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ABSTRACT
Strategic aggregation of electric vehicle batteries as energy reser-
voirs can optimize power grid demand, bene�ting smart and con-
nected communities, especially large o�ce buildings that o�er
workplace charging. This involves optimizing charging and dis-
charging to reduce peak energy costs and net peak demand, moni-
tored over extended periods (e.g., a month), which involves making
sequential decisions under uncertainty and delayed and sparse re-
wards, a continuous action space, and the complexity of ensuring
generalization across diverse conditions. Existing algorithmic ap-
proaches, e.g., heuristic-based strategies, fall short in addressing
real-time decision-making under dynamic conditions, and tradi-
tional reinforcement learning (RL) models struggle with large state-
action spaces, multi-agent settings, and the need for long-term
reward optimization. To address these challenges, we introduce
a novel RL framework that combines the Deep Deterministic Pol-
icy Gradient approach (DDPG) with action masking and e�cient
MILP-driven policy guidance. Our approach balances the explo-
ration of continuous action spaces to meet user charging demands.
Using real-world data from a major electric vehicle manufacturer,
we show that our approach comprehensively outperforms many
well-established baselines and several scalable heuristic approaches,
achieving signi�cant cost savings while meeting all charging re-
quirements. Our results show that the proposed approach is one of
the� rst scalable and general approaches to solving the V2B energy
management challenge.

KEYWORDS
Reinforcement Learning; Optimization; Electric Vehicle Charging

ACM Reference Format:
Fangqi Liu, Rishav Sen, Jose Paolo Talusan, Ava Pettet, Aaron Kandel, Yoshi-
nori Suzue, Ayan Mukhopadhyay, and Abhishek Dubey. 2025. Reinforce-
ment Learning-based Approach for Vehicle-to-Building Charging with Het-
erogeneous Agents and Long TermRewards . In Proc. of the 24th International

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025),
Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 14 pages.

1 INTRODUCTION
The concept of vehicle-to-building (V2B) charging [7, 12] leverages
the ability of battery electric vehicles (EVs) to operate as both en-
ergy consumers and temporary storage units [25]. V2B systems are
particularly relevant in large o�ce buildings, where EVs can be
aggregated to optimize energy consumption and reduce peak power
demand. By strategically controlling the charging and discharging
cycles of EVs, these systems ensure that vehicles meet users’ ex-
pected state-of-charge (SoC) requirements while minimizing the
energy bought during peak time-of-use (ToU) periods [26, 31] and
reducing the building’s peak power demand over a billing cycle.
Implementing this optimization process in practice becomes com-
plex due to the heterogeneity of charging infrastructures [17], the
uncertainty of EV arrival and departure times, and the need for a
careful balance between energy cost savings and ensuring that the
expected� nal state of charge (SoC) is kept close to user expectation.
Additionally, aligning V2B frameworks with complex electricity
pricing policies, including both energy and demand charges, adds
to the challenge [27, 29]. While prior work has largely modeled this
problem as a single-shot mixed-integer linear program [1, 3, 8, 14],
such approaches fail to capture the intricacies of real-time decision-
making in dynamic environments.

This sequential decision process can be modeled as a Markov
Decision Process (MDP); however, solving the MDP presents sev-
eral di�culties, including delayed and sparse rewards, a continuous
action space, and the need for e�ective long-term decision-making
under uncertainty. To address these challenges, we propose a novel
approach to solve this problem that combines the Deep Determin-
istic Policy Gradient (DDPG) with two key enhancements: action
masking and policy guidance through a mixed-integer linear pro-
gram (MILP). The DDPG algorithm allows us to optimize continu-
ous action spaces while accounting for uncertainties in EV arrival
times, SoC requirements, and� uctuating building energy demands.
By leveraging action masking, we adjust neural network actions
during training using domain-speci�c knowledge, limiting explo-
ration and guiding the RL agent toward more e�cient and feasible
policies. The MILP component provides policy guidance during
training, steering the RL agent toward near-optimal solutions and
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Figure 1: EVs and bidirectional chargers at the research site.

