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ABSTRACT
This work addresses the problem of multi-robot coordination under

unknown robot transition models, ensuring that tasks specified by

Time Window Temporal Logic are satisfied with user-defined prob-

ability thresholds. We present a bi-level framework that integrates

(i) high-level task allocation, where tasks are assigned based on

the robots’ estimated task completion probabilities and expected

rewards, and (ii) low-level distributed policy learning and execu-

tion, where robots independently optimize auxiliary rewards while

fulfilling their assigned tasks. To handle uncertainty in robot dy-

namics, our approach leverages data collected during task execution

to iteratively refine the expected task completion probabilities and

rewards, enabling adaptive task allocation without explicit robot

transition models. We theoretically validate the proposed algorithm

by showing that it ensures tasks are completed at the desired prob-

ability thresholds with high confidence. Finally, we demonstrate

the efficacy of our framework through comprehensive simulations.
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1 INTRODUCTION
Efficient and high-quality task allocation plays a critical role in co-

operative multi-robot applications, such as on-demand ridesharing

and delivery [11], assembly lines [13], and warehouse logistics [43].

Recently, multi-robot task allocation with temporal constraints has

attracted growing attention due to its significance in time-sensitive

applications. For instance, [33] formulates a distributed constraint

optimization problem to allocate tasks with time windows and

ordering requirements to heterogeneous robots. [5] considers un-

certainty in completing time-windowed tasks and combines high-

level task allocation with low-level scheduling to minimize task

incompletion. [27] addresses tasks with precedence constraints,

proposing an algorithm that ensures the probability of task failure
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remains below a user-specified threshold under uncertainties in

robot traits. Research in this area typically considers tasks that can

be executed independently.

Multi-robot systems often involve more complicated scenarios

where tasks are logically and temporally correlated. For instance,

in warehouse logistics, robots need to coordinate to retrieve items

from multiple storage locations based on orders, inventory, and

replacement options, then assemble and deliver them within a set

time frame, with each step depending on the successful comple-

tion of the previous one. Temporal logic (TL) provides a rigorous

framework for specifying such temporal order and dependencies

between tasks.

Different methods have been proposed to coordinate robots to

satisfy a global temporal logic formula, including graph search

on product automata [29], sampling-based methods [14, 22], and

optimization-based approaches [2, 15, 42]. Other works assign local

temporal logic tasks to individual robots, employing methods such

as receding horizon planning [35], path-finding on product graph

[8], and integer programming-based planning [32]. Nevertheless,

these studies do not address uncertainty, which is crucial for time-

sensitive tasks. For instance, environmental factors like traffic jams

can disrupt task execution within the required time window.

Some prior studies [1, 3, 10, 12] employ reinforcement learning

(RL) to maximize the probability of satisfying temporal logic con-

straints under unknown transition dynamics, primarily focusing on

single-robot systems. Multi-agent reinforcement learning (MARL)

has been explored for joint policy learning with temporal logic ob-

jectives [9, 39, 44]. Additionally, semi-decentralized methods [31],

deep RL [24], and model-based RL [21] have been explored to im-

prove learning efficiency. However, these MARL approaches either

do not address system model uncertainty or assume full system

knowledge, limiting their applicability in uncertain environments.

Overall, there are research gaps in existing multi-robot task allo-

cation, planning, and learning approaches, as they either assume the

tasks are independent, neglect the uncertainty in system models, or

unrealistically assume full knowledge of uncertainties. Additionally,

prior studies often aim to maximize robustness degree [24, 39], min-

imize incomplete tasks [5], or optimize some cost functions [14, 22].

While these approaches are effective, they often lack quantifiable

guarantees on task satisfaction.

Motivated by these gaps, this paper addresses multi-robot task

allocation to ensure a specified probability of satisfying Time Win-

dow Temporal Logic tasks under unknown transition dynamics.

Additionally, a secondary objective is to maximize auxiliary reward

functions for each robot based on user preferences. Fig. 1 illustrates

an example where robots must transport materials within specific

timewindowswith high probability while also performing auxiliary
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tasks such as identifying and monitoring traffic-prone intersections

or returning to stations for future assignments.

Our proposed formulation, which incorporates primary tasks

and auxiliary objectives, has broader applicability in various sce-

narios, such as (i) search-and-rescue, where robots deliver sup-
plies within time-critical windows while minimizing energy use or

maximizing coverage to identify other areas needing help, and (ii)
environmental monitoring, where drones monitor areas during

specific intervals, such as wildlife peaks, while collecting additional

data or conserving power for longer missions.

In summary, this work makes the following contributions:

• We propose a framework for multi-robot task allocation under

unknown robot transition probabilities, integrating high-level

task allocation with low-level policy learning to ensure proba-

bilistic satisfaction of time-window temporal logic tasks.

• We incorporate auxiliary reward functions into high-level task

allocation as a secondary objective, allowing the optimization

of auxiliary rewards to impose user preferences without com-

promising the primary temporal logic tasks.

• We use data-driven methods to estimate expected rewards and

task satisfaction probabilities of robots while following their

low-level policies, which enable adaptive high-level task allo-

cation using these refined reward functions and satisfaction

probabilities without requiring explicit robot transition models.

The most relevant works in the literature are [1, 5, 20, 27, 30, 31].

[5] employs a similar bi-level framework but assumes indepen-

dent tasks with single time windows and known task completion

probabilities, whereas we consider complex spatio-temporal depen-

dencies and unknown task completion probabilities. In [27], the

Sequential Probability Ratio Test (SPRT) is used to verify whether

the probability of task failure remains below a user-defined thresh-

old. This approach iteratively recomputes task assignments until

passing the SPRT, whereas we formulate an optimization problem

whose solution guarantees probabilistic task satisfaction. Both [1]

and [20] consider similar problem formulations, aiming to satisfy a

temporal logic task with a desired probability. While these works

focus on a single agent with a single task, we address multi-robot

systemswithmultiple tasks. [31] considers a similar communication

model in which each agent interacts with a centralized coordinator.

However, their approach involves the coordinator in lower-level

policy learning, whereas the coordinator is solely used for high-

level task allocation in our framework. [30] uses RL to estimate

uncertain task execution durations and incorporates the learned

durations into an auction-based allocation policy to minimize exe-

cution time. Similarly, our approach uses RL to estimate the reward

functions and improve task allocation. Our work specifically fo-

cuses on satisfying tasks within exact time windows with desired

probabilities, which their work does not address.

2 PRELIMINARIES
Let Σ be a finite set. We denote the power set of Σ by 2

Σ
. A finite

or infinite sequence of elements from Σ is called a word over Σ.
In this context, Σ is also called an alphabet. Let 𝑘, 𝑖, 𝑗 ∈ Z≥0 with

𝑖 ≤ 𝑗 . The 𝑘-th element of a word 𝝈 is denoted by 𝝈𝑘 , and the

Figure 1: Motivating example of our proposed framework. Primary
tasks: repeatedly transporting resources from warehouses to pro-
cessing stations and then to operation site within specified time
windows, which must be satisfied with a high probability to prevent
resource accumulation. Auxiliary tasks : monitoring traffic conges-
tion to improve future routing and delivery times, or returning to
stations after completing the primary tasks.

subword 𝝈𝑖 , ..., 𝝈 𝑗 is denoted by 𝝈𝑖, 𝑗 . We denote the set of atomic

propositions by 𝐴𝑃 .

