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ABSTRACT

Multi-agent reinforcement Learning (MARL) is often challenged by
the sight range dilemma, where agents either receive insufficient
or excessive information from their environment. In this paper, we
propose a novel method, called Dynamic Sight Range Selection (DSR),
to address this issue. DSR utilizes an Upper Confidence Bound (UCB)
algorithm and dynamically adjusts the sight range during training.
Experiment results show several advantages of using DSR. First,
we demonstrate using DSR achieves better performance in three
common MARL environments, including Level-Based Foraging
(LBF), Multi-Robot Warehouse (RWARE), and StarCraft Multi-Agent
Challenge (SMAC). Second, our results show that DSR consistently
improves performance across multiple MARL algorithms, including
QMIX and MAPPO. Third, DSR offers suitable sight ranges for
different training steps, thereby accelerating the training process.
Finally, DSR provides additional interpretability by indicating the
optimal sight range used during training. Unlike existing methods
that rely on global information or communication mechanisms, our
approach operates solely based on the individual sight ranges of
agents. This approach offers a practical and efficient solution to the
sight range dilemma, making it broadly applicable to real-world
complex environments.

KEYWORDS

Multi-Agent Reinforcement Learning, Sight Range Dilemma, Upper
Confidence Bound (UCB)

ACM Reference Format:

Wei-Chen Liao, Ti-Rong Wu, and I-Chen Wu. 2025. Dynamic Sight Range
Selection in Multi-Agent Reinforcement Learning. In Proc. of the 24th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2025), Detroit, Michigan, USA, May 19 — 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION

Reinforcement learning [26] has achieved significant success in
various domains, such as gaming [20], circuit design [12], and rec-
ommendation systems [1]. To extend its applicability to complex
real-world problems, particularly those involving multiple agents
that must cooperate or compete to achieve shared goals, multi-
agent reinforcement learning (MARL) [13] has recently emerged
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to address the challenges in multi-agent environments, including
multiplayer gaming [28], autonomous vehicles [35], robotic control
[31], and traffic signal control [14, 36].

Various approaches have been developed in cooperative MARL.
For instance, independent learning (IL) techniques, such as Inde-
pendent Q-Learning (IQL) and Independent Proximal Policy Opti-
mization (IPPO) [5, 21], train each agent individually, treating other
agents as part of the environment. While this simplifies the learn-
ing process by reducing the complexity of considering all agents
simultaneously, it also introduces the challenge of non-stationarity,
where the learning dynamics continuously change as other agents
adapt during training [33]. On the other hand, Centralized Training
with Decentralized Execution (CTDE) has been a widely used frame-
work for cooperative MARL problems, addressing non-stationarity
issues by allowing agents to access all available information dur-
ing centralized training while maintaining decentralized decision-
making. Successful methods based on CTDE include Q-learning-
based approaches like QMIX [18], QTRAN [23], and QPLEX [29], as
well as policy optimization methods like MAPPO [34] and HAPPO
[10].
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Figure 1: An illustration of the sight range dilemma in the
level-based foraging game, where players are required to
cooperate to collect food. (a) With a small sight range, the
player may fail to see other players. (b) With a large sight
range, the player receives excessive information irrelevant
to their decision. (c) With an appropriate sight range, the
player can easily identify the right partner to cooperate with
in collecting food.

Due to the partial observability in MARL, one of the key chal-
lenges is limited information that each agent can observe from
the environment, often referred to as the sight range. In real-world
applications, agents usually perceive only a limited portion of the
environment due to constraints such as sensor range. For instance,
in autonomous driving, each vehicle can detect only a small region
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of its surroundings rather than the entire environment. A small
sight range generally provides insufficient information, making it
difficult for agents to make effective decisions. However, previous
research suggests that a larger sight range is not always better,
as it often includes excessive and irrelevant information, which
hinders the learning process and leads to worse performance [8, 22].
The trade-off in selecting an appropriate sight range, known as the
sight range dilemma [22], remains a critical challenge in MARL, as
illustrated in Figure 1. Previous works [8, 22] have addressed this
dilemma, mainly focusing on communication mechanisms that use
self-attention to leverage global information, enabling each agent
to identify relevant agents and adjust its sight range accordingly.
Although these methods mitigate the sight range dilemma, they
rely on acquiring global information for all agents, which is often
impractical in real-world environments.

