rationality), denoted by
LR-ATL (P,AGT), is defined by the following grammar:

𝜑,𝜓 ::= 𝑝 | ¬𝜑 | 𝜑 ∧𝜓 | ⟨⟨𝐶⟩⟩X𝜑 | ⟨⟨𝐶⟩⟩G𝜑 | ⟨⟨𝐶⟩⟩(𝜑 U𝜓 )
⟨⟨𝐶⟩⟩ratX𝜑 | ⟨⟨𝐶⟩⟩ratG𝜑 | ⟨⟨𝐶⟩⟩rat (𝜑 U𝜓 ),

where 𝑝 ranges over P and𝐶 ranges over 2AGT. The other Boolean
connectives and constructs ∨,→,↔,⊤,⊥ are defined as abbrevia-
tions in the usual way.

On the one hand, formulas ⟨⟨𝐶⟩⟩X𝜑 , ⟨⟨𝐶⟩⟩G𝜑 and ⟨⟨𝐶⟩⟩(𝜑 U 𝜓 )
capture the notion of strategic capability. They have the usual ATL
readings: ⟨⟨𝐶⟩⟩X𝜑 has to be read “coalition 𝐶 has a strategy at its
disposal which guarantees that 𝜑 is going to be true in the next
state”, while ⟨⟨𝐶⟩⟩G𝜑 has to be read “coalition 𝐶 has a strategy at
its disposal which guarantees that 𝜑 will always be true”. Finally,
⟨⟨𝐶⟩⟩(𝜑 U𝜓 ) has to be read “coalition𝐶 has a strategy at its disposal
which guarantees that 𝜑 will be true until 𝜓 is true”. On the other
hand, formulas ⟨⟨𝐶⟩⟩ratX𝜑 , ⟨⟨𝐶⟩⟩ratG𝜑 and ⟨⟨𝐶⟩⟩rat (𝜑 U𝜓 ) capture
the notion of rational strategic capability: ⟨⟨𝐶⟩⟩ratX𝜑 has to be read
“coalition𝐶 has a rational strategy at its disposal which guarantees
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that𝜑 is going to be true in the next state”, ⟨⟨𝐶⟩⟩ratG𝜑 has to be read
“coalition𝐶 has a rational strategy at its disposal which guarantees
that 𝜑 will always be true”. Finally, ⟨⟨𝐶⟩⟩rat (𝜑 U 𝜓 ) has to be read
“coalition𝐶 has a rational strategy at its disposal which guarantees
that 𝜑 will be true until𝜓 is true”.

Formulas of the language LR-ATL (P,AGT) are evaluated rela-
tive to a pair (𝑃,𝑤) with 𝑃 = (𝑀,Ω𝑀 ) a CGSP, 𝑀 = (𝑊,ACT,
TRel,V) a CGS, Ω𝑀 a preference structure for 𝑀 and 𝑤 ∈ 𝑊 , as
follows:

(𝑃,𝑤) |= 𝑝 ⇐⇒ 𝑝 ∈ V
(
𝜆(0)

)
,

(𝑃,𝑤) |= ⟨⟨𝐶⟩⟩X𝜑 ⇐⇒ ∃F𝐶 ∈ Str𝐶𝑀 s.t. ∀𝜆 ∈ O(𝑤, F𝐶 ),(
𝑃, 𝜆(1)

)
|= 𝜑,

(𝑃,𝑤) |= ⟨⟨𝐶⟩⟩G𝜑 ⇐⇒ ∃F𝐶 ∈ Str𝐶𝑀 s.t. ∀𝜆 ∈ O(𝑤, F𝐶 ),
∀𝑘 > 0,

(
𝑃, 𝜆(𝑘)

)
|= 𝜑,

(𝑃,𝑤) |= ⟨⟨𝐶⟩⟩(𝜑 U𝜓 ) ⇐⇒ ∃F𝐶 ∈ Str𝐶𝑀 s.t. ∀𝜆 ∈ O(𝑤, F𝐶 ),
∃𝑘 > 0 s.t.