2.1 Time Window Temporal Logic
Time Window Temporal Logic (TWTL) [38] is a language for ex-

pressing time-bounded specifications. A TWTL formula is defined

over a set of atomic propositions 𝐴𝑃 as follows:

𝜙 ::= 𝐻𝑑𝑠 | 𝐻𝑑¬𝑠 | ¬𝜙1 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | 𝜙1 · 𝜙2 | [𝜙1] [𝑎,𝑏 ] .
Here, 𝑠 represents either the constant “true" or an atomic proposi-

tion in 𝐴𝑃 ; 𝜙1 and 𝜙2 are TWTL formulas. The hold operator 𝐻𝑑𝑠 ,

with 𝑑 ∈ Z≥0, specifies that 𝑠 ∈ 𝐴𝑃 should hold for d time units.

The negation operator ¬𝜙1 specifies “do not satisfy the formula”.

The conjunction operator 𝜙1 ∧𝜙2 and disjunction operator 𝜙1 ∨𝜙2

specify “satisfy both formulas”, and “satisfy at least one formula”,

respectively. The concatenation operator 𝜙1 · 𝜙2 specifies that 𝜙1

must be satisfied first, and 𝜙2 must be satisfied immediately after.

The within operator [] [𝑎,𝑏 ] , where 𝑎, 𝑏 ∈ Z≥0 and 𝑎 ≤ 𝑏, restricts
the satisfaction of𝜙 to the time window [𝑎, 𝑏]. The time bound of a

TWTL formula 𝜙 , denoted as ∥(𝜙)∥, represents the maximum time

allowed to satisfy 𝜙 . For a formal definition of the TWTL semantics

and the time bound, we refer readers to [38].

Definition 2.1. (Deterministic Finite-State Automaton) A deter-

ministic finite-state automaton (DFA) is a tupleA = (𝑄,𝑞0, Σ, 𝛿, 𝐹 ),
where𝑄 is a finite set of states, 𝑞0 is the initial state, Σ = 2

𝐴𝑃
is the

input alphabet, 𝛿 : 𝑄 × Σ→ 𝑄 is the transition function, and 𝐹 is

the set of accepting states.

A finite input word 𝝈 = 𝜎0, 𝜎1, . . . , 𝜎𝑇 over the alphabet 2
𝐴𝑃

generates a trajectory 𝒒 = 𝑞0, 𝑞1, . . . , 𝑞𝑇+1 on the DFA, where 𝑞0 is

the initial state of the DFA and 𝑞𝑘+1 = 𝛿 (𝑞𝑘 , 𝜎𝑘 ) for all 𝑘 ≥ 0. A

finite input word 𝝈 over Σ is accepted by a DFA if the corresponding

trajectory 𝒒 ends in an accepting state of the DFA.

A TWTL formula 𝜙 can be translated into a DFA that either

accepts or rejects an input word [38]. An input word 𝝈 is said

to satisfy the corresponding TWTL formula 𝜙 if it is accepted by

the DFA, denoted as 𝝈 |= 𝜙 . For example, the TWTL formula

𝜙 = [𝐻1𝑃] [1,2] · [𝐻0𝐷] [0,2] , specifying a pickup (𝑃 ) and hold for

one time step within time window [1, 2] followed by a delivery (𝐷)
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Figure 2: (a) DFA for TWTL formula 𝜙 = [𝐻 1𝑃 ] [1,2] · [𝐻 0𝐷 ] [0,2] . (b)
DFA for the temporally relaxed TWTL formula𝜙 (𝝉 ) = [𝐻 1𝑃 ] [1,2+𝜏1 ] ·
[𝐻 0𝐷 ] [0,2+𝜏2 ] . (c) Example of a labeled MDP, where 𝑆 = {𝑠0, 𝑠1}, 𝐴 =

{𝑎0, 𝑎1}, 𝐴𝑃 = {𝑃, 𝐷 }, 𝑙 (𝑠0 ) = {𝑃 } and 𝑙 (𝑠1 ) = {𝐷 }.

within two time steps, is translated into a DFA shown in Fig. 2a.

An input word 𝝈 = {𝑃}, {𝑃}, {𝑃}, {𝐷} satisfies the TWTL formula,

as it generates a trajectory 𝒒 = 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞6 that ends in the

accepting state 𝑞6. This TWTL formula can also be translated into

a temporally relaxed DFA (see Fig. 2b), which is more compact and

facilitates more efficient computation and construction.

2.2 Markov Decision Process
Definition 2.2. (Labeled MDP) A labeled MDP is a tupleM =

(𝑆,𝐴,Δ, 𝑅, 𝑙), where 𝑆 represents the state space, and 𝐴 denotes

the set of actions. The probabilistic transition function is given

by Δ : 𝑆 × 𝐴 × 𝑆 → [0, 1], and the reward function is defined as

𝑅 : 𝑆 ×𝐴→ R. Additionally, 𝑙 : 𝑆 → 2
𝐴𝑃

is a labeling function that

maps each state to a set of atomic propositions.

Definition 2.3 (Policy). A policy over the MDP is a mapping

𝜋 : 𝑆 → 𝑃 (𝐴), where 𝑃 (𝐴) represents the set of probability distri-

butions over the actions set𝐴. A policy is stationary if 𝜋 (·|𝑠) ∈ 𝑃 (𝐴)
does not change over time, and it is deterministic if 𝜋 (·|𝑠) always
selects the same action for a given state.

MDPs with labeling functions are widely used in RL with tempo-

ral logic [4, 6, 25] to allow verification of temporal logic satisfaction.

Given a finite MDP trajectory 𝒔 = 𝑠0, 𝑠1, . . . , 𝑠𝑇 , the labeling func-

tion generates an output word 𝒐 = 𝑜0, 𝑜1, . . . , 𝑜𝑇 where 𝑜𝑖 = 𝑙 (𝑠𝑖 ).
A subword of the output, 𝑜𝑡1 , 𝑜𝑡1+1, . . . , 𝑜𝑡2 , is denoted as 𝒐𝑡1,𝑡2 . Con-
sider the labeled MDP example shown in Fig. 2c. AnMDP trajectory

𝒔 = 𝑠0, 𝑠0, 𝑠0, 𝑠1 generates an output word 𝒐 = {𝑃}, {𝑃}, {𝑃}, {𝐷},
which serves as an input word to the DFA to verify whether the

robot satisfies the TWTL formula.

2.3 System Setup
We consider a multi-robot system with a set of 𝑁 robots, denoted

as {𝑟𝑖 }𝑖∈{1,2,...,𝑁 } , and we refer to this set as {𝑁 } for simplicity.

Similarly, we define a set of𝐾 tasks, denoted by {𝑡𝑘 }𝑘∈{1,2,...,𝐾 } , and
refer to it as {𝐾}. Each task 𝑡𝑘 ∈ {𝐾} is defined by a tuple (𝜙𝑘 , 𝑃𝑘 ),
where 𝜙𝑘 is a TWTL formula and 𝑃𝑘 is the desired probability

threshold for satisfying 𝜙𝑘 . The time bound for these tasks is 𝑇 =

∥𝜙𝑘 ∥ time steps, and they must be fulfilled every 𝑇 time steps over

an infinite horizon or a long period. Each repetition of𝑇 time steps is

called an episode. We introduce a virtual task 𝑡𝐾+1 = (𝜙𝐾+1, 𝑃𝐾+1),
where 𝜙𝐾+1 is a null task and 𝑃𝐾+1 = 0, to augment the task set. A

robot assigned to task 𝑡𝐾+1 is considered unassigned to any TWTL

task, allowing it to focus on its auxiliary objective. We denote this

augmented task set as {𝐾 + 1}.
We assume that the robots in {𝑁 } have decoupled dynamics and

reward functions, and operate independently without interactions

with others. Each robot 𝑟𝑖 ∈ {𝑁 } is modeled as a decoupled MDP,

denoted byM𝑖 = (𝑆𝑖 , 𝐴𝑖 ,Δ𝑖 , 𝑅𝑖 , 𝑙𝑖 ). The collection of all robotMDPs

{M𝑖 }𝑖∈{𝑁 } is referred to as {M}. The state transition probabilities

Δ𝑖 are unknown and account for uncertainties such as movement

delays due to road conditions or potential robot failures. The reward

function 𝑅𝑖 encodes the robot’s individual auxiliary objectives.