To tackle this challenge, we propose Dynamic Sight Range
Selection (DSR), a novel approach that directly addresses the sight
range dilemma without requiring global information. Specifically,
DSR dynamically adjusts the sight range during training using an
Upper Confidence Bound (UCB) algorithm [7], allowing the agent
to be trained with varying sight ranges and converge on the most
suitable sight range. Unlike previous methods that rely on global
information, DSR controls only the sight ranges of individual agents,
offering clearer insights into how much information is needed in
different environments. Moreover, DSR can automatically discover
the optimal sight range, which is particularly valuable for real-
world applications. For instance, in autonomous systems, the sight
range obtained through DSR can guide sensor design, helping to
balance sight range, reduce costs, and maintain high performance.

The contributions of this paper are summarized as follows:

e DSR effectively addresses the sight range dilemma issue
and outperforms the baseline model without DSR in three
common MARL environments, including LBF, RWARE, and
SMAC.

e By training agents with different sight ranges, DSR also
accelerates the training process.

e DSR can be simply integrated with any MARL algorithm
such as QMIX and MAPPO.

o The dynamically selected sight ranges further provide addi-
tional interpretability and explainability.

2 BACKGROUND

2.1 Multi-agent Reinforcement Learning

Cooperative multi-agent problems can be modeled as Decentralized
Partially Observable Markov Decision Processes (Dec-POMDPs) [4,
15], defined as M = (N, S, A, P,0, Z, R, y), where N = {nq, na,

...,nn} is the set of agents, S is the set of global states, A is the set
of joint individual actions from each agent, P is the state transition
function, O is the set of observations, Z is the observation function,
R is the reward function, and y € [0, 1) is the discount factor for
calculating future rewards. Given a state s’ at timestep ¢, where
s’ represents the global state with full observability, each agent
n; € N receives a partial observation 05 € O, which is derived from
the observation function Z (s?, n;). The agent then selects an action
a; € A based on its policy 7;(a; | 7;), where 7; = {o}, a}, e of}
is the action-observation history for agent n;. The joint action
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a ={ay,ay,...,an} is formed by the actions selected by all agents,
and the environment transitions to the next state s**! according
to the state transition function P (s**! | s¥, a). All agents receive
a shared reward r! from the reward function R(s?, a) and obtain
a new partial observation oi”l. This process repeats continuously
until the termination.

The goal of Dec-POMDPs is to find the optimal joint policy of
all agents, 7*, to maximize the global value function, Q (s?, a*) =
E [Z‘tx’:O Y'R(st,a®) | sp = s, TL']. Due to the partial observability in
Dec-POMDPs, Q(z, a) is often used instead of Q(s, a), where 7 rep-
resents the history of observations and actions of all agents. Namely,
agents are supposed to make decisions based on incomplete infor-
mation and learn an optimal policy 7; that maximizes the total
expected reward while cooperating with other agents in a partially
observable environment.

2.2 Centralized Training with Decentralized
Execution (CTDE)

The Centralized Training with Decentralized Execution (CTDE) frame-
work has been widely adopted to address the challenges of partial
observability in MARL [18, 23, 25, 29, 30, 34]. CTDE utilizes cen-
tralized training, where agents have access to global states during
the learning process. However, during execution, decision-making
is decentralized, and each agent relies only on its observation. This
approach allows agents to make independent decisions during ex-
ecution while benefiting from coordinated training to enhance
overall team performance.

In CTDE, value-based methods often employ the Individual-
Global-Max (IGM) principle, which ensures consistency between
the optimal joint action and the individual actions of each agent.
This principle is expressed as:

argmax Q(s,a) = |argmax Q1 (71, a1), ..., argmax QN (7N, aN) |,
a a anN

where Q(s, a) is the joint Q-function for all agents, and Q;(7;, a;) is
the local Q-function for agent n;. This ensures that during execution,
each agent can independently select actions that align with the
global objective. On the other hand, actor-critic methods in CTDE
directly optimize agents’ policies. These methods use centralized
critics during training, which have access to the global state s or
information about other agents, while each agent maintains its own
decentralized actor for execution [6, 11, 34].