(
𝑃, 𝜆(𝑘)

)
|=𝜓 and

∀ℎ ∈ {1, . . . , 𝑘 − 1},
(
𝑃, 𝜆(ℎ)

)
|= 𝜑,

(𝑃,𝑤) |= ⟨⟨𝐶⟩⟩ratX𝜑 ⇐⇒ ∃F𝐶 ∈ Str𝐶𝑀 s.t. ∀𝑖 ∈ 𝐶,

F𝐶 |{𝑖 } ∉ Dom𝑖
𝑀,𝑤 and

∀𝜆 ∈ O(𝑤, F𝐶 ),
(
𝑃, 𝜆(1)

)
|= 𝜑,

(𝑃,𝑤) |= ⟨⟨𝐶⟩⟩ratG𝜑 ⇐⇒ ∃F𝐶 ∈ Str𝐶𝑀 s.t. ∀𝑖 ∈ 𝐶,

F𝐶 |{𝑖 } ∉ Dom𝑖
𝑀,𝑤 and

∀𝜆 ∈ O(𝑤, F𝐶 ),
∀𝑘 > 0,

(
𝑃, 𝜆(𝑘)

)
|= 𝜑,

(𝑃,𝑤) |= ⟨⟨𝐶⟩⟩rat (𝜑 U𝜓 ) ⇐⇒ ∃F𝐶 ∈ Str𝐶𝑀 s.t. ∀𝑖 ∈ 𝐶,

F𝐶 |{𝑖 } ∉ Dom𝑖
𝑀,𝑤 and

∀𝜆 ∈ O(𝑤, F𝐶 ),
∃𝑘 > 0 s.t.

(
𝑃, 𝜆(𝑘)

)
|=𝜓 and

∀ℎ ∈ {1, . . . , 𝑘 − 1},
(
𝑃, 𝜆(ℎ)

)
|= 𝜑,

where F𝐶 |{𝑖 } is the restriction of function F𝐶 to {𝑖} ⊆ 𝐶 . Note that
the difference between the strategic capability operators and the
rational strategic capability operators lies in the restriction to non-
dominated (minimally rational) strategies. While the ATL strategic
capability operators existentially quantify over the set of collective
strategies of the coalition𝐶 (i.e., ∃F𝐶 ∈ Str𝐶𝑀 ), their rational coun-
terparts existentially quantify over the set of collective strategies
of the coalition𝐶 such that all their individual components are not
dominated (i.e., ∀𝑖 ∈ 𝐶, F𝐶 |{𝑖 } ∉ Dom𝑖

𝑀,𝑤 ).
The following fragment defines the language of R-CL (CL with

Minimal Rationality), denoted by LR-CL (P,AGT):
𝜑,𝜓 ::= 𝑝 | ¬𝜑 | 𝜑 ∧𝜓 | ⟨⟨𝐶⟩⟩X𝜑 | ⟨⟨𝐶⟩⟩ratX𝜑,

where 𝑝 ranges over P and 𝐶 ranges over 2AGT.
The languages LATL (P,AGT) of ATL and LCL (P,AGT) of CL

are defined as usual:
• LATL (P,AGT) is the fragment of LR-ATL (P,AGT) with no
formulas ⟨⟨𝐶⟩⟩ratX𝜑, ⟨⟨𝐶⟩⟩ratG𝜑, ⟨⟨𝐶⟩⟩rat (𝜑 U𝜓 ), and

• LCL (P,AGT) is the fragment ofLR-CL (P,AGT)with no for-
mulas ⟨⟨𝐶⟩⟩ratX𝜑 .

Example 3 (CRossing Road (cont.)). Returning to our example,
it is easy to check that (𝑃𝑐𝑟𝑜𝑜𝑠 ,𝑤0) |= ⟨⟨𝑣1⟩⟩ratX¬𝑐𝑟𝑎𝑠ℎ that is, agent
𝑣1 has a rational strategy to avoid a collision. However, the agent 𝑣1
has no rational strategy to ensure to eventually cross the street, that
is, (𝑃𝑐𝑟𝑜𝑜𝑠 ,𝑤0) ̸|= ⟨⟨𝑣1⟩⟩rat⊤U𝑐1.

5 TREE-LIKE MODEL PROPERTY AND
EMBEDDING

In this section we first state the tree-like model property for the
language LR-ATL (P,AGT). Thanks to it, we will provide a poly-
nomial embedding of the R-ATL-language into the ATL-language
which also offers a polynomial embedding of the R-CL-language
into the CL-language. Thanks to the embedding we will be able to
provide tight complexity results for satisfiability checking for the
two languages LR-ATL (P,AGT) and LR-CL (P,AGT).

5.1 Tree-Like Model Property
Let R∗, R− and R+ be, respectively, the reflexive and transitive
closure, the inverse, and the transitive closure of R =

∪
𝛿∈JACT R𝛿 .