The output word of robot 𝑟𝑖 over a time interval [𝑡1, 𝑡2] is denoted
as 𝒐𝑖𝑡1,𝑡2 . Team output word, the collection of output words from

all robots {𝒐𝑖𝑡1,𝑡2 }𝑖∈{𝑁 } , is given by {𝒐𝑡1,𝑡2 }. Given a TWTL formula

𝜙 , we say {𝒐𝑡1,𝑡2 } |= 𝜙 if and only if there exists at least one robot 𝑟𝑖

such that 𝒐𝑖𝑡1,𝑡2 |= 𝜙 . The probability that {o𝑡1,𝑡2 } satisfies a TWTL

formula 𝜙 is denoted as Pr

(
{o𝑡1,𝑡2 } |= 𝜙

)
.

Guaranteeing probabilistic constraint satisfaction is unachiev-

able without prior knowledge of the MDP transition probabilities.

In this work, we assume that although the exact transition proba-

bilities are unknown, the agent has partial knowledge: when taking

action 𝑎 at state 𝑠 , the agent knows (i) which states have a non-zero

probability of being reached and (ii) which states have a sufficiently

high probability of being the next state. This partial knowledge is

represented by 𝜖𝑖 , an upper bound on transition uncertainty, which

is crucial for computing a lower bound on the probability of task

satisfaction. We formalize this assumption as follows:

Assumption 1. Given an MDP M𝑖 for an arbitrary robot 𝑟𝑖 ,
the exact transition probability Δ𝑖 is unknown. However, a known
parameter 𝜖𝑖 ∈ [0, 1) exists such that, for each state 𝑠 and action 𝑎, (i)
the set of states 𝑠′ for which Δ𝑖 (𝑠, 𝑎, 𝑠′) > 0 and (ii) the set of states
𝑠′′ for which Δ𝑖 (𝑠, 𝑎, 𝑠′′) ≥ 1 − 𝜖𝑖 are non-empty and known.

Example 2.4. Consider a probabilistic transition model shown

in Fig. 3a, where the action set is given by 𝐴 = {𝑁, 𝑁𝐸, 𝐸, 𝑆𝐸, 𝑆,
𝑆𝑊 ,𝑊 , 𝑁𝑊 , 𝑆𝑡𝑎𝑦}. Under the ‘Stay’ action, robots remain station-

ary, while all other actions result in an intended transition (black

arrows) with probability 1 − 𝜖 and unintended transitions (red ar-

rows) with a probability of 𝜖 . The exact values of 𝜖 are unknown

to robots. However, each robot 𝑟𝑖 is provided with an estimate 𝜖𝑖 ,

which overestimates the actual 𝜖 and reflects the robots’ limited

knowledge of their transition models and environmental distur-

bances, as stated in Assumption 1.

3 PROBLEM FORMULATION
Given a multi-robot system {𝑁 } and a set of tasks {𝐾 + 1}, the ob-
jective is to find an optimal policy for each MDP in {M} to ensure

that the team output word satisfies each TWTL formula 𝜙𝑘 with at

least probability 𝑃𝑘 while maximizing the sum of rewards. With un-

known MDP transitions, this can be formulated as a constrained RL

problem, with the probabilistic satisfaction of TWTL tasks encoded

as constraints, and reward maximization as the objective. This prob-

lem presents multiple challenges, including coordinating robots

under uncertain dynamics, ensuring probabilistic satisfaction of

TWTL tasks, and maximizing individual rewards.
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We propose a bi-level solution to address these challenges hierar-

chically. At the high level, we solve for multi-robot task allocation to

ensure desired probabilistic satisfaction of the TWTL tasks. Specifi-

cally, we consider task allocation Π : {𝑁 }× {𝐾 +1} → [0, 1], where
Π(𝑖, 𝑘) represents the probability of robot 𝑟𝑖 being assigned to task

𝑡𝑘 . At the low level, each robot independently finds its own policy

𝜋Π
𝑖
, to satisfy its assigned task while simultaneously maximizing

its individual reward. We formally define the problem as below.

Problem 1. Given a set of robots {𝑁 }, a set of TWTL tasks {𝐾+1},
a set of MDP {M} subject to Assumption 1, and a discount factor 𝛾 ,
determine the optimal high-level task allocation and low-level policies

Π∗, 𝜋∗
1
, . . . , 𝜋∗𝑁 = arg max

Π,𝜋Π
1
,...,𝜋Π

𝑁

E{𝑎𝑖𝑡∼𝜋Π
𝑖 }

[ ∞∑︁
𝑡=0

𝛾𝑡
𝑁∑︁
𝑖=1

𝑅𝑖 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 )
]
, (1)

such that, for every episode j,

Pr

(
{o𝑗𝑇 ,𝑗𝑇+𝑇 } |= 𝜙𝑘

)
≥ 𝑃𝑘 , ∀𝑗 ≥ 0, (𝜙𝑘 , 𝑃𝑘 ) ∈ {𝐾 + 1} (2)

where {o𝑗𝑇 ,𝑗𝑇+𝑇 } is the team output word in episode j.

Remark 1. The reward functions can incorporate different auxil-
iary objectives into task allocations based on system requirements. (i)
Environment-driven vs. user-defined: robots can learn rewards
from environmental interactions (e.g., identifying high-traffic areas)
or follow predefined incentives (e.g., encouraging timely returns to
charging stations). (ii) Robot-specific objectives: reward functions
can be designed to reflect the distinct roles of different robots (e.g. aerial
robots prioritize large area coverage, while mobile robots remain in
critical locations to improve future task efficiency). (iii) Capability-
aware rewards: rewards encode robot capabilities, such as higher
rewards for drones with superior sensors when monitoring key areas.

4 PROPOSED SOLUTION
Our approach consists of a high-level coordinator for task allo-

cation and a low-level task execution mechanism. The high-level

coordinator considers each robot’s probability of satisfying TWTL

tasks from its current state and the expected rewards associated

with specific tasks. It computes task assignments that maximize the

total expected reward while ensuring that each task is completed

with the desired probability threshold. At the low level, each robot

maintains 𝐾 + 1 policies: 𝐾 stationary policies, one for each TWTL

task, and an additional policy learned over time to maximize indi-

vidual rewards when not assigned to a TWTL task. Upon receiving

an assignment from the high-level coordinator, each robot follows

the corresponding policy for its designated task.

4.1 High-level Multi-robot Task Allocation
Before each episode, each robot provides the coordinator with its

𝑃𝜖
𝑖,𝑘
(𝑝𝑖 ), the expected probability of satisfying TWTL formula 𝜙𝑘 ,

and 𝑉𝑖,𝑘 (𝑝𝑖 ), the expected reward under its current policy. Here, 𝑝𝑖
denotes the current state of the robot. For simplicity, we refer to

these quantities as 𝑃𝜖
𝑖,𝑘

and 𝑉𝑖,𝑘 in the following sections.

For now, we assume that 𝑃𝜖
𝑖,𝑘

and 𝑉𝑖,𝑘 are known to the robots.