2.3 Sight Range Dilemma in MARL

Recent studies have investigated the impact of sight range on agent
coordination within multi-agent reinforcement learning, partic-
ularly in relation to communication mechanisms. For instance,
MASIA [8] highlights the issue of redundant global information
in multi-agent systems, which can hinder effective coordination
among agents. Their experiments in the Traffic Junction [24] en-
vironment illustrate that agents utilizing the QMIX algorithm per-
form better with a limited sight range compared to super-limited
or full-sight settings. CAMA [22], which focuses on dynamic team
composition problems, introduces the sight range dilemma and
employs attention weights to selectively choose entities to focus
on, combined with messages from a global coach. It demonstrates
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that both excessive and insufficient information can negatively
impact learning. However, previous works mainly focus on com-
munication environments and utilize communication mechanisms
to acquire global information. In contrast, this paper aims to in-
vestigate whether it is possible to address the sight range dilemma
directly without the need for additional communication systems.

2.4 Upper Confidence Bound

The Upper Confidence Bound (UCB) [3] algorithm is a widely used
method to balance exploration and exploitation in decision-making
problems. At each timestep ¢, UCB selects the action with the high-
est estimated reward by considering both the empirical mean re-
ward X; and the upper confidence bound of the reward Uy, calcu-
lated as follows:

UCB(ai) = Re(ap) + ¢ x Up(ag) = Xe(a) + ¢ x | 2L (1)
Nt (a;)

where Xt(ai) is the empirical mean reward for action a; up to time
t, N¢(a;) is the number of times a; has been selected, and ¢ is a
hyperparameters that controls the exploration and exploitation. The
first term encourages exploitation by favoring actions with higher
average rewards, while the second term promotes exploration by
choosing actions that have been less frequently explored.

To extend UCB to non-stationary decision-making environments
where the optimal choice may change over time, non-stationary
UCB algorithms [7] have been proposed. Specifically, the sliding-
window upper confidence bound (SW-UCB) algorithm modifies the
calculation of the empirical mean reward in the original UCB by
focusing on a limited window of recent observations rather than
the entire history:

UCBSY (a;) = X% (@) + e x UPW (ay),
1 t
N¢(a;,w) | Z rj(ai)]l{UCB}g’W:i}

Jj=t—w+l

1 .
pox bW min(t, w) ,and
Nt (ai, w)

t
Z IL{UCB}?‘”:i}’

j=t—w+l

@

Ni(ai, w)

where N;(a;, w) is the number of times a; has been selected within
the sliding window, r;(a;) represents the reward received from
selecting action a; at timestep j, and w is a hyperparameter for the
size of sliding window. By limiting the mean reward to the most
recent observations, SW-UCB balances adapting to the latest results
while maintaining exploration. This approach makes SW-UCB well-
suited for dynamic, non-stationary environments.

3 DYNAMIC SIGHT RANGE SELECTION

In this section, we present our approach, named Dynamic Sight
Range Selection (DSR), which dynamically adjusts and finds the most
suitable sight range for all agents. The overview of the DSR method
is illustrated in Figure 2, which can be incorporated into any MARL
algorithm. In our design, DSR is built upon the Dec-POMDP but
modifies the observation function, which processes the observation
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within a given sight range, and introduces a meta-controller, which
determines the sight range. Each component is described in detail
below.

3.1 Observation Function

The observation function Z (s, n;), as reviewed in subsection 2.1, is
modified to Z (s, nj, d) to incorporate a given sight range d, which
limits the portion of global state s that each agent n; can observe.
The sight range d can be defined based on the requirements of each
specific environment. For instance, in Figure 1, the sight range is
defined as the distance in grid cells that an agent can observe around
its current position, with d = 1,d = 6, and d = 3 for Figure 1a,
1b, and 1c, respectively. In real-world applications, the sight range
may not always be a fixed distance around the agent, and a larger d
does not necessarily cover smaller d. For example, in autonomous
driving cars, different values of d can represent different sensor
designs with varying coverage shapes. Under this setting, our goal
is to find the suitable sight range d during training.