Definition 8. Let 𝑀 = (𝑊,ACT, TRel,V) be a CGS. We say
that:

• 𝑀 has a unique root iff there is a unique 𝑤0 ∈ 𝑊 (called the
root), such that, for every 𝑣 ∈𝑊 ,𝑤0R∗𝑣 ;

• 𝑀 has unique predecessors iff for every 𝑣 ≠ 𝑤0, the cardinality
of R− (𝑣) is at most one;

• 𝑀 has no cycles iff R+ is irreflexive;
• 𝑀 is tree-like iff it has a unique root, unique predecessors and
no cycles;

• 𝑀 is joint action disjoint iff for every 𝑤 ∈ 𝑊 and for every
𝛿, 𝛿 ′ ∈ JACT, if 𝛿 ≠ 𝛿 ′ then R𝛿 (𝑤) ∩ R𝛿 ′ (𝑤) = ∅.

The property of “having stable preferences” defined in Defini-
tion 6 and the properties of “having unique root”, “having unique
predecessors”, “having no cycles”, “being tree-like” and “being joint
action disjoint” defined inDefinition 8 are abbreviated sp, ur, up, nc,
tr and ad.The properties defined in Definition 8 naturally extend to
CGSPs: the CGSP 𝑃 = (𝑀,Ω𝑀 ) satisfies one of these properties if
the underlying CGS 𝑀 satisfies it. For every 𝑋 ⊆ {sp, ur, up, nc, tr,
ad}, the class of CGS satisfying the properties in 𝑋 is denoted by
CP𝑋 . By CP∅ , we denote the class of all CGSP.

The following Lemma 1 is a tree-like model property for the lan-
guage LR-ATL (P,AGT). The proof of the lemma is given in Appen-
dix A [32] The proof relies on a three-step transformation. First,
we transform a CGSP into a CGSP with joint action disjointness
by constructing one copy of a state for each possible joint action.
Second, we transform the resulting CGSPwith joint action disjoint-
ness into a CGSPwith joint action disjointness, unique predecessor
and no cycles.This second transformation associates every state of
the original CGSP to a finite path.Third, we generate the submodel
from the point of evaluation of the original model to guarantee
unique rootness.

Lemma 1. Let 𝜑 ∈ LR-ATL (P,AGT). Then,
• 𝜑 is satisfiable for the class CP∅ iff 𝜑 is satisfiable for the class
CP{tr,ad} ,

• 𝜑 is satisfiable for the class CP{sp} iff 𝜑 is satisfiable for the
class CP{sp,tr,ad} .
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5.2 Embedding
Let us consider the following translation tr : LR-ATL (P,AGT) −→
LATL (P+,AGT) with P+ = P ∪

{
rat𝑖 : 𝑖 ∈ AGT

}
:

tr (𝑝) = 𝑝,

tr (¬𝜑) = ¬tr (𝜑),
tr (𝜑 ∧𝜓 ) = tr (𝜑) ∧ tr (𝜓 ),

tr (⟨⟨𝐶⟩⟩X𝜑) = ⟨⟨𝐶⟩⟩Xtr (𝜑),
tr (⟨⟨𝐶⟩⟩G𝜑) = ⟨⟨𝐶⟩⟩Gtr (𝜑),

tr
(
⟨⟨𝐶⟩⟩(𝜑 U𝜓 )

)
= ⟨⟨𝐶⟩⟩

(
tr (𝜑) U tr (𝜓 )

)
,

tr (⟨⟨𝐶⟩⟩ratX𝜑) = ⟨⟨𝐶⟩⟩X
(
rat𝐶 ∧ tr (𝜑)

)
,

tr (⟨⟨𝐶⟩⟩ratG𝜑) = ⟨⟨𝐶⟩⟩G
(
rat𝐶 ∧ tr (𝜑)

)
,

tr
(
⟨⟨𝐶⟩⟩rat (𝜑 U𝜓 )

)
= ⟨⟨𝐶⟩⟩

(
(rat𝐶 ∧ tr (𝜑)) U (rat𝐶 ∧ tr (𝜓 ))

)
,

with rat𝐶
def
=

∧
𝑖∈AGT rat𝑖 and the special atomic formula rat𝑖

standing for “agent 𝑖 is rational”.
The idea of the translation is to transform a rational capability

operator into its ordinary capability counterpart using the special
atomic formulas rat𝑖 . Specifically, the fact that a coalition 𝐶 has a
rational strategy to ensure a given outcome is translated into the
fact that the coalition𝐶 has a strategy to force the outcome by en-
suring that all its members are rational. As the following theorem
highlights, satisfiability of R-ATL-formulas is reducible to satisfi-
ability of ATL-formulas using the translation tr . The proof of the
theorem is given in Appendix B [32]. The proof relies on a non-
trivial construction which transforms a tree-like CGSP into a new
tree-like CGSP in which an atomic formula of type rat𝑖 matches
the computations that are generated by a non-dominated strategy
of agent 𝑖 .The assumption of stable preferences is essential to guar-
antee that this matching exists.