The process of obtaining these values will be discussed in later

sections. Given a set of tasks {𝐾 + 1}, the high-level task assign-

ment for robot 𝑟𝑖 ∈ {𝑁 } is given by the probability distribution

{𝑃𝑖,𝑘 }𝑘=1,2,...,𝐾+1, where
∑𝐾+1
𝑘=1

𝑃𝑖,𝑘 = 1. For 𝑘 = 1, 2, . . . , 𝐾 , 𝑃𝑖,𝑘

denotes the probability of robot 𝑟𝑖 being assigned to TWTL task

𝑡𝑘 , while 𝑃𝑖,𝐾+1 denotes the probability that robot 𝑟𝑖 prioritizes

maximizing its reward function instead of executing a TWTL task.

Following the multi-robot task allocation taxonomy proposed by

[7], our task allocation problem falls under ST-SR-IA, i.e. single-task

robots (ST) execute single-robot tasks (SR), with instantaneous as-

signments (IA). Note that although the stochastic task assignments

allow multiple robots to be assigned to the same task, we assume

they execute the tasks in parallel rather than collaboratively. There-

fore, tasks are classified as single-robot rather than multi-robot. The

high-level task allocation is determined by solving the following

optimization problem.

arg max

𝑃𝑖,𝑘

𝑁∑︁
𝑖=1

𝐾+1∑︁
𝑘=1

𝑃𝑖,𝑘 · 𝑉𝑖,𝑘 (3a)

subject to 1 −
𝑁∏
𝑖=1

(1 − 𝑃𝑖,𝑘 · 𝑃𝜖𝑖,𝑘 ) ≥ 𝑃𝑘 ∀𝑘 = 1, 2, . . . , 𝐾 (3b)

𝐾+1∑︁
𝑘=1

𝑃𝑖,𝑘 = 1 ∀𝑖 = 1, 2, . . . , 𝑁 (3c)

𝑃𝑖,𝑘 ≥ 0 ∀𝑖 = 1, 2, . . . , 𝑁 , 𝑘 = 1, 2, . . . , 𝐾 + 1 (3d)

In problem (3), the objective function (3a) aims to maximize the

sum of the expected rewards across all robots. Constraint (3b) en-

sures that the probability of at least one robot satisfying task 𝑡𝑘 is

not less than its desired probability 𝑃𝑘 . Constraints (3c) and (3d)

ensure that the task assignment {𝑃𝑖,𝑘 } define a valid probability

distribution over tasks for each robot. Although the assignments

are stochastic, each robot executes only one task at a time, sampled

from the task assignment. The stochastic assignment generalizes

the deterministic solutions commonly adopted in multi-agent task

allocation, allowing better task allocations that optimize auxiliary

rewards while ensuring TWTL satisfaction. The deterministic ver-

sion can be achieved by restricting {𝑃𝑖,𝑘 } to either 0 or 1.

The task completion probability 𝑃𝜖
𝑖,𝑘

in (3b) is unknown due

to the lack of knowledge about the transition probabilities in the

MDPs. One solution is to substitute 𝑃𝜖
𝑖,𝑘

with its lower bound. The

key question is whether solving problem (3) using lower bounds

of 𝑃𝜖
𝑖,𝑘

still ensures satisfaction of the original constraint (3b). To

answer this, we present the following proposition.

Proposition 4.1. Let ⌊𝑃𝜖
𝑖,𝑘
⌋ be an arbitrary lower bound for 𝑃𝜖

𝑖,𝑘
,

that is, 0 ≤ ⌊𝑃𝜖
𝑖,𝑘
⌋ ≤ 𝑃𝜖

𝑖,𝑘
≤ 1. If a set of probabilities {𝑃𝑖,𝑘 } satisfies

1 −
𝑁∏
𝑖=1

(1 − 𝑃𝑖,𝑘 · ⌊𝑃𝜖𝑖,𝑘 ⌋ ) ≥ 𝑃𝑘 ∀𝑘 = 1, 2, . . . , 𝐾, (4)

then {𝑃𝑖,𝑘 } also satisfies constraint (3b).

Proof. Since 𝑃𝜖
𝑖,𝑘
≥ ⌊𝑃𝜖

𝑖,𝑘
⌋, it follows that:

𝑁∏
𝑖=1

(1 − 𝑃𝑖,𝑘 · 𝑃𝜖𝑖,𝑘 ) ≤
𝑁∏
𝑖=1

(1 − 𝑃𝑖,𝑘 · ⌊𝑃𝜖𝑖,𝑘 ⌋ ) . (5)

=⇒ 1 −
𝑁∏
𝑖=1

(1 − 𝑃𝑖,𝑘 · 𝑃𝜖𝑖,𝑘 ) ≥ 1 −
𝑁∏
𝑖=1

(1 − 𝑃𝑖,𝑘 · ⌊𝑃𝜖𝑖,𝑘 ⌋ ) ≥ 𝑃𝑘 . (6)

□

This proposition guarantees that replacing 𝑃𝜖
𝑖,𝑘

with its lower

bound in (3) preserves the original task satisfaction constraints (3b).
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4.2 Low-level Single-Agent Task Execution
Upon receiving its task assignment {𝑃𝑖,𝑘 }𝑘=1,2,...,𝐾+1 from the high-

level coordinator, robot 𝑟𝑖 samples from this probability distribution

to determine which task it will execute in the upcoming episode.

The robot’s policy during the episode depends on whether the

selected task 𝑡𝑘 is a TWTL task (1 ≤ 𝑘 ≤ 𝐾), or the auxiliary task

focused on maximizing the robot’s individual reward (𝑘 = 𝐾 + 1).

A. Single-Agent Policy for TWTL Tasks (1 ≤ 𝑘 ≤ 𝐾).
In this case, the robot follows a stationary policy that maximizes

the probability of satisfying the TWTL task 𝑡𝑘 . We discuss the

methodology for deriving this policy in the following section.

Definition 4.2. (ProductMDP)Given a labeledMDPM = (𝑆,𝐴,Δ,
𝑅, 𝑙) and an DFA A = (𝑄,𝑞0, Σ, 𝛿, 𝐹 ), a product MDP is a tuple

P = M × A = (𝑆⊗, 𝑆⊗
0
, 𝐴⊗,Δ⊗, 𝑅⊗, 𝐹⊗), where 𝑆⊗ = 𝑆 × 𝑄 is a

finite set of states; 𝑆⊗
0
= {(𝑠, 𝛿 (𝑞0, 𝑙 (𝑠))) | ∀𝑠 ∈ 𝑆} is the set of initial

states; 𝐴⊗ = 𝐴 is the set of actions; Δ⊗ : 𝑆⊗ × 𝐴⊗ × 𝑆⊗ → [0, 1]
is the probabilistic transition relation such that for any two states,

𝑝 = (𝑠, 𝑞) ∈ 𝑆⊗ and 𝑝′ = (𝑠′, 𝑞′) ∈ 𝑆⊗ , and any action 𝑎 ∈ 𝐴⊗ ,
Δ⊗ (𝑝, 𝑎, 𝑝′) = Δ(𝑠, 𝑎, 𝑠′) if 𝛿 (𝑞, 𝑙 (𝑠)) = 𝑞′; 𝑅⊗ : 𝑆⊗ ×𝐴⊗ → R is the

reward function such that 𝑅⊗ (𝑝, 𝑎) = 𝑅(𝑠, 𝑎) for 𝑝 = (𝑠, 𝑞) ∈ 𝑆⊗
and 𝑎 ∈ 𝐴⊗ ; 𝐹⊗ = (𝑆 × 𝐹 ) ⊆ 𝑆⊗ is the set of accepting states.