3.2 Meta-Controller

Given a set of sight ranges D = {d;,dy, ..., dps} with a total of M
possible ranges, a meta-controller A is incorporated into the MARL
training by selecting a sight range d € D for the agents at the
beginning of each episode. The learning process can be viewed as
hierarchical optimization, where the meta-controller dynamically
adjusts and selects the optimal sight range at the start of each
episode, while the MARL algorithm focuses on maximizing the
global value function Q7 within the selected sight range throughout
the episode. As both the meta-controller and MARL agents learn
simultaneously, we adapt the SW-UCB algorithm for the meta-
controller to balance exploration and exploitation during training.
The calculation of the UCB score at episode e for each sight range
d; follows equation (2) as:

UCBX (d;) = Xe(d;) + ¢ X Ue(dy)

1 e
 Ne(diw) 2. 1) yepr

Jj=e—w+l

log min(e, w)
+CX 4 ’—
Ne(di, w)

where e represents the e-th episode, w is the sliding window size,
rj(d;) is the episode return with sight range d; in the j-th episode,
and N, (d;, w) is the number of games that have been played with
sight range d; within the sliding window. After training, the meta-
controller converges to an optimal sight range. During execution,
we simply choose the sight range d with the maximum average
return in the window, arg max(r(d;)), where r(d;) is the average
return for each sight range d;.

®)

3.3 Training Algorithm

Specifically, we summarize the training process in the Algorithm 1.
In line 4, the meta-controller selects the current best sight range d
based on the UCB at the start of each episode. Once the sight range
d} is selected, any MARL algorithm can be applied to train agents
for one episode. The observation is modified based on the selected
sight range and used by the agents during interactions with the
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Figure 2: Overview of the Dynamic Sight Range Selection framework. The meta-controller (left) dynamically selects the current
optimal sight range d;; using the sliding-window UCB based on the episode return r.. The selected sight range d; is used in the
MARL training (right), where agents interact with the environment, receiving observations within the selected sight range.

environment, as shown in line 5 to 7. The modified observation
is stored in the buffer associated with the MARL algorithm. This
approach allows the agent to learn from different sight ranges si-
multaneously, facilitating exploration in the early stages. As the
meta-controller converges, the replay buffer will gradually accu-
mulate more samples with optimized sight ranges.

After training for one episode, the episode return r, is obtained,
and the statistics of N (d}, w) and reward for the meta-controller
are updated, as shown in line 8 to 10. These updated statistics are
then used for the next episode. Overall, the algorithm operates as a
hierarchical optimization process, where both the meta-controller
and the MARL algorithm are learning simultaneously. The meta-
controller optimizes the sight range selection, while the MARL
algorithm focuses on maximizing agent performance within the
chosen sight range, leading to efficient coordination and better long-
term performance. Moreover, this design allows the meta-controller
to easily integrate with any MARL algorithm.

Algorithm 1 Dynamic Sight Range Selection (DSR)

1: Input: Set of sight ranges D, sliding window size w, constant
c, total number of training episodes E, total number of training
steps per episode T

2. Output: The best sight range d*

3: for episode e = 1 to E do

4: Meta-controller selects sight range dj:

d, = arg ?S%Xe(di) + ¢ X Ue(d;)

5 Generate one episode with a modified observation function
Z(s.ni,dg)
6: Obtain the episode return r,

7 Train the episode by any MARL algorithm
8 if de—; # d; then

Ne(dy, w) = Ne(ds, w) +1

9: end if
10: Record reward r, for dj;
11: end for
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4 EXPERIMENT

4.1 Experiment Setup

We build DSR upon the training framework EPyMARL [16] and
conduct experiments in three common MARL environments, as
illustrated in Figure 3, including Level-Based Foraging (LBF) [2, 16],
Multi-Robot Warehouse (RWARE) [16], and the StarCraft Multi-
Agent Challenge (SMAC) [19]. For the SW-UCB in the meta-controller,
we choose ¢ = 2 for the exploration coefficient and w = 5000 for
the sliding window size. The following paragraphs describe each
environment and its specific settings.

Level-Based Foraging (LBF). LBF is a grid-based multi-agent en-
vironment designed to evaluate cooperative behavior, where agents
must collaborate to collect food in a grid world, as shown in Figure
3a, making it a common benchmark for testing MARL algorithms.
The episode return ranges from 0 to 1 and is proportional to the
fraction of food collected relative to the total food score on the map.
The sight range is defined by the distance (in grid cells) that an
agent can observe around its current position. For example, a sight
range of 1 provides a 3x3 (1+1X 2 = 3) view around the agent, while
a sight range of 2 expands this to a 5x5 (1 + 2 X 2 = 5) area. In LBF,
the notation 10x10-4p-2f-coop represents a 10x10 grid map, four
players (4p), two food items (2f), and a cooperative mode (coop),
where agents must cooperate more intensively to collect the food.
For our experiments, we choose three settings: 10x10-4p-2f-coop,
10x10-4p-2f, and 10x10-4p-4f-coop. For each setting, we select two
different default sight ranges, d = 6 and d = 10. Note that in a 10x10
grid map, a sight range of d = 10 allows each agent to observe the
entire map, equivalent to having access to the global state. For the
DSR method, the meta-controller can select the sight range from
the set D as follows:

e D={2,46}ford=6
e D ={24,67810} ford =10

Multi-Robot Warehouse (RWARE). RWARE is a grid-based
multi-agent environment where cooperative robots work together
to transport goods within a warehouse. Agents must locate and
deliver requested shelves (girds marked in teal) to the designated
locations (grids marked in black at the bottom), and then return
the shelves to empty positions before continuing with the next



Research Paper Track

(b)  Multi-Robot

(a) Level-Based Foraging (LBF) (RWARE)

Warehouse

AAMAS 2025, May 19 - 23, 2025, Detroit, Michigan, USA

(c) StarCraft Multi-Agent Challenge (SMAC). Left: An Example of
sight range; right: a game example (8m_vs_9m)

Figure 3: MARL environments used in our experiments.

delivery, as shown in Figure 3b. Each successful delivery yields
a reward of +1, incentivizing agents to complete delivery cycles.
Since both RWARE and LBF are grid-based environments, the sight
range in RWARE is defined in the same way as LBF. In RWARE,
we use two map sizes, a 10x11 grid map (tiny) and a 10x20 (small)
map, each with two agents (denoted as tiny-2ag and small-2ag). For
each setting, we select two different default sight ranges, d = 3 and
d = 5. For the DSR method, the meta-controller can select the sight
range from the set O as follows:

e D ={1,2,3}ford =3

e D ={1,2,3,4,5}ford=5

StarCraft Multi-Agent Challenge (SMAC). SMAC is a well-
established benchmark for multi-agent reinforcement learning, fo-
cusing on micromanagement tasks in StarCraft II. Each agent con-
trols a unique unit, and the goal is to defeat Al-controlled opponents
in combat, as shown in Figure 3c. The sight range is defined as the
visibility radius around each unit. We select six settings for SMAC,
including 5m_vs_6m, 8m_vs_9m, 10m_vs_11m, 3s_vs_5z, 3s5z, and
MMM2. For each setting, we select three different default sight
ranges, d = 9, d = 15, and d = 21. For the DSR method, the meta-
controller can select the sight range from the set D as follows:

e D ={3,69}ford=9
e D ={3,6091215} ford = 15
e D =1{3691215,18, 21} ford = 21

In LBF and RWARE, the global state s provided by the environ-
ment does not contain all information. This mirrors real-world
applications, where obtaining complete global information is of-
ten impractical [9, 27]. A common approach is to approximate the
global state by concatenating the observations from all agents. Al-
though the original SMAC environment provides complete global
information, our focus is on how sight ranges influence the learn-
ing complexity of observations and states. Therefore, we adopt a
variant of SMAC where the global state is derived by concatenating
the observations from all agents, the same approach used in LBF
and RWARE.

4.2 Performance of DSR

We first train QMIX [18], a common MARL algorithm, with and
without DSR across the three environments with various settings
described in the previous subsection. Each setting was trained with
five different seeds.

Table 1 shows the results comparing DSR and baseline (without
DSR) across different environment settings. For LBF and RWARE,
we use the mean test return, while for SMAC, we use the mean test

win rate. Note that the last notation after the hyphen (e.g., the “10s"
in 10x10-4p-2f-coop-10s) represents the default sight range used in
the baseline (without DSR). For DSR, the set of sight ranges is as
mentioned in the previous subsection.