TheoRem 1. Let 𝜑 ∈ LR-ATL (P,AGT). Then, 𝜑 is satisfiable for
the class CP{sp} iff

( ∧
𝑖∈AGT⟨⟨{𝑖}⟩⟩Grat𝑖

)
∧ tr (𝜑) is satisfiable for

the class CP{sp} .

As the following theorem highlights, if we restrict to the lan-
guage LR-CL (P,AGT) the translation tr also provides an embed-
ding for the general class CP. The proof of Theorem 2 is a straight-
forward adaptation of the proof ofTheorem 1. Instead of matching
an atomic formula rat𝑖 with a computation, for every state in a
tree-like CGSP we match rat𝑖 with a successor of this state along
a computation generated by a non-dominated strategy of agent 𝑖 .
The assumption of stable preferences is no longer required since
the translation of formula ⟨⟨𝐶⟩⟩ratX𝜑 only refers to the truth val-
ues of atoms rat𝑖 in the next state.

TheoRem 2. Let 𝜑 ∈ LR-CL (P,AGT). Then, 𝜑 is satisfiable for
the class CP iff

( ∧
𝑖∈AGT⟨⟨{𝑖}⟩⟩Xrat𝑖

)
∧ tr (𝜑) is satisfiable for the

class CP.

The following complexity result is a direct corollary of Theo-
rems 1 and 2, the fact that the size of tr (𝜑) is polynomial in the
size of the input formula 𝜑 and the fact that satisfiability checking
for ATL is Exptime-complete [43] and satisfiability checking for
CL is Pspace-complete [41].

CoRollaRy 1. Checking satisfiability of formulas in the language
LR-ATL (P,AGT) relative to the class CP{sp} is Exptime-complete.

It is Pspace-complete relative to both classes CP and CP{sp} , when
restricting to the fragment LR-CL (P,AGT).

Before concluding this section, we would like to highlight the
fact that the translation tr from the language LR-ATL (P,AGT) to
the language LR-ATL (P+,AGT) is adequate for the stable prefer-
ence semantics only. It does not work for the general class CP. To
see this, it is sufficient to observe that, on the one hand, the follow-
ing formula is valid for the general class CP:

𝜑𝐶,𝑝 =def ⟨⟨𝐶⟩⟩G(rat𝐶 ∧ 𝑝) → ⟨⟨𝐶⟩⟩X⟨⟨𝐶⟩⟩G(rat𝐶 ∧ 𝑝) .

Indeed, 𝜑𝐶,𝑝 is a basic validity of ATL. Moreover, we have

tr
(
⟨⟨𝐶⟩⟩ratG𝑝 → ⟨⟨𝐶⟩⟩X⟨⟨𝐶⟩⟩ratG𝑝

)
= 𝜑𝐶,𝑝 .

But, on the other hand, the formula ⟨⟨𝐶⟩⟩ratG𝑝 → ⟨⟨𝐶⟩⟩X⟨⟨𝐶⟩⟩ratG𝑝
is not valid for the class CP, which is the same thing as saying that
¬
(
⟨⟨𝐶⟩⟩ratG𝑝 → ⟨⟨𝐶⟩⟩X⟨⟨𝐶⟩⟩ratG𝑝

)
is satisfiable for CP. A counter-

model for this formula is given in Appendix C [32].
Thus, there is no analog ofTheorem 1 for the classCP since there

exists a formula 𝜑 (i.e., ¬
(
⟨⟨𝐶⟩⟩ratG𝑝 → ⟨⟨𝐶⟩⟩X⟨⟨𝐶⟩⟩ratG𝑝

)
) which

is satisfiable for CP and, at the same time,
( ∧

𝑖∈AGT⟨⟨{𝑖}⟩⟩Grat𝑖
)
∧

tr (𝜑) is not satisfiable for CP since ¬tr (𝜑) (i.e., ¬¬𝜑𝐶,𝑝 which is
equivalent to 𝜑𝐶,𝑝 ) is valid for CP.

6 AXIOMATIZATION FOR R-CL
In this section, we first introduce an axiomatic system for R-CL
and then show its soundness and completeness.