enhancing convergence in complex environments. Our approach
demonstrates strong generalization across diverse conditions and
o�ers a scalable solution for V2B energy management. Our team
includes a major EV manufacturer with access to a smart build-
ing that has 15 heterogeneous chargers ( Figure 1 shows some of
them). We use real-world charging and energy data to validate
our approach, showing its e�ectiveness in reducing energy costs
over nine months (May 2023 – Jan 2024). The summary of our
contributions is as follows:
• Modeling the V2B problem as an MDP with continuous
action space: We model the V2B problem as a Markov Deci-
sion Process (MDP) that captures the dynamics of EV SoC levels,
varying arrival and departure times, and time-dependent elec-
tricity pricing. This formulation addresses delayed and sparse
rewards, continuous action spaces, and long-term goals to reduce
the monthly peak demand charge and energy costs.

• Solving the V2B sequential decision-making problem: We
present a novel RL framework based on the Deep Determinis-
tic Policy Gradient (DDPG). We combine DDPG with i) action
masking that leverages domain knowledge and the structure
of the V2B problem and ii) policy guidance based on solving a
deterministic MILP to aid the learning of the optimal policy.

• Validating with real-world data: We validate our proposed
approach using real-world data from a major electric vehicle
manufacturer. The model achieved signi�cant cost savings over
nine months (May 2023–January 2024), meeting all user charging
demands. Our approach outperforms heuristics and prior work.

• Ablation Study: We conduct a detailed ablation study to as-
sess the impact of each technique and demonstrate the model’s
e�ectiveness.

2 PROBLEM FORMULATION
Charger and Time Intervals: Consider the building has # het-
erogeneous chargers C = {⇠1,⇠2, . . . , ⇠# }. Each charger ⇠8 has
limits on the charging rate, minimum ⇠<8=

8 and maximum ⇠<0G
8 ;

⇠<8=
8 < 0 implies the charger⇠8 is bi-directional and can discharge

and ⇠<8=
8 = 0 represents a unidirectional charger with no dis-

charging. We assume that all chargers are designed to be able
to charge at maximum rates simultaneously, i.e.,

Õ8=#
8=1 ⇠<0G

8 <
maximum rated capacity of the building. The planning horizon is
one billing period, usually a month, which we divide into equal-
sized� xed time intervals T = {)1,)2, . . . )4=3 }, where)9�)9�1 = X
(we use X = 0.25 hours). The choice of X is user-speci�c and provides

a stable decision epoch, preventing rapid changes in the charging
rate.
Charging Power: Let us assume that the function P : C ⇥ T!
< speci�es the power consumed by the charger ⇠8 at time )9 . If
the power is zero, the charger is not active, and if the power is
negative, the charger discharges, acting as an energy source. Note
that by construction % (⇠8 ,)9 ) 2 [⇠<8=

8 ,⇠<0G
8 ]. Let us also assume

that function B : T ! <+ speci�es the average building power
consumed in X time interval. Given the charger and the building
power consumption, we can calculate the total cost for the billing
period. The parts of the total cost are based on the property type,
time of day, and state of the power grid and are based upon the
rules and regulations set by the local transmission system operator
(TSO) and distribution system operator (DSO). These parts include
energy expenses for building power and charging, which vary with
peak and o�-peak hours, as well as demand charges based on the
peak power draw over a longer-term period.