Our results show that DSR consistently improves performance
across all three environments. In LBF, our method significantly out-
performs the baseline, with substantial improvement in complex
cooperative settings such as 10x10-4p-4f-coop-6s (0.772 compared
to 0.277) and 10x10-4p-4f-coop-10s (0.798 compared to 0.338). This
result demonstrates the sight range dilemma, where larger sight
ranges in complex environments are not always beneficial, as agents
may receive excessive irrelevant information that negatively im-
pacts decision-making, as illustrated in Figure 1. The scores for
LBF range from 0 to 1, so in some simple settings both w/ and w/o
DSR can achieve nearly optimal scores. However, even in these
cases, DSR significantly accelerates the training process, as shown
in Figure 4. For more challenging LBF tasks, such as 10x10-4p-4f-
coop-10s, which require deeper cooperation, DSR demonstrates
substantial improvements (0.798 vs. 0.338) compared to training
without DSR. For RWARE, both models struggle in the small map,
likely due to the map’s difficulty, achieving relatively lower scores,
but DSR outperforms the baseline on the tiny map. In SMAC, DSR
consistently enhances performance, particularly in scenarios with
larger sight range settings, such as 3s_vs_5z-21s (0.712 compared
to 0.292) and MMM2-21s (0.714 compared to 0.19). In conclusion,
these results demonstrate the effectiveness of dynamically selecting
sight ranges using DSR, highlighting its robustness across a wide
range of environments.

10x10-4p-2£-10s 10x10-4p-2£-6s

E E
5 06 5 06
p= 2
Q Q
~ ~
o o
2 04- @ 04-
= =
02-
— QMIX d=10 — QMIXd=6
—— QMIX + DSR (ours) —— QMIX + DSR (ours)
00-
o 2 3 1 5 0 1 2 3 1 5
Steps 1e6 Steps 1e6

Figure 4: Mean test returns on two LBF environment settings.
The shaded area represents the standard deviation.
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Table 1: Comparison between baseline and DSR across three
environments.

w/o DSR w/ DSR (ours)

10x10-4p-2f-coop-10s 0.769 £ 0.384 0.925 + 0.064
10x10-4p-2f-coop-6s 0.972 + 0.037 0.957 = 0.040

LBF 10x10-4p-2£-10s 0.988 £ 0.005 0.993 + 0.004
10x10-4p-2f-6s 0.998 + 0.004 0.987 £ 0.010
10x10-4p-4f-coop-10s 0.338 £ 0.339 0.798 + 0.050
10x10-4p-4f-coop-6s 0.277 £ 0.194 0.772 + 0.068
tiny-2ag-5s 1.486 + 1.361 4.762 + 4.702
tiny-2ag-3s 5.846 + 1.426 11.900 * 6.474

RWARE small-2ag-5s 0.074 + 0.148 0.050 = 0.100
small-2ag-3s 0.182 + 0.359 0.036 £ 0.072
5m_vs_6m-9s 0.102 £ 0.028 0.128 + 0.066
5m_vs_6m-15s 0.080 £ 0.100 0.140 = 0.055
5m_vs_6m-21s 0.054 £ 0.079 0.112 + 0.053
8m_vs_9m-9s 0.452 £ 0.114 0.508 + 0.077
8m_vs_9m-15s 0.234 £+ 0.287 0.504 + 0.087
8m_vs_9m-21s 0.120 £ 0.190 0.472 + 0.078
10m_vs_11m-9s 0.402 £ 0.220 0.540 + 0.061
10m_vs_11m-15s 0.122 £ 0.202 0.546 + 0.127

SMAC 10m_vs_11m-21s 0.186 £ 0.262 0.680 + 0.066
3s_vs_5z-9s 0.716 + 0.143 0.676 £ 0.065
3s_vs_5z-15s 0.498 £ 0.409 0.660 + 0.081
3s_vs_5z-21s 0.292 £ 0.260 0.712 + 0.110

3s52-9s 0.854 + 0.086 0.854 £ 0.051

3s5z-15s 0.808 + 0.094 0.770 £ 0.075

3s5z-21s 0.784 + 0.156 0.736 = 0.069

MMM2-9s 0.690 £ 0.122 0.736 + 0.076
MMM2-15s 0.572 £ 0.113 0.648 + 0.094
MMM2-21s 0.190 £ 0.266 0.714 + 0.101

In addition, we found that using DSR can accelerate the training
process. For example, Figure 4 shows the training curves for two
LBF settings, including 10x10-4p-2f-10s and 10x10-4p-2f-6s. While
both DSR and the baseline converge to similar results by the end
of the training, the training curve of DSR (red) rises more quickly
during the early training steps and remains higher or equal to the
baseline (black) throughout the training process. This demonstrates
an additional benefit of using DSR, as training with different sight
ranges helps agents learn the game more quickly.