Definition 9 (Axiomatic system foRR-CL). Theaxiomatic sys-
tem for R-CL consists of the following axioms:

All tautologies of propositional logic (⊤)
¬⟨⟨𝐶⟩⟩X⊥ (A-NAAA)
⟨⟨∅⟩⟩ratX𝜑 ↔ ⟨⟨∅⟩⟩X𝜑 (A-NP∅ )
⟨⟨𝐶⟩⟩ratX𝜑 → ⟨⟨𝐶⟩⟩X𝜑 (A-MR)
⟨⟨∅⟩⟩X(𝜑 → 𝜓 ) → (⟨⟨𝐶⟩⟩X𝜑 → ⟨⟨𝐶⟩⟩X𝜓 ) (A-MG0)
⟨⟨∅⟩⟩ratX(𝜑 → 𝜓 ) → (⟨⟨𝐶⟩⟩ratX𝜑 → ⟨⟨𝐶⟩⟩ratX𝜓 ) (A-MG1)
⟨⟨𝐶⟩⟩X𝜑 → ⟨⟨𝐶′⟩⟩X𝜑, for 𝐶 ⊆ 𝐶′ (A-MC0)
⟨⟨𝐶⟩⟩ratX𝜑 → ⟨⟨𝐶′⟩⟩ratX𝜑, for 𝐶 ⊆ 𝐶′ (A-MC1)
⟨⟨𝐶⟩⟩X⊤ (A-NCS)
(⟨⟨𝐶⟩⟩X𝜑 ∧ ⟨⟨𝐶′⟩⟩X𝜓 ) → ⟨⟨𝐶 ∪𝐶′⟩⟩X(𝜑 ∧𝜓 ),
for 𝐶 ∩𝐶′ = ∅ (A-Sup0)
(⟨⟨𝐶⟩⟩ratX𝜑 ∧ ⟨⟨𝐶′⟩⟩ratX𝜓 ) → ⟨⟨𝐶 ∪𝐶′⟩⟩ratX(𝜑 ∧𝜓 ),
for 𝐶 ∩𝐶′ = ∅ (A-Sup1)
⟨⟨𝐶⟩⟩X(𝜑 ∨𝜓 ) → (⟨⟨𝐶⟩⟩X𝜑 ∨ ⟨⟨AGT⟩⟩X𝜓 ) (A-Cro)
⟨⟨AGT⟩⟩ratX(𝜑 ∨𝜓 ) → (⟨⟨AGT⟩⟩ratX𝜑 ∨ ⟨⟨AGT⟩⟩ratX𝜓 )

(A-DGRC)

and the following rules of inference:

𝜑, 𝜑 → 𝜓

𝜓
(MP)

𝜑

⟨⟨∅⟩⟩X𝜑 (N)
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The names of axioms and inference rules reflect their intuitions.
Axiom A-NAAA is called no absurd available action and its intuition
is that a coalition’s available joint action cannot ensure a logically
absurd result. Axiom A-NP∅ is called no preference for empty coali-
tion. As the empty coalition has no preference, its rational capa-
bility coincides with its ordinary capability. Axiom A-MR is called
monotonicity of rational capability: if an outcome can be ensured
by a coalition in a rational way then it can be ordinarily ensured
by the coalition. Axiom A-MG0 captures monotonicity of goals. Ax-
iom A-MG1 is its rational counterpart, namely,monotonicity of goals
under rationality. Their intuition is that ordinary and rational ca-
pabilities are monotonic with respect to goals. Similarly, Axiom
A-MC0 and A-MC1 capture, respectively, monotonicity of coalitions
and monotonicity of coalitions under rationality: ordinary and ra-
tional capability are monotonic with respect to coalitions. Axiom
A-NCS captures non-empty choice set, namely, the fact that a coali-
tion has always an available joint action. Axiom A-Sup0 and Ax-
iom A-Sup1 capture, respectively, superadditivity and superadditiv-
ity under rationality. Axiom A-Cro is the so-called crown axiom: it
was called this way in [20] since it corresponds to the fact that the
effectivity function of a game is a crown. Axiom A-DGRC captures
determinism of the grand coalition’s rational collective choice.The in-
ference rules aremodus ponens (MP) and necessitation for the empty
coalition (N). Note that ⟨⟨∅⟩⟩X is a normal modal operator because
of the validity-preserving rule of inference N and the fact that the
following formula is valid:

⟨⟨∅⟩⟩X(𝜑 → 𝜓 ) → (⟨⟨∅⟩⟩X𝜑 → ⟨⟨∅⟩⟩X𝜓 ),
which is an instance of Axiom A-MG0.

The style of our axiomatic system differs from CL’s [41]. We
want to get the axiomatization as close as possible to the semantics
by having as many correspondences as possible between axioms
and semantic constraints. In particular, we have the following cor-
respondences: Axiom A-NCS corresponds to Constraint C3 in Defi-
nition 1; Axioms A-Sup0 and A-Sup1 correspond to Constraint C2;
Axioms A-Cro and A-DGRC correspond to Constraint C1.