To maximize the probability of reaching 𝐹⊗ from any state of

the product MDP, we can select the action that is most likely to

minimize the expected distance to any accepting states. Inspired by

[1, 20], we define 𝜖-stochastic transitions and distance-to-𝐹⊗ . With

a slight abuse of notation, we use 𝜖 as a generalized parameter in the

following definitions, where for each robot 𝑟𝑖 , 𝜖 should be replaced

with the robot-specific parameter 𝜖𝑖 , as stated in Assumption 1.

Definition 4.3 (𝜖-Stochastic Transitions). For a given product MDP

and some 𝜖 ∈ [0, 1), any transition (𝑝, 𝑎, 𝑝′) such that Δ⊗ (𝑝, 𝑎, 𝑝′)
≥ 1 − 𝜖 is defined as an 𝜖-stochastic transition.

Definition 4.4 (Distance-To-𝐹⊗). Given a product MDP, the dis-

tance from any state 𝑝 ∈ 𝑆⊗ to the set of accepting states 𝐹⊗ is

𝐷𝜖 (𝑝) = min

𝑝′∈𝐹 ⊗
𝑑𝑖𝑠𝑡𝜖 (𝑝, 𝑝′), (7)

where 𝑑𝑖𝑠𝑡𝜖 (𝑝, 𝑝′) represents the minimum number of 𝜖-stochastic

transitions to move from 𝑝 to another state 𝑝′.

Here, we label transitions with sufficiently high probabilities

(≥ 1 − 𝜖) as 𝜖-stochastic, and define 𝐷𝜖 (𝑝) as the minimum 𝜖-

stochastic transitions needed from state 𝑝 to the set of accepting

states. Next, we use 𝐷𝜖 (𝑝) to define a policy that minimizes the

𝜖-stochastic transitions required to reach an accepting state.

Definition 4.5 (𝜋𝜖 Policy). Given a product MDP and 𝜖 ∈ [0, 1),
𝜋𝜖 : 𝑆⊗ → 𝐴 is a stationary policy such that

𝜋𝜖 (𝑝) = arg min

𝑎∈𝐴
𝐷𝜖𝑚𝑖𝑛 (𝑝, 𝑎), (8)

where 𝐷𝜖
𝑚𝑖𝑛
(𝑝, 𝑎) = min

𝑝′ :Δ⊗ (𝑝, 𝑎, 𝑝′ )≥1−𝜖
𝐷𝜖 (𝑝′), i.e., the minimum

distance-to-𝐹P among the states reachable from 𝑝 under action 𝑎

with probability of at least 1 − 𝜖 .

We summarize the procedure for synthesizing policy 𝜋𝜖 in Alg. 1.

The inputs are the set of tasks and an MDPM𝑖
that adheres to

Assumption 1 with parameter 𝜖𝑖 . First, a DFA is generated for each

TWTL formula (line 2). Then, for robot 𝑟𝑖 and its corresponding

MDP, a product MDP is constructed (line 3). The product MDP

is used to calculate the Distance-To-𝐹⊗ for all states using 𝜖𝑖 -

stochastic transitions (line 4). Finally, the 𝜋𝜖
𝑖,𝑘

policy is computed

for this specific product MDP by selecting the action that minimizes

the Distance-To-𝐹⊗ for each state (lines 5-6).

Algorithm 1: Off-line computation of 𝜋𝜖 policy

Input :A set of tasks {𝐾 + 1}; a MDPM𝑖

Output :Stationary policies {𝜋𝜖
𝑖,𝑘
}; product MDPs {P𝑖,𝑘 }

1 for 𝑡𝑘 = (𝜙𝑘 , 𝑃𝑘 ) ∈ {𝐾 + 1}, 𝑘 ≤ 𝐾 do
2 A𝑘 ← Create DFA of TWTL formula 𝜙𝑘 ;

3 P𝑖,𝑘 = M𝑖 × A𝑘 ← Create product MDP;

4 Calculate Distance-To-𝐹 ⊗ for all states in P𝑖,𝑘 ;
5 for 𝑝 ∈ all states of P𝑖,𝑘 do
6 𝜋𝜖

𝑖,𝑘
(𝑝 ) ← (8)

Recall that we want to replace 𝑃𝜖
𝑖,𝑘

with its lower bound in prob-

lem (3). Nowwewill discuss methods for obtaining its lower bounds.

By definition, 𝑃𝜖
𝑖,𝑘

is the probability that robot 𝑟𝑖 , under stationary

policy 𝜋𝜖
𝑖,𝑘
, satisfies the TWTL formula 𝜙𝑘 . Equivalently, it is the

probability of reaching the accepting states of the product MDP

from an initial state under 𝜋𝜖
𝑖,𝑘
. We adopt the method proposed in

[20], which finds the lower bound of the probability of reaching

accepting states within a time window, given the upper bounds of

the transition uncertainties. We denote this lower bound as 𝑃𝜖
𝑖,𝑘

and refer to it as the static lower bound. We define {𝑃𝜖
𝑖,𝑘
} as the

set of static lower bounds. Alternatively, another approach is to use

the partial information from Assumption 1 to estimate the upper

and lower bounds of the transition probabilities in the MDP. These

bounds can then be used with probabilistic model checkers such as

PRISM [17] or the optimization-based method proposed in [18] to

compute the lower bounds.

While the static lower bound can be computed offline using

partial information 𝜖𝑖 without exact transition probabilities, it may

be overly conservative when 𝜖𝑖 significantly overestimates the true

uncertainty. To reduce conservativeness, we introduce a second

lower bound that is refined in real time as robots interact with the

environment. This data-driven method allows the lower bounds of

𝑃𝜖
𝑖,𝑘

to be adaptively refined for greater accuracy.

For robot 𝑟𝑖 with an initial state 𝑝𝑖 , the outcomes of the policy 𝜋𝜖
𝑖,𝑘

(either satisfying or violating the TWTL constraint) can be modeled

as a Bernoulli distribution with the probability of success equal

to 𝑃𝜖
𝑖,𝑘
(𝑝𝑖 ). To estimate 𝑃𝜖

𝑖,𝑘
(𝑝𝑖 ), we use the Wilson score interval

[41], which computes a confidence interval [𝑃𝜖−
𝑖,𝑘
(𝑝𝑖 ), 𝑃𝜖

+

𝑖,𝑘
(𝑝𝑖 )] that

bounds 𝑃𝜖
𝑖,𝑘
(𝑝𝑖 ) with a specified confidence level, where

𝑃𝜖
−
𝑖,𝑘
(𝑝𝑖 ) =

𝑛𝑆
𝑖,𝑘
(𝑝𝑖 ) + 1

2
𝑧2

𝑛𝑖,𝑘 (𝑝𝑖 ) + 𝑧2
− 𝑧

𝑛𝑖,𝑘 (𝑝𝑖 ) + 𝑧2

√︄
𝑛𝑆
𝑖,𝑘
(𝑝𝑖 )𝑛𝐹𝑖,𝑘 (𝑝𝑖 )
𝑛𝑖,𝑘 (𝑝𝑖 )

+ 𝑧
2

4

. (9)

Here, 𝑛𝑖,𝑘 (𝑝𝑖 ) represents the number of episodes in which robot 𝑟𝑖
started at 𝑝𝑖 and adopted 𝜋𝜖

𝑖,𝑘
. The number of episodes that satis-

fied or violated the constraint are denoted by 𝑛𝑆
𝑖,𝑘
(𝑝𝑖 ) and 𝑛𝐹𝑖,𝑘 (𝑝𝑖 ),

respectively. Thus, 𝑛𝑖,𝑘 (𝑝𝑖 ) = 𝑛𝐹𝑖,𝑘 (𝑝𝑖 ) + 𝑛
𝑆
𝑖,𝑘
(𝑝𝑖 ). The value of 𝑧 is
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chosen based on the desired confidence level (e.g., 99% confidence

level corresponds to 𝑧 = 2.58). By selecting a sufficiently high value

of 𝑧, we ensure that 𝑃𝜖
𝑖,𝑘
(𝑝𝑖 ) ≥ 𝑃𝜖

−

𝑖,𝑘
(𝑝𝑖 ) with high confidence.