4.3 The Sight Range Dilemma

To further investigate how sight range affects training, we conduct
an additional experiment where the baseline uses different fixed
sight ranges throughout the entire training process. We select one
setting for each environment, as illustrated in Figure 5. Figure
5a shows the results for the LBF environment. The left subfigure
shows the mean test return curves of the baseline with different
fixed sight ranges (d = 2, 4, and 6) and our DSR approach, while the
right subfigure shows the sight range dynamically selected by DSR
during the training process. From the left subfigure, we observe
that using a smaller sight range results in higher returns at the early
training. For instance, at training step 2 x 10°, the performance

of d = 2 is better than d = 4, and d = 4 outperforms d = 6.

However, by the end of the training, d = 2 plateaus, while d = 4
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and d = 6 achieve better performance. Interestingly, since our DSR
can dynamically adjust the sight range, we observe that DSR tends
to select smaller sight ranges at the beginning and gradually shifts
to larger sight ranges, as shown in the right subfigure. The RWARE
environment, as shown in Figure 5b, shows another interesting
result. In the left subfigure, we observe that using d = 1 performs
well in this environment setting. Surprisingly, in the right subfigure,
DSR initially attempts to explore a larger sight range but then
quickly converges to d = 1. In the SMAC environment, as shown in
figure 5c, we observe that DSR gradually selects sight range from
d = 6 to d = 12, and the results outperform all fixed sight ranges.
This suggests that agents benefit from training with smaller sight
ranges initially, which helps them transition more effectively to
larger sight ranges during training.
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Figure 5: Experiments on three environment settings. For
each subfigure, the left shows the mean test returns, while
the right side displays the selected sights by DSR during
training.

Moreover, in LBF, we observe that DSR usually starts by select-
ing smaller sight ranges and then gradually selects larger ones. A
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10x10-4p-4f-coop-10s

— QMIXd=10
QMIX + Scheduling
05~ —— QMIX + DSR (ours)

Test Return

/Steps'

Figure 6: Comparison between the baseline, DSR, and a fixed
sight range scheduling approach in the LBF environment.

straightforward approach would be to design a fixed sight range
scheduling, such as the sight range progressively expanding from
small to large (e.g., d = 2,4, 6, 8, and 10) at regular intervals, divid-
ing the training steps into five equal phases. As shown in Figure
6, the fixed sight range scheduling approach also performs better
than the baseline but still does not outperform DSR. Additionally,
when switching sight ranges in the fixed schedule, we observe a no-
ticeable drop in performance. In contrast, DSR allows for smoother
sight range adjustments and results in a more stable training curve.

In summary, our results demonstrate that DSR can not only
accelerate the training but also automatically discover the appro-
priate sight range without the need to manually train across all
sight ranges. In many real-world complex environments, different
sight ranges may yield varying outcomes and it is often difficult
to know the best sight range for every task. Therefore, DSR offers
an efficient solution for both finding the optimal sight range and
subtly addressing the sight range dilemma.

4.4 DSR in Other MARL Algorithms

Since DSR does not modify the underlying MARL algorithms, we
conduct experiments to verify its generalizability across different
MARL algorithms, including IQL, VDN, IPPO, and MAPPO, in LBF
and RWARE environments. In general, the sight range dilemma
persists across all algorithms, and DSR consistently outperforms
the baseline, similar to the results shown for QMIX (subsection 4.2).

Figure 7 shows one of the results for the LBF environment with
the 10x10-4p-4f-coop setting, where DSR significantly outperforms
the baseline across all four algorithms. In addition, we observe that
DSR follows a similar pattern of adjusting sight ranges across most
algorithms, except for VDN, typically starting with smaller sight
ranges and gradually transitioning to larger ones. These experi-
ments further demonstrate the robustness and versatility of DSR,
showing that our approach can be easily integrated into any MARL
algorithm and enhance learning performance without requiring
algorithm-specific modifications.

4.5 Exploring Hyperparameters in DSR

In this subsection, we analyze the effectiveness of different hy-
perparameters in DSR within the LBF environment, including the
exploration constant c, the sliding window size w, and various com-
binations of sight ranges available for the meta-controller to select.
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Figure 7: Experiments with four additional MARL algorithms.
Top: Mean test returns for the baseline and DSR; Bottom:
Sight ranges selected by DSR during training,.

The results are shown in Figure 8. For the exploration coefficient
¢, we observe that neither smaller nor larger values consistently
lead to better results, as shown in Figure 8a. The findings suggest
that the optimal range for c lies between 1 and 2.5. In contrast,
the choice of sliding window size does not significantly affect the
results, as shown in 8b.