In Appendix D [32], we show that the axiomatic system of CL
is derivable from R-CL. Note that ¬⟨⟨∅⟩⟩X¬𝜑 → ⟨⟨AGT⟩⟩X𝜑 is an
axiom of CL. However, by Fact 2 whose proof is given in Appendix
C [32], ¬⟨⟨∅⟩⟩ratX¬𝜑 → ⟨⟨AGT⟩⟩ratX𝜑 is not valid. So, the logic for
the fragment of R-CL only containing rational capability operators
is substantially different from CL.

Fact 2. The following two formulas are not valid for the class CP:

¬⟨⟨∅⟩⟩ratX¬𝜑 → ⟨⟨AGT⟩⟩ratX𝜑 (MaxAGT1)
⟨⟨𝐶⟩⟩ratX(𝜑 ∨𝜓 ) → (⟨⟨𝐶⟩⟩ratX𝜑 ∨ ⟨⟨AGT⟩⟩ratX𝜓 ) (Cro1)

As usual, for every 𝜑 ∈ LR-CL (P,AGT), we write ⊢ 𝜑 to mean
that 𝜑 is deducible in R-CL, that is, there is a sequence of formulas
(𝜑1, . . . , 𝜑𝑚) such that:

• 𝜑𝑚 = 𝜑 , and
• for every 1 ≤ 𝑘 ≤ 𝑚, either 𝜑𝑘 is an instance of one of
the axiom schema of R-CL or there are formulas𝜑𝑘1 , . . . , 𝜑𝑘𝑡
such that 𝑘1, . . . , 𝑘𝑡 < 𝑘 and 𝜑𝑘1 ,...,𝜑𝑘𝑡

𝜑𝑘
is an instance of some

inference rule of R-CL.
We are going to prove soundness and completeness of the logic

R-CL relative to the model class CP. So, in the rest of this section,

when talking about validity of a formula 𝜑 ∈ LR-CL (P,AGT) we
mean validity of 𝜑 relative to the class CP.

Our completeness proof for R-CL differs from Pauly’s one for
CL [41]. It is structured in four parts: an induction on the modal
degree of formulas, the normal form (Lemma 2), the downward
validity (Lemma 3), and the upward derivability (Lemma 4). Before
introducing them, we need to introduce some preliminary notions.

Definition 10 (LiteRal). A propositional literal is either 𝑝 or¬𝑝
for any 𝑝 ∈ P. A modal R-CL-literal is a formula of type ⟨⟨𝐶⟩⟩ratX𝜑
or ¬⟨⟨𝐶⟩⟩ratX𝜑 , for any coalition 𝐶 and 𝜑 ∈ LR-CL (P,AGT).

The following definition introduces the notion of standard R-CL
disjunction.

Definition 11 (StandaRd R-CL disjunction). A formula of
type

𝜒∨
(
(
∧
𝑥∈X

⟨⟨𝐶𝑥 ⟩⟩X𝜓𝑥 ∧
∧

𝑥∈Xrat

⟨⟨𝐶𝑥 ⟩⟩ratX𝜓𝑥 ) →

(
∨
𝑦∈Y

⟨⟨𝐶𝑦⟩⟩X𝜓𝑦 ∨
∨

𝑦∈Yrat

⟨⟨𝐶𝑦⟩⟩ratX𝜓𝑦)
)

is called standard R-CL disjunction, where X, Xrat , Y and Yrat are
four finite and pairwise disjoint sets of indices, 𝜒 is a disjunction of
propositional literals, 𝐶𝑥 is a coalition and𝜓𝑥 ∈ LR-CL (P,AGT) for
each 𝑥 ∈ X ∪ Xrat ∪ Y ∪ Yrat .

The following is a normal form lemma for the logic R-CL. It is
proved in a way analogous to the normal form lemma for proposi-
tional logic.

Lemma 2 (NoRmal foRm). Any formula 𝜑 ∈ LR-CL (P,AGT)
is equivalent to a conjunction of standard R-CL disjunctions whose
modal degrees are not higher than the modal degree of 𝜑 . This equiv-
alence is both valid and derivable.

Let
𝜒∨

(
(
∧
𝑥∈X

⟨⟨𝐶𝑥 ⟩⟩X𝜓𝑥 ∧
∧

𝑥∈Xrat

⟨⟨𝐶𝑥 ⟩⟩ratX𝜓𝑥 ) →

(
∨
𝑦∈Y

⟨⟨𝐶𝑦⟩⟩X𝜓𝑦 ∨
∨

𝑦∈Yrat

⟨⟨𝐶𝑦⟩⟩ratX𝜓𝑦)
)

be a standardR-CL disjunction.The following definition introduces
its sets of basic indices. They will be used to state the downward
validity lemma and the upward derivability lemma.