In the initial episodes, we rely on the static lower bound 𝑃𝜖
𝑖,𝑘
,

as the confidence lower bound 𝑃𝜖
−

𝑖,𝑘
is initially far from the true

probability 𝑃𝜖
𝑖,𝑘

due to the limited data available. After each episode,

we update 𝑃𝜖
−

𝑖,𝑘
(𝑝𝑖 ) for robot 𝑟𝑖 and the task 𝑡𝑘 it executed. As robots

collect more data, 𝑃𝜖
−

𝑖,𝑘
becomes a more accurate estimate of 𝑃𝜖

𝑖,𝑘
and

can gradually replace the static lower bound. The set of confidence
lower bounds is denoted as {𝑃𝜖−

𝑖,𝑘
}.

Finally, we discuss how to obtain𝑉𝑖,𝑘 for problem (3). As defined

earlier, 𝑉𝑖,𝑘 represents the expected reward for robot 𝑟𝑖 under its

current policy for task 𝑡𝑘 and is therefore the state value function

of the MDP under 𝜋𝜖
𝑖,𝑘

, a stationary policy defined in Definition 4.5

and Alg. 1. We estimate 𝑉𝑖,𝑘 using the tabular TD(0) method [34].

B. Single-Agent Policy for Reward Maximization (𝑘 = 𝐾 + 1).
In this case, the robot is not assigned to any TWTL tasks and exclu-

sively focuses on exploring the environment to maximize its reward

function. In this work, we use the tabular Q-learning algorithm [40]

to learn an optimal policy that maximizes the expected discounted

reward. However, any RL algorithm can be used for this purpose.

The Q-function is updated as follows:

𝑄𝑖,𝑘 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ) ← 𝑄𝑖,𝑘 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ) + 𝛼
(
𝑟 𝑖𝑡+1 + 𝛾 max

𝑎′
𝑄𝑖,𝑘 (𝑠𝑖𝑡+1, 𝑎′ ) − 𝑄𝑖,𝑘 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 )

)
,

(10)

where 𝑠𝑖𝑡 , 𝑎
𝑖
𝑡 , 𝑟

𝑖
𝑡+1, and 𝛾 denote the state, action, reward, and dis-

count factor, respectively. At each state, the value function 𝑉𝑖,𝐾+1
is the maximum 𝑄-value over all available actions at that state.

C. Combined Single-Agent Policy.
We summarize the overall single-agent policy in Alg. 2. The algo-

rithm begins by constructing the product MDPs and computing

𝜋𝜖 policies (line 2). Then it initializes the variables for the Wilson

score lower bound (line 5), computes the static lower bound (line

6), initializes a value function table (line 7) and a Q-table (line 8),

and its corresponding policy (line 9). Upon receiving task allocation

{𝑃𝑖,𝑘 } from the high-level coordinator, a task is sampled from this

probability distribution (line 11), and the robot’s initial product

MDP state is set accordingly (lines 12-13). Depending on the se-

lected task, the robot either (i) select actions from policy 𝜋𝜖
𝑖,𝑘

and

update the value function𝑉 𝜖
𝑖,𝑘

(lines 15-19) if executing a TWTL task

(𝑘 ≤ 𝐾) or (ii) learn a policy to maximize rewards via Q-learning

(lines 20-25), if in an exploration phase (𝑘 = 𝐾 + 1) or if the TWTL

constraint is met before the episode ends. After executing the task,

the robot updates the success or failure counts and the confidence

lower bound (line 26).

Function stats() is used to provide the expected rewards {𝑉𝑖,𝑘 },
lower bounds {𝑃𝜖

𝑖,𝑘
} and {𝑃𝜖−

𝑖,𝑘
} to the high-level coordinator (lines

33-39). The set {𝑃𝜖−
𝑖,𝑘
} initially consists of static lower bounds 𝑃𝜖

𝑖,𝑘
,

which are gradually replaced by the confidence lower bounds 𝑃𝜖
−

𝑖,𝑘

as more data is collected (line 37). In line 37, 𝑁 is a user-defined

data count threshold for switching from static to confidence lower

bounds. We refer to {𝑃𝜖−
𝑖,𝑘
} as a set of adaptive lower bounds.

Algorithm 2: Single-agent Task Execution

Input :A set of tasks {𝐾 + 1}; a set of policies 𝜋𝜖
𝑖,𝑘

; MDPM𝑖
for robot 𝑟𝑖 ;

episode length𝑇 ; initial MDP state 𝑠0

1 Initialization:
2 {𝜋𝜖

𝑖,𝑘
}, {P𝑖,𝑘 } ← Alg. 1

3 for P𝑖,𝑘 ∈ {P𝑖,𝑘 }𝑘=1,2,...,𝐾 do
4 for 𝑝 ∈ all initial states of P𝑖,𝑘 do
5 𝑛𝑖,𝑘 (𝑝 ) ← 0, 𝑛𝑆

𝑖,𝑘
(𝑝 ) ← 0, 𝑛𝐹

𝑖,𝑘
(𝑝 ) ← 0

6 𝑃𝜖
𝑖,𝑘
← static lower bound (proposed in [20])

7 𝑉𝑖,𝑘 (𝑝 ) ← 0 for 𝑝 ∈ all states of P𝑖,𝑘
8 𝑄 (𝑠, 𝑎) ← 0 for (𝑠, 𝑎) ∈ all state-action pairs ofM𝑖

9 𝜋 (𝑠 ) ← arg max𝑎 𝑄 (𝑠, 𝑎)
10 Function execute({𝑃𝑖,𝑘 }𝑘=1,2,...,𝐾+1):
11 𝑘 ← Sampled from {𝑃𝑖,𝑘 }𝑘=1,2,...,𝐾+1
12 𝑝 ← 𝑝 ∈ initial states of P𝑖,𝑘 s.t. mdp_state(𝑝) = 𝑠0

13 𝑝0 ← 𝑝 , 𝑠 ← 𝑠0

14 for 𝑡 = 1 : 𝑇 do
15 if not constraint_satisfied and 𝑘 ≤ 𝐾 then
16 𝑎 ← Select action from policy 𝜋𝜖

𝑖,𝑘
(𝑝 )

17 Take action 𝑎, observe 𝑝′ (next state) and 𝑟 (reward)
18 𝑉𝑖,𝑘 (𝑝 ) ← 𝑉𝑖,𝑘 (𝑝 ) + 𝛼

(
𝑟 + 𝛾𝑉𝑖,𝑘 (𝑝′ ) − 𝑉𝑖,𝑘 (𝑝 )

)
19 𝑝 ← 𝑝′, 𝑠 ←𝑚𝑑𝑝_𝑠𝑡𝑎𝑡𝑒 (𝑝′ )
20 else if constraint_satisfied or 𝑘 = 𝐾 + 1 then
21 𝑎 ← Select action from 𝜋 (𝑠 ) via 𝜖−greedy
22 Take action 𝑎, observe 𝑠′ (next state) and 𝑟 (reward)
23 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′ ) − 𝑄 (𝑠, 𝑎) )
24 Update policy 𝜋 (𝑠 )
25 𝑠 ← 𝑠′

26 update(𝑝0, 𝑛𝑖,𝑘 (𝑝0 ), 𝑛𝑆𝑖,𝑘 (𝑝0 ), 𝑛𝐹𝑖,𝑘 (𝑝0 ), constraint_satisfied)
27 𝑠0 ← 𝑠