Next, we analyze the performance when different sets of sight
ranges are used in DSR, as shown in Figure 8c. When compar-
ing D = {1,2,3,...,10} (green) and D = {2,4,6,8,10} (yellow),
the results show that a larger set of options for meta-controller
slows down the training process, as it increases the complexity of
sight range selection for meta-controller and requires more time
for agents to adapt. For D = {2,6,10} (red), D = {1, 6,10} (gray),
and D = {3, 6,10} (blue), the results show that the red line outper-
forms the other two. This is because d = 2 enables faster learning
during the early stage in LBF, as illustrated in Figure 5a. However,
in practice, it is difficult to predict which sight range is best in
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advance. In summary, a larger set of sight ranges is less likely to
miss potentially effective sight ranges, but it may increase training
time due to exploration. On the other hand, a smaller sight range
can learn faster if it includes an appropriate sight range, but it also
risks omitting better ones. Therefore, designing an appropriate set
of sight range D is important.

10x10-4p-4f-coop-10s

10x10-4p-4f-coop-10s

" — p=610;
D={1,2,34,5,6,7,89,10}

Test Return
Test Return
Test Return

Steps

Steps

Steps

(a) Exploration coeffi-(b) Sliding window (c) Different set of
cient c. size w. sight range D.
Figure 8: Experiments for different hyperparameters in the
LBF environment.

4.6 Comparison to Communication-based
Methods

Finally, we compare our DSR approach to CAMA, a communication-
based method that uses an attention-weight ranking mechanism to
select relevant entities, aiming to address the sight range dilemma.
To evaluate DSR, we integrate it into the source code provided in
CAMA [22]. We then follow CAMA’s training process using the
IM-Qatten algorithm, which combines Qatten [32] with an inverse
model [17]. In addition, we use the same environment as CAMA,
SMAC Dynamic Team Composition (SMAC-DT), a variant of SMAC
where both the number and types of units change dynamically
across episodes. The number of agents is randomly set between 3
and 5 during both training and testing. The default sight range in
CAMA is set to d = 9. For the DSR method, the meta-controller can
select the sight range from the set D = {3,6,9}.

Figure 9 shows that DSR outperforms the attention-weight rank-
ing mechanism across three SMAC-DT environment settings. DSR
also provides explanability, as it explicitly indicates which sight
range is selected, while CAMA’s attention-weight ranking can only
show the chosen entities without offering insight into the overall
observation strategy. Overall, this experiment demonstrates the
advantages of DSR in both performance and interpretability.

3-5csz_symmetric
— iM.Qatten + CAMA
— IMQatten + DSR (ours)

3-5MMM_symmetric

2ia
«

Test Win Rate

Test Win Rate
Test Win Rate

Figure 9: Comparison between CAMA and DSR in the SMAC-
DT environment.
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5 DISCUSSION

This paper proposes a novel approach named Dynamic Sight Range
Selection (DSR), which successfully addresses the sight range dilemma
issues. Our experiments show that DSR outperforms the baseline
model without using DSR across three MARL environments, in-
cluding LBF, RWARE, and SMAC. Unlike traditional methods that
require manually finding the suitable sight range, DSR automati-
cally identifies the optimal sight range for each environment. In
addition, DSR accelerates the training process by gradually shifting
the sight range from a smaller to a large one. It further provides
interpretability by offering insights into the selected sight ranges. Fi-
nally, the method can be seamlessly integrated with multiple MARL
algorithms without requiring algorithm-specific modifications.

Future work could explore how DSR generalizes to environments
with different domains. For more complex environments, such as
those with continuous observation spaces, the design of the meta-
controller may require further adjustments. One possible approach
is to discretize continuous sight ranges into representative discrete
sets for selection.

The insights provided by DSR can also help sensor design in
practical applications by balancing sight range, performance, and
cost. In addition, in our work, all agents share the same sight range,
but future research could investigate using different sight ranges for
individual agents, which is particularly relevant for heterogeneous
agent settings where agents have different roles or capabilities.
In scenarios with a large number of options, the meta-controller
may require further modifications to handle this issue effectively.
Furthermore, deeper exploration is needed to understand how the
structure of an environment influences the optimal sight range,
providing new insights into the relationship between observation
and environment dynamics.
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