Definition 12 (Basic indices). Define 𝑋0 = {𝑥 ∈ X | 𝐶𝑥 = ∅},
𝑌0 = {𝑦 ∈ Y | 𝐶𝑦 = AGT} and 𝑌1 = {𝑦 ∈ Yrat | 𝐶𝑦 = AGT}.

The last definition we need is that of neat set of indices.

Definition 13 (Neatness). For any 𝑋 ⊆ X ∪ Xrat , we say 𝑋 is
neat iff for all 𝑥, 𝑥 ′ ∈ 𝑋 , if 𝑥 ≠ 𝑥 ′, then 𝐶𝑥 ∩𝐶𝑥 ′ = ∅.

The following is our downward validity lemma. Its proof is in
Appendix E [32].

Lemma 3 (DownwaRdvalidity). Let𝜑 = 𝜒∨((∧𝑥∈X⟨⟨𝐶𝑥 ⟩⟩X𝜓𝑥∧∧
𝑥∈Xrat ⟨⟨𝐶𝑥 ⟩⟩ratX𝜓𝑥 ) → (∨𝑦∈Y⟨⟨𝐶𝑦⟩⟩X𝜓𝑦∨

∨
𝑦∈Yrat ⟨⟨𝐶𝑦⟩⟩ratX𝜓𝑦))

be a standard R-CL disjunction. If 𝜑 is valid then following validity-
reduction condition is satisfied:

• 𝜒 is valid, or
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• there is 𝑋 ⊆ X and 𝑋 ′ ⊆ Xrat such that 𝑋 ∪ 𝑋 ′ is neat and
one of the following conditions are met:
– there is 𝑦 ∈ Y such that

∪
𝑥∈𝑋∪𝑋 ′ 𝐶𝑥 ⊆ 𝐶𝑦 and∧

𝑥∈𝑋∪𝑋 ′ 𝜓𝑥 → (𝜓𝑦 ∨∨
𝑦′∈𝑌0 𝜓𝑦′ ) is valid;

– there is 𝑦 ∈ Yrat such that
∪

𝑥∈𝑋 ′ 𝐶𝑥 ⊆ 𝐶𝑦 and∧
𝑥∈𝑋0∪𝑋 ′ 𝜓𝑥 → (𝜓𝑦 ∨∨

𝑦′∈𝑌0 𝜓𝑦′ ) is valid;
–
∧

𝑥∈𝑋0∪𝑋 ′ 𝜓𝑥 → ∨
𝑦∈𝑌0∪𝑌1 𝜓𝑦 is valid.

The following is our upward derivability lemma. Its proof is in
Appendix F [32].

Lemma 4 (UpwaRddeRivability). Let𝜑 = 𝜒∨((∧𝑖∈X⟨⟨𝐶𝑥 ⟩⟩X𝜓𝑥∧∧
𝑖∈Xrat ⟨⟨𝐶𝑥 ⟩⟩ratX𝜓𝑥 ) → (∨𝑗∈Y⟨⟨𝐶𝑦⟩⟩X𝜓𝑦∨

∨
𝑗∈Yrat ⟨⟨𝐶𝑦⟩⟩ratX𝜓𝑦))

be a standardR-CL disjunction. If𝜑 is valid then following derivability-
reduction condition is satisfied:

• ⊢ 𝜒 , or
• there is 𝑋 ⊆ X and 𝑋 ′ ⊆ Xrat such that 𝑋 ∪ 𝑋 ′ is neat and
one of the following conditions are met:
– there is 𝑦 ∈ Y such that

∪
𝑥∈𝑋∪𝑋 ′ 𝐶𝑥 ⊆ 𝐶𝑦 and

⊢ ∧𝑥∈𝑋∪𝑋 ′ 𝜓𝑥 → (𝜓𝑦 ∨∨
𝑦′∈𝑌0 𝜓𝑦′ );

– there is 𝑦 ∈ Yrat such that
∪

𝑥∈𝑋 ′ 𝐶𝑥 ⊆ 𝐶𝑦 and
⊢ ∧𝑥∈𝑋0∪𝑋 ′ 𝜓𝑥 → (𝜓𝑦 ∨∨

𝑦′∈𝑌0 𝜓𝑦′ );
– ⊢ ∧𝑥∈𝑋0∪𝑋 ′ 𝜓𝑥 → ∨

𝑦∈𝑌0∪𝑌1 𝜓𝑦 .

The following is the culminating result of this section: the logic
R-CL is sound and complete for the model class CP.

We show Theorem 3 by induction on modal degrees of formu-
las. The inductive hypothesis ensures that the validity-reduction
condition of a formula implies its derivability-reduction condition.
The complete proof is given in Appendix G [32].