Let the price of the energy consumed is given by \⇢ : T !<+

(in $/kWh). In practice, the Time-of-Use (TOU) electricity rates do
not vary continuously and are rather divided into two parts each
day, i.e., a peak and a non-peak period. Then, the total cost of the en-
ergy consumed is ⇥⇢ (P) = Õ9=4=3

9=1

⇣Õ8=#
8=1 (% (⇠8 ,)9 )) + B()9 )

⌘
⇥

\⇢ ()9 ) ⇥ X . E�ectively, ⇥⇢ is a function of charging power P =
{% (⇠8 ,)9 ) |⇠8 2 C,)9 2 T }.
Demand Charge: The demand charge is calculated using the maxi-
mum (peak) power consumed during any time interval in the billing
period, with the demand price denoted as \⇡ (in $/kW). Let %<0G =
max9=4=39=1 (Õ8=#

8=1 % (⇠8 ,)9 )) + B()9 ) denote the maximum power
consumed. The demand charge is given by⇥⇡ (P) = \⇡ ⇥%<0G ⇥X ,
which is a function of charging power P. Hence, the total cost of
energy bought from the power grid is⇥⇢ (P)+⇥⇡ (P). To minimize
the cost, we must reduce the net power usage when the cost \⇢ is
high and manage the power peaks to ensure %<0G remains as low
as possible. Often, the demand charge is levied to ensure that the
industrial buildings do not put excess burden on the power grid.
In our problem, we use estimates of peak power and denote it by
%̂<0G . It is important to note that the demand charge is typically
applied during peak hours of the TOU electricity rate, as re�ected
in our formulation.
Electric Vehicle Sessions: Assume that during the billing period
T , a set of electric vehicles, denoted as V , are serviced at the
building. Each EV+ is characterized by its arrival timeA : V ! T
and departure time D : V ! T . Note that if the same vehicle
arrives more than once, we will treat it as a separate session. If the
EV arrives between time slots [)8�1,)8 ], we consider its e�ective
arrival time as A(+ ) = )8 . Similarly, if the vehicle departs between
[)9 ,)9+1], we consider its e�ective departure time as D(+ ) = )9 .
EV sessions are contiguous, i.e., EV is expected to remain at the site
between A(+ ) and D(+ ), for 8+ 2 V. For each + , we know the
initial state of charge SOC� : V !<+ and the required� nal state
of charge (measured as a percentage of the battery capacity) SOC' :
V ! <+ upon arrival. SOC<8= : V ! <+ is the minimum
allowed SoC for the car i.e., the car cannot be discharged below this
value, and SOC<0G : V ! <+ is the maximum allowed SoC for
the car. The minimum andmaximum bounds are speci�ed by the EV
manufacturer, considering the impact of charging and discharging
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on battery health. CAP : V ! <+ denotes the vehicle’s battery
capacity in kWh. We track the current SoC of the EV using SOC,
where SOC : V ⇥ T !<+ and it is de�ned later.
ChargerAssignment: Our approach employs a two-layer decision-
making process for EV charging optimization. First, a heuristic
assigns EVs to chargers upon arrival. Second, an RL-based pol-
icy optimizes charging rates at� xed intervals. We de�ne an EV
assignment function [ : V ! C, where (+ 2 V) [ (+ ) = ⇠8 in-
dicates the charger assigned to EV + . Correspondingly, we also
maintain a charger-EV occupancy function q : C ⇥T !V , where
q (⇠8 ,)9 ) = + , representing the connection of charger⇠8 with EV+
at time )9 . The correlation of these two functions can be expressed
as q ([ (+ ),)9 ) = + , s.t. A(+ )  )9  D(+ ) indicating that if
EV + is assigned to charger ⇠8 through the function [, then at
any time slot within its stay duration, it is con�rmed that EV +
is connected to charger ⇠8 . If no EV is connected to the charger
at time )9 , the function may return a ; denoting an inactive state,
expressed as q (⇠8 ,)9 ) = ;. This underscores the dynamic nature
of charger assignments, which ensures that no two electric vehi-
cles share a charger simultaneously. Our FIFO policy prioritizes
bidirectional chargers as the optimal strategy (see Table 4 in the
appendix1), enhancing charging e�ciency. We also maintain the
connection between the assigned charger and the EV until depar-
ture. For EV charging, we approximate a linear charging pro�le,
following prior work [23]. The SoC is updated at each time slot )9
using the following equation:

SOC (+ ,)9+1) = SOC (+ ,)9 ) + % ([ (+ ),)9 )⇥X
CAP (+ ) (1)

Feasibility: The set Feasible indicates the feasible solutions that
satisfy the following constraints:

8⇠8 2 C,8)9 2 T : ⇠<8=
8  % (⇠8 ,)9 )  ⇠<0G

8 (2)

8⇠8 2 C,8)9 2 T ,8+ 2 V : SOC (+ ,)9 ) � SOC<8= (+ ) (3)
8⇠8 2 C,8)9 2 T ,8+ 2 V : SOC (+ ,)9 )  SOC<0G (+ ) (4)
8)9 2 T :

Õ
⇠8 2C % (⇠8 ,)9 ) + B()9 ) � 0 (5)

Here, Constraint (2) guarantees a valid charging action range, Con-
straints (3 and 4) ensures that each EV’s SoC remains within an
acceptable range, and Constraint (5) ensures that discharging power
does not exceed building power.
Objectives: One of our objectives for the V2B problem is to mini-
mize the total cost over the billing period, incorporating the Time-
Of-Use (TOU) electricity rates and demand charges. This objective
is expressed as:

min
([,P)2 Feasible

(⇥⇢ (P) + ⇥⇡ (P)) (6)

The second objective ensures that vehicles are charged to their
requirement, SOC' , by the time they leave.

min
([,P)2Feasible

Õ
+ 2V max(SOC' (+ ) � SOC (+ ,D(+ )), 0) (7)

The inner max function ensures EV users’ energy requirements are
met, even if overcharging occurs. However, in practical scenarios,
short stays may make meeting the SoC requirement impossible. To
address this, we reformulate the objectives into a multi-weighted

1The full paper, including the appendix, is available on arXiv.

framework. The optimal charger assignment and actions are then
determined by optimizing these combined objectives.

3 RELATEDWORK
We highlight four major challenges of solving the V2B problem,
namely: 1) the uncertainty of vehicles and SoC requirements; 2)
Time-Of-Use (TOU) pricing, demand charges, and long-term re-
wards; 3) heterogeneous chargers and continuous action spaces;
and 4) tracking real-world states and transitions. Below, we brie�y
cover prior work to tackle these challenges. A more detailed descrip-
tion of prior work is presented in Table 3 of the appendix.
Uncertainty of vehicles and SoC requirements.Meta-heuristics
and Model Predictive Control (MPC) have been used to solve the
EV charging process, focusing on energy cost and user fairness in
single-site or vehicle-to-grid (V2G) systems [1, 3, 8, 14]. Studies by
Richardson et al. analyze EV charging strategies’ impact on grid sta-
bility, relevant to V2B systems [20]. Wang et al. proposed a demand
response framework for optimizing V2B systems amidst dynamic
energy pricing [27]. Additionally, O’Connell et al. utilized Mixed
Integer Linear Programming (MILP) to integrate renewable energy
sources into grids [16]. However, many of these methods focus on
unidirectional chargers and fail to fully account for all exogenous
sources of uncertainty (e.g., uncertain arrival and departure times).
Time of use pricing, demand charge, and long-term rewards.
V2B optimization is di�cult due to long billing periods. While
prior work (barring some exceptions [8]) optimizes and plans for
single-day horizons [1, 13, 21], they fail to work for longer periods.
Heterogeneous chargers and continuous action spaces. In
practice, buildings develop EV infrastructure gradually, leading to
heterogeneous chargers and a more complex action space. While
some prior work addresses charger heterogeneity [15, 30], it often
neglects long-term rewards (i.e., limit planning to a single day)
or fails to account for demand charge, missing the key real-world
constraint in the V2B problem. Tracking real-world state and
transition. Existing solutions validate their approaches using sim-
ulations with limited interface with the real world (barring some
exceptions [8]), thereby making simplistic assumptions that limit
deployment.