28 Function update(𝑝0 , 𝑛𝑖,𝑘 (𝑝0 ) , 𝑛𝑆𝑖,𝑘 (𝑝0 ) , 𝑛𝐹𝑖,𝑘 (𝑝0 ) , 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑):
29 𝑛𝑖,𝑘 (𝑝0 ) ← 𝑛𝑖,𝑘 (𝑝0 ) + 1

30 if satisfied then 𝑛𝑆
𝑖,𝑘
(𝑝0 ) ← 𝑛𝑆

𝑖,𝑘
(𝑝0 ) + 1

31 else 𝑛𝐹
𝑖,𝑘
(𝑝0 ) ← 𝑛𝐹

𝑖,𝑘
(𝑝0 ) + 1

32 𝑃𝜖
−
𝑖,𝑘
(𝑝0 ) ← equation (9)

33 Function stats():
34 for 𝑘 = 1 : 𝐾 do
35 𝑝 ← 𝑝 ∈ initial states of P𝑖,𝑘 s.t. mdp_state(𝑝) = 𝑠0

36 𝑉𝑖,𝑘 ← 𝑉𝑖,𝑘 (𝑝 ) , 𝑃𝜖𝑖,𝑘 ← 𝑃𝜖
𝑖,𝑘
(𝑝 )

37 𝑃𝜖
−
𝑖,𝑘
← 𝑃𝜖

−
𝑖,𝑘

if 𝑛𝑖,𝑘 (𝑝 ) ≥ 𝑁 else 𝑃𝜖
−
𝑖,𝑘
← 𝑃𝜖

𝑖,𝑘

38 𝑉𝑖,𝐾+1 ←𝑚𝑎𝑥𝑎𝑄 (𝑠0, 𝑎) , 𝑃𝜖𝑖,𝐾+1 ← 0, 𝑃𝜖
−
𝑖,𝐾+1 ← 0

39 return {𝑉𝑖,𝑘 }𝑖=1,2,...,𝐾+1 , {𝑃𝜖𝑖,𝑘 }𝑖=1,2,...,𝐾+1 , {𝑃𝜖
−
𝑖,𝑘
}𝑖=1,2,...,𝐾+1

Remark 2. The single-agent policies provide movement guidance
for lower-level task execution (e.g., determining which grid cells to
visit next, as shown in Figure 1). However, these policies do not ex-
plicitly handle low-level motion planning or collision avoidance. To
ensure safe and efficient navigation during the actual execution, real-
time collision avoidance algorithms such as [26, 36, 37] and motion
planning algorithms [16, 28] can be integrated.

4.3 Bi-level Task Allocation and Policy Learning
Assumption 2. We assume that, after substituting 𝑃𝜖

𝑖,𝑘
with the

static lower bound 𝑃𝜖
𝑖,𝑘

in the optimization problem (3), a feasible
solution {𝑃𝑖,𝑘 } exists for the resulting optimization problem.

This assumption sets a necessary condition for the proposed al-

gorithm. The static lower bound 𝑃𝜖
𝑖,𝑘

reflects the maximum achiev-

able probability of constraint satisfaction given the robot’s limited

knowledge of transition dynamics. If a feasible task allocation {𝑃𝑖,𝑘 }
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does not exist, task satisfaction cannot be guaranteed at the desired

probability thresholds, implying a need to either relax the TWTL

task requirements or increase the number of robots.

We summarize the proposed bi-level framework in Alg. 3. Before

each episode, the high-level coordinator collects task satisfaction

probabilities and expected rewards from the robots (lines 2-3). The

coordinator first attempts to solve the task allocation problem using

the adaptive lower bounds (line 4). If no feasible solution is found, it

falls back on the static lower bounds 𝑃𝜖
𝑖,𝑘

, as Assumption 2 ensures

that a feasible solution exists (lines 5-6). Once the task assignment

is determined, each robot independently executes its policy (Alg. 2)

to complete the assigned task (lines 7-8).

Algorithm 3: Bi-level Multi-robot Coordination

Input :A set of robots {𝑁 }; number of episodes 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒
1 for 𝑗 = 1 : 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
2 for 𝑟𝑖 ∈ {𝑁 } do
3 {𝑉𝑖,𝑘 }, {𝑃𝜖𝑖,𝑘 }, {𝑃

𝜖−
𝑖,𝑘
} ← 𝑟𝑖 .stats() (Alg. 2)

4 try: {𝑃𝑖,𝑘 } ← substitute 𝑃𝜖
𝑖,𝑘

with 𝑃𝜖
−
𝑖,𝑘

in Problem (3) and solve

5 if no feasible solution {𝑃𝑖,𝑘 } found then
6 {𝑃𝑖,𝑘 } ← substitute 𝑃𝜖

𝑖,𝑘
with 𝑃𝜖

𝑖,𝑘
in Problem (3) and solve

7 for 𝑟𝑖 ∈ {𝑁 } do
8 𝑟𝑖 .execute({𝑃𝑖,𝑘 }𝑘=1,2,...,𝐾+1) (Alg. 2)

Remark 3. In cases where some robots fail, re-planning can be
achieved by solving a modified version of Problem (3). The reallocation
process focuses on the affected TWTL tasks and redistributes them
among available robots that are not committed to any TWTL tasks in
the current episode. This re-planning scheme can improve robustness
against failures while minimizing disruptions to ongoing tasks.

Theorem 4.6. Given a set of robots {𝑁 }, a set of TWTL tasks
{𝐾 + 1}, and a set of MDPs {M} subject to Assumption 1. Suppose
Assumption 2 holds. Then, in every episode where Alg. 3 finds a feasible
solution {𝑃𝑖,𝑘 }, the probability of satisfying 𝜙𝑘 for each task 𝑡𝑘 is
guaranteed to be at least 𝑃𝑘 with high confidence.

Proof. Theorem 4.6 follows directly from Proposition 4.1, with

the proof available in [19]. □

5 SIMULATION
To validate the proposed algorithm, we conduct simulations based

on the pickup and delivery example illustrated in Fig. 1, incorpo-

rating time window requirements. The environment depicted in

Fig. 3b is used across all experiments. In Fig. 3b, the colored cells

represent stations (S1, S2) where robots can idle, warehouses (W1,

W2) for storing resources, resource processing units (P1, P2), and

an operation site (O) where processed resources are delivered. The

black zones indicate restricted areas that robots must avoid, while

the blue zones represent water, which ground robots are prohibited

from entering. The gray zones represent areas of interest requiring

aerial monitoring, which is unknown to the robots. The arrows

show two one-way bridges over the water.

We consider robots with transition models described in Example

2.4. The robot specifications are summarized in Table 1. Drones

are incentivized to identify and monitor traffic congestions (grey

N

S

EW
Stay

SW SE

NENW

(a)

S2

P2

O
P1

W1

W2

S1

(b)

Figure 3: (a) Transitions (intended - black, unintended - red) under
each action. (b) Illustration of the simulation environment.

Table 1: Robot Types, Rewards, and Uncertainties

Robot Type Robot Index Reward 𝝐 𝝐 𝒊

Drone

1, 2 5 at grey cells, 0 at other cells

0.1 0.2

3, 4 1 at grey cells, 0 at other cells

Mobile Robot

5, 6

1 at 𝑆2 , 0 at other cells 0.15

0.3

7, 8 0.25

cells with initially unknown locations), where drones 1 and 2 get

higher rewards due to their better sensing capability. Mobile robots

are encouraged to return to Station 𝑆2 as part of their auxiliary

objectives. All robots have a conservative estimate 𝜖𝑖 of their actual

unknown transition uncertainty 𝜖 .