TheoRem 3. Let 𝜑 ∈ LR-CL (P,AGT). Then, 𝜑 is valid if and only
if ⊢ 𝜑 .

7 MODEL CHECKING
The global model checking problem for R-ATL consists of comput-
ing, for a given CGSP 𝑃 , and a formula 𝜑 , all the states in which
𝜑 holds in 𝑃 , formally {𝑤 ∈ 𝑊 : (𝑃,𝑤) |= 𝜑}. In this section,
we consider this problem relative to a subclass of CGSP in which
preferences are short-sighted.

Definition 14 (ShoRt-sighted pRefeRences). Let (𝑀,Ω𝑀 ) be
a CGSP with 𝑀 = (𝑊,ACT, TRel,V) a CGS. We say that 𝑀 has
short-sighted preferences if the following condition holds:

(SSP) ∀𝑖 ∈ AGT,∀𝑤 ∈𝑊,∀𝜆, 𝜆′ ∈ Comp𝑀,𝑤 if 𝜆(1) = 𝜆′ (1)
then 𝜆′ ≈𝑖,𝑤 𝜆,

where 𝜆′ ≈𝑖,𝑤 𝜆 iff 𝜆′ ⪯𝑖,𝑤 𝜆 and 𝜆 ⪯𝑖,𝑤 𝜆′.

The short-sighted preference condition means that an agent is
indifferent between computations that are equal until the next state.
Notice that if a CGSP 𝑀 has both stable and short-sighted prefer-
ences in the sense of Definitions 6 and 14 then the following holds:
∀𝑖 ∈ AGT,∀𝑣 ∈𝑊, if 𝑣 ∈ R(𝑤0) then ∀𝜆, 𝜆′ ∈ Comp𝑀,𝑣, 𝜆

′ ≈𝑖,𝑣 𝜆.
This means that under stable and short-sighted preferences only
the successor states of the initial state 𝑤0 affect an agent’s prefer-
ences since from the next state on an agent has complete indiffer-
ence between computations.

The reason why we verify properties relative to CGSPs with
short-sighted preferences is to have an efficient model-checking
procedure. Indeed, verifying properties with respect to the general
class of CGSPs would make model checking exponential since we
would need to compute dominance by alternating between sets of
strategies of exponential size (similar to [4]).

The proof of Theorem 4 is given in Appendix H [32]. The lower-
bound follows from the model checking of ATL [2]. For the upper
bound, we first define agents’ preference relation in state 𝑤 over
the successors of 𝑤 . This allows us to define the notion of agents’
dominated actions at a given state 𝑤 . We then reinterpret the ra-
tional strategic modalities ⟨⟨𝐶⟩⟩ratX, ⟨⟨𝐶⟩⟩ratG, and ⟨⟨𝐶⟩⟩rat U over
dominated actions instead of dominated strategies, which is equiv-
alent for the case of GCSP with short-sighted preferences. Then,
we extend the model-checking algorithm for ATL to include the
modalities ⟨⟨𝐶⟩⟩ratX, ⟨⟨𝐶⟩⟩ratG, and ⟨⟨𝐶⟩⟩rat U . The resulting algo-
rithm, provided in Appendix H, runs in polynomial time.

TheoRem 4. The global model checking problem for R-ATL over
GCSP with short-sighted preferences is Ptime-complete.

8 CONCLUSION
We have proposed a novel semantic analysis of preferences in con-
current games and used our semantics based on CGS with prefer-
ences to define a new family of ATL and CL languages distinguish-
ing the notion of ordinary capability from the notion of rational
capability. We have provided a variety of proof-theoretic and com-
plexity results for our languages with an emphasis on both satisfi-
ability checking and model checking.

Directions of future work are manifold. Some proof-theoretic
aspects remain to be explored and complexity results to be proved.
Future work will be devoted to i) axiomatizing the full logic R-ATL
relative to class CP and to class CP{sp} , ii) studying complexity of
satisfiability checking for the languageLR-ATL (P,AGT) relative to
the general class CP. In our running example, the joint strategy in
which both agents cross the road is not dominated. This is because
preferences are defined for individual agents rather than coalitions.
Following previous work on group preference logic [33] and judg-
ment aggregation [6, 22], we plan to extend our framework with
the notion of group preferences resulting from the aggregation of
individual preferences. We also intend to investigate levels of ra-
tionality, where agents assume minimal rationality of their oppo-
nents, allowing for iterated strong dominance [9, 34]. Last but not
least, we plan to consider an epistemic extension of our semantics
and languages to be able to model concurrent games with imper-
fect information and an agent’s knowledge of its rational capabil-
ity.
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