4 OUR APPROACH
In this section, we discuss the di�erent components in our frame-
work, shown in Figure 2a.

4.1 Markov Decision Process Model
We model the V2B problem as the following MDP.

State. The complete state space for the problem can be described
using features that capture historical, current, and future estimation
at a given time )9 , which includes parameters for each vehicle,
such as the current SoC, required SoC, departure time, and battery
capacity for each EV, along with SoC boundaries across all chargers.
Additionally, the current building power, time slot, day of the week,
historical building power, and long-term peak power estimation
value are included, resulting in approximately 100 features. We
leverage domain-speci�c knowledge to abstract key information
from these features, reducing the state space to the 37 essential
state elements.
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(a) Reinforcement Learning Framework.

Inference Pipeline

Input Data at Tj
- Connected cars
- Charger states

- Building load reading

Past building load
readings

Monthly Peak Power
Estimator

Estimated Peak Power
Demand for the billing

period

Reinforcement
Learning Policy

Charger actions for
Tj+1

(b) Pipeline for Inference.

Figure 2: (a) Our framework relies on daily samples and an estimated monthly peak power. We use RL, i.e., DDPG, and extend
it with policy guidance and action masking, to learn a near-optimal policy. (b) At inference time, the model ingests data of
connected cars, charger states, building power, and the estimated monthly peak power to make decisions.

These features are: 1) The current time slot, )9 . 2) The current
building power, denoted as ⌫()9 ). 3) The power gap between the
current building power and the estimated peak power for the billing
period, given by %̂<0G ()9 ) � ⌫()9 ), where %̂<0G ()9 ) indicates the
estimated peak power at )9 , initialized from a value derived from
training data. This gap aids the RL model in estimating the opti-
mal peak power for demand charge reduction. 4) The mean peak
building power over the previous 7 days, ` (⌫� ()9 )), where ⌫� ()9 )
represents the list of peak building power for the previous 7 days.
5) The variance of the peak building power over the previous 7
days, f2 (⌫� ()9 )), helps inform the model about the future build-
ing power use. 6) The day of the week for the current time slot,
)9 , which helps the model distinguish daily patterns and enhance
generalization. 7) The number of EV arrivals up to time slot )9 ,
represented as |{+ |+ 2 V,�(+ )  )9 }| for tracking EV arrival
status. 8) The energy needed by each EV connected to a charger at
time slot )9 , given by [KWHR (⇠8 ,)9 )]⇠8 2C , which is initialized to
0. This quantity represents the energy gap between required SoC
(SOC' ) and current SoC (SOC) of the EV + = q (⇠8 ,)9 ), de�ned as
KWHR (⇠8 ,)9 ) = (SOC' (+ ) � SOC (+ ,)9 ))⇥ CAP(+ ). 9) The re-
maining time until the departure of each EV connected to the charg-
ers is given by [g' (⇠8 ,)9 )]⇠8 2C , and is set to 0 when no cars are
connected. Each term is computed as g' (⇠8 ,)9 ) = D(q (⇠8 ,)9 ))�)9 .

Actions.We de�ne the set of actions A, which includes all ac-
tions at each time slot)9 with)9 2 T . In this MDP,A is continuous
and speci�es the power of all chargers at each time slot )9 , where
�()9 ) = [% (⇠8 ,)9 )]⇠8 2C .

State Transition. States are updated based on actions and EV
arrivals/departures at each time slot. To simulate these transitions,
we designed an environment simulator that provides and updates
states. The state transition function is given as: Trans(( ()9�1),
�()9�1))7! ( ()9 ), with the following steps:

(1) Initialize the estimated peak power, %̂<0G ()0), which can be de-
rived fromhistorical data (detailed in Section 4) , and update it by
%̂<0G ()9 ) = max(%̂<0G ()9�1), B()9�1) +

Õ
⇠8 2C % (⇠8 ,)9�1)),

which updates the estimated peak power depending on the
previous estimate and the last peak power.