Table 2 presents the task specifications. Tasks 𝜙1 and 𝜙2 require

robots to pick up resources from warehouse𝑊2, process them at 𝑃2

or 𝑃1, respectively, and deliver them to 𝑂—all within 15 time steps,

ensuring a 90% success rate. Tasks 𝜙3 and 𝜙4 involve transporting

resources from a different warehouse𝑊1, delivering them to 𝑃1, and

to 𝑂 , with different time window requirements. The lower desired

probabilities for 𝜙3 and 𝜙4 provide robots with more flexibility to

pursue their auxiliary task of environmental monitoring. While

this relaxes the requirement for individual task satisfaction, the

probability of completing at least one of these tasks remains high.

Table 2: Task Specifications as TWTL Formulas

Task TWTL Formula
Desired

Probability
𝜙1 [𝐻 1𝑊2 ] [0,15] · [𝐻 1𝑃2 ] [0,15] · [𝐻 1𝑂 ] [0,15]

0.9

𝜙2 [𝐻 1𝑊2 ] [0,15] · [𝐻 1𝑃1 ] [0,15] · [𝐻 1𝑂 ] [0,15]
0.9

𝜙3, 𝜙4 [𝐻 1𝑊1 ] [0,20] · [𝐻 1𝑃1 ] [0,10] · [𝐻 1𝑂 ] [0,15]
0.7

We utilize the Robot Operating System (ROS 2) [23], where each

robot is implemented as an independent ROS node. Robots commu-

nicate with the coordinator using ROS communication mechanisms,

enabling realistic simulation of a distributed multi-robot system.

Simulations are conducted over 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 2000 episodes per itera-

tion. The results presented are averaged over 20 iterations. Details

of the parameters used are provided in [19].

Case 1. We evaluate the proposed algorithm under two con-

ditions: using static lower bounds (by skipping line 4 in Alg. 3)

and adaptive lower bounds (as described in Alg. 3). Our results

show that solving the task allocation problem with static lower

bounds tends to assign more robots to TWTL tasks (𝜙1 - 𝜙4), com-

pared to the adaptive lower bounds. This finding aligns with our

expectations, as the static lower bound computes task satisfaction

probability based on 𝜖𝑖 , which overestimates the actual uncertainty

𝜖 . In contrast, the adaptive lower bounds refine the estimate of task

satisfaction probability as the robot interacts with the environment,
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resulting in a less conservative lower bound. With the adaptive

lower bounds, robots progressively gain confidence in TWTL satis-

faction, allowing the high-level coordinator to adaptively improve

the task allocation by assigning fewer robots to TWTL tasks.

Fig. 4a shows that average task satisfaction rates consistently

exceed the desired probability, regardless of the lower bound se-

lection. This confirms that the proposed framework successfully

ensures probabilistic satisfaction of the TWTL tasks. Nevertheless,

static lower bounds result in a conservatively higher satisfaction

rate. Fig. 4b compares the TWTL satisfaction rate in the first 100

episodes versus 2000 episodes when using adaptive lower bounds.

We observe that as the adaptive lower bounds refine over time,

satisfaction rates converge toward the desired probabilities by re-

ducing assignments to TWTL tasks. As a result, using the adaptive

lower bounds yields higher rewards, as shown in Fig. 5a.

ϕ1 ϕ2 ϕ3 ϕ4
0.6
0.7
0.8
0.9
1.0

Task Satisfaction Rates (2000 episodes)
Adaptive Lower Bound
Static Lower Bound

(a) Static vs. Adaptive

ϕ1 ϕ2 ϕ3 ϕ4
0.6
0.7
0.8
0.9
1.0

Task Satisfaction Rates (Adaptive)
First 100 Episodes
2000 Episodes

(b) Initial vs. Full Episodes

Figure 4: TWTL Task satisfaction rate. (a): Satisfaction rate over 2000
episodes using static and adaptive lower bounds. (b) Satisfaction
rate using adaptive lower bounds, over the first 100 episodes vs 2000
episodes. The dashed line represents the desired probability of each
TWTL task. The bars show the mean values over the 20 iterations,
with error bars depicting the standard deviation.

Our framework, which incorporates auxiliary reward functions

alongside the TWTL constraint, enables adaptive and self-improving

task allocation. In the early stages of each iteration, the system pre-

dominantly assigns TWTL tasks to the drones (Robots 1-4) as the

mobile robots (Robots 5-8) initially have high transition uncertainty

estimates (𝜖𝑖 ), resulting in lower task satisfaction probability esti-

mates. As the simulation progresses, the robots continuously update

their task satisfaction probabilities. Meanwhile, drones gradually

discover high-reward areas, prompting the coordinator to adjust

the task assignments. By the end of the simulation, the system con-

verges to a reasonable division of labor, with TWTL tasks mainly

assigned to mobile robots (Robots 5-8) and low-reward drones

(Robots 3-4), while drones with high-quality sensors (Robots 1-2)

remain unassigned to focus on monitoring the high-interest area.

This adaptive behavior demonstrates the system’s ability to dynam-

ically reallocate resources, balancing reward maximization with

guaranteed satisfaction of TWTL constraints.

Case 2. In this case study, we evaluate the computation time of

the proposed framework as the number of robots increases. The ex-

perimental setup is identical to Case 1, where tasks listed in Table 2

must be satisfied with their corresponding probability thresholds.

We simulate systems with 8, 16, 24, 32, 40, and 48 robots, duplicating

the robots defined in Table 1 by factors from 1 to 6. In this setup,

we utilize the adaptive lower bound.

Fig. 5b presents the average computation time per episode for

solving the task allocation problem (3), averaged over 2000 episodes.

The results show that, even with a large number of robots, the pro-

posed framework solves the task allocation problem in a relatively

short time. Notably, for 48 robots, the average computation time re-

mains under 0.4 seconds, demonstrating the framework’s capability

for efficient real-time applications.
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Figure 5: (a): Total rewards accumulated by all robots over the
episodes. The reward represents the sum of individual rewards col-
lected by each robot. (b): Computation time for solving task alloca-
tion (Alg. 3, line 4-6) with different number of robots.

In Alg. 1, each robot independently constructs the product MDPs

and synthesizes the policies offline. In Alg. 2, each robot executes

its task independently, without the need for communication with

others. Thus, computation time for these processes is unaffected by

the number of robots in the system. While our evaluation focused

on varying the number of robots, increasing the number of tasks

similarly impacts computation time by adding nonlinear constraints

to the optimization problem. Analysis of this effect is included in

the extended version of this work [19].

6 CONCLUSION
This paper presents a bi-level framework that integrates high-level

task allocation with lower-level task execution and learning to en-

sure robots satisfy Time-Window Temporal Logic (TWTL) tasks

with guaranteed probability thresholds. We introduce adaptive

lower bounds on task completion probabilities, enabling robots to

iteratively refine their probability estimates for more informed task

allocation decisions. By incorporating reward functions as an aux-

iliary objective, the system can iteratively improve task allocation

to maximize expected rewards while maintaining probabilistic task

satisfaction. The flexibility to impose different reward functions on

robots enables the system to achieve multiple objectives simultane-

ously, allowing different reward functions to guide user-customized

allocation plans without compromising the primary objective of

satisfying TWTL tasks.

We provide theoretical analysis and conduct comprehensive sim-

ulations to validate the framework. The results highlight its ability

to ensure constraint satisfaction at desired probability thresholds

under uncertainty. Furthermore, simulation results also show that

the task allocation problem can be efficiently solved for large num-

bers of robots in real time, demonstrating the framework’s practical

applicability in real-world scenarios.
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