(2) Update SoC of EVs connected to all chargers: SOC (q (Ci, Tj), Tj)
using action �()9�1) according to Equation (1).

(3) Update the EV charger assignment q (⇠8 ,)9 ) and [ (+ ) by�rst
releasing chargers with departing EVs in the current time slot
)9 and then assigning new arrival EVs to idle chargers.

(4) Update the energy requirement of all EVs connected to a charger:
[KWHR (⇠8 ,)9 )]⇠8 2C by based on EV’s current SoCs.

(5) Update the remaining time of all EVs connected to chargers:
[g' (⇠8 ,)9 )]⇠8 2C at time slot )9 .

Reward.We de�ne the function Reward : S ⇥A !<, where
Reward (( ()9 ),�()9 )) evaluates the reward for actions taken in a
speci�c state, focusing on minimizing the total bill while satisfying
SoC requirements. We express reward as _( · r1 + _⇢ · r2 + _⇡ · r3
where r1 =

Õ
⇠8 2C max(0,min(KWHR (⇠8 ,)9 ), % (⇠8 ,)9 ) ⇥ X)), r2 =

�% (⇠8 ,)9 ) ·X ·\⇢ ()9 ), and r3 = �max(0,B()9 ) +
Õ
⇠8 2C % (⇠8 ,)9 )�

%̂<0G ()9 )) · \⇡ . In this reward structure, r1 promotes actions that
charge EVs to reach their required SoC, as intended in Equation (7),
while r2 penalizes the energy cost for the charging actions taken.
The third component, r3, penalizes the increase in demand charges
if peak power increases, aligning with our objective in Eq. (6). These
functions use three coe�cients, _( , _⇢ , and _⇡ to balance trade-o�s.

4.2 Reinforcement Learning Approach
In this section, we describe the entire reinforcement learning pipeline.
We introduce the network structure, discuss how we use a simula-
tor to gather state features and describe the di�erent techniques,
such as action masking and policy guidance, used to improve the
performance of the V2B problem.

To improve training e�ciency, we address the challenge of long
state-action sequences by splitting the monthly dataset into daily
episodes. This allows the model to capture variations across dif-
ferent weekdays and learn more e�ectively from shorter episodes,
adapting more quickly to daily changes. By incorporating estimated
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monthly peak power into the state features and reward function,
the approach still accounts for monthly demand charges, helping to
minimize long-term costs while staying aligned with our objective.

4.2.1 Enhanced Deep Deterministic Policy Gradient. Our approach
based on the DDPG framework [11] uses an actor network for
continuous actions. During training, we interact with the simu-
lator that provides state abstractions and transitions. To improve
RL performance in handling the limitations associated with large
continuous action spaces and long-term reward optimization, we in-
troduce action masking and policy guidance techniques. Details of
the enhanced approach are in Algorithm 2 in the appendix. Action
masking, denoted as Mask(( ()9 ),�()9 )), re�nes the raw actions
generated by the actor network by enforcing action validity and
utilizing domain-speci�c knowledge, thereby improving policy per-
formance. Additionally, policy guidance incorporates the MILP
solver discussed earlier to provide optimal actions based on current
and future information. These optimal actions are stochastically
introduced during RL training into the replay bu�er (i.e., tossing
a biased coin) to mix high-quality actions given a deterministic
trajectory with exploratory actions).

4.2.2 Action Masking. Action masking ensures that the policy ac-
tions generated by the actor network are feasible during DDPG
training. Findings from [4, 6] con�rm that di�erentiable action
masking does not interfere with the policy gradient backpropaga-
tion process. As a result, the learning process remains e�ective,
while the imposed constraints on the action space prevent the
policy from exploring invalid actions, thereby improving training
e�ciency and optimizing resource usage.

This procedure takes the RL raw action �()9 ), an array of charg-
ing power [% (⇠8 ,)9 )]⇠8 2C for all chargers, processes it through
the following masking steps, and outputs the masked actions �0.
Before starting the procedure, we need to obtain the following state
features: the remaining power needed to reach the required SoC
for all connected EVs (KWHR), the time remaining for each EV
(g' ), and the maximum (⇠max) and minimum (⇠min) power of all
chargers (line 1 in Algorithm 1). Also, for our case, since we work
with both unidirectional and bidirectional, we denote uniIdx and
biIdx as the indices for unidirectional and bidirectional chargers,
respectively. All of the masking techniques referenced below are
from Algorithm 1.
• Mask 1.We set the charging power % (⇠8 ,)9 ) of charger ⇠8 to 0
if no EV is connected, i.e., g' (q (⇠8 ,)9 )) = 0. (line 2)

• Mask 2. Overcharging unidirectional chargers is not bene�cial
since excess energy cannot be discharged. Thus, we limit the
charging power to ensure the SoC of EVs connected to a unidi-
rectional charger remains within their required SoC. For each
connected EV, the actions are masked to the minimum of the cur-
rent charging power and the power needed to reach its required
SoC

⇣
KWHR

X

⌘
(line 3).

• Mask 3. If necessary, we want to adjust actions such that it
forces charging to the required SoC before departure to minimize
missing SoC, as in Equation (7). We compute the critical power
KW⇤ ()9 ), which is the minimum power required for all charg-
ers at time )9 to reach the required SoC of the connected EVs
before departing (assuming maximum power ⇠<0G is utilized

Algorithm 1: Action Masking: Mask(( ()9 ),�()9 )).
Input: state: ( ()9 ), action: �()9 )
Output:Masked action: �0

1 Initializing: KWHR  [KWHR (⇠8 ,)9 ) ]⇠8 2C;
g'  [g' (q (⇠8 ,)9 ) ) ]⇠8 2C; n  10�5;
⇠<0G  [⇠<0G

8 ]⇠8 2C; ⇠<8=  [⇠<8=
8 ]⇠8 2C

// Mask 1: Set action = 0 if no car is connected
2 �0  g'

g'+n ⇥ �()9 )
// Mask 2: Stop charging when required SoC is reached for
uni-directional chargers

3 �0C<?  �0; �0 [uniIdx]  min(�0C<? ,
KWHR

X ) [uniIdx]
// Mask 3: Enforce charging to the req. SoC before departure.

4 KW()9 )  KWHR� (g'�1)⇥⇠<0G ⇥X
X

KW()9 )  min(KW()9 ),⇠<0G ) ; �0  max(�0,KW()9 ) )
// Mask 4: Bidirectional chargers discharge to req. SoC by departure.

5 KW⇤ ()9 )  KWHR� (g'�1)⇥⇠<8=⇥X
X

KW⇤ ()9 )  max(KW⇤
C ,⇠

<8= )
6 �0C<?  �0; �0 [biIdx]  min(�0C<? ,KW⇤

C ) [biIdx]
// Mask 5: Power improvement strategy

7 powerGap B()9 ) � %̂<0G ()9 )
canIncrease ReLU

⇣
min

⇣
KWHR

X ,⇠<0G
⌘
� �0

⌘
8 toImprove min (ReLU(powerGap � Õ

�0 ),Õ canIncrease)
9 �0  �0 + toImprove⇥canIncreaseÕ(canIncrease)+n
// Mask 6: Do not discharge below building load

10 toImprove max(�B()9 ) �
Õ(�0 ), 0)

negAction ReLU(�0 ⇥ �1) ⇥ �1
11 �0  �0 + toImprove⇥negActionÕ(negAction)+n

in subsequent time slots). The raw action is adjusted if it falls
below this value, especially in time slots leading up to the EV’s
departure (line 4).

• Mask 4. Thismask is symmetrical toMask 3 for force discharging.
Overcharging bidirectional EVs is only advantageous if excess
energy can be discharged during peak hours, but there is no
bene�t to overcharging just before departure. Using this mask, we
force discharge EVs connected to bidirectional chargers, which
have excess energy, and they reach the required SoC by departure.
Here,KW⇤ ()9 ) denotes the minimum power to discharge for all
chargers⇠8 2 C at time)9 to guarantee EV can reduce to required
SoC when departing (assuming the maximum discharging power
⇠<8= is utilized subsequently) (lines 5, 6).

• Mask 5.We increase charging power while ensuring the masked
action stays within the estimated peak power %̂<0G ()9 ). This
aims to charge EVs as much as possible towards their required
SoC without raising demand charges, thereby avoiding forced
charging just before departure, which could elevate peak power.
We calculate the “power gap” between estimated peak power and
current building power, %̂<0G ()9 ) � B()9 ). If the current power
sum (B()9�1) +

Õ
⇠8 2C % (⇠8 ,)9�1)) is below this “power gap”,

we boost the current actions using the available “power” gap,
constrained by min

⇣
KWHR

X ,⇠<0G
⌘
. (lines 7 to 9).

• Mask 6. We adjust the discharging power to prevent cumula-
tively discharging below the current building power B()9 ), to
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satisfy Constraint 5 by reducing the discharging power based on
the current actions (lines 10 to 11).

All of the action masking procedures utilize array computations and
di�erentiable operations, such as ReLU [19] andmaximum/minimum
operations, and the PyTorch framework [18].

4.2.3 Policy Guidance with MILP Solver. Note that for a� xed sam-
ple, i.e., a� xed set of EV arrivals and departures, the V2B problem
can be modeled as a single-shot mathematical program, i.e., a mixed-
integer linear program (MILP), which can solved e�ciently (at least,
for our problem size) to retrieve the optimal actions. The objective
of the MILP is maximizing the multi-objective weighted sum of the
total rewards (detailed in Equations 6, (7)), and the other properties
of the V2B problem can be encoded as constraints. The� xed sam-
ple of arrivals and departures can be extracted from historical data.
Naturally, this modeling paradigm does not solve the V2B prob-
lem in general—EV arrivals and departures are not known ahead
of time—however, this strategy provides a set of optimal actions
that the learning module can learn to imitate. For our use case, the
MILP problem can be solved reasonably fast. For example, for a
planning horizon of a day with 15 cars, the problem size averages
800 variables and 1400 constraints and takes 0.05 seconds to solve.

We integrate a MILP solver based on CPLEX [2] as a policy
guidance subroutine [10] in the RL training process. The solver,
given the current state and future events, provides optimal charg-
ing actions. Each training dataset contains complete episode data,
enabling the MILP solver to account for future dynamics. Dur-
ing RL training, it generates optimal actions based on the current
state and full future information of the episode (i.e., a full-month
billing period). The solver is stochastically triggered, and its out-
puts are added to the replay bu�er with a prede�ned coe�cient,
'%⌧ (see Algorithm 2 in the appendix). The next optimal action is
computed as MILP (S(Tj), remainEpisode), considering factors such
as EV arrivals, SoC requirements, and building power. By blending
MILP-generated actions with those from the RL actor network, the
agent explores a more e�ective action space, improving its ability
to handle large continuous action spaces and long-term rewards.

4.2.4 Actor-Critic Network Structure. Both the actor and critic net-
works are fully connected, having two hidden layers with 96 neu-
rons each. Both feature a ReLU activation layer at the end. The critic
network outputs a single Q-value estimate, while the actor network
outputs the action, which represents the charging power of each
charger. To enhance convergence and improve generalization, we
normalize all state variables to be within [0, 1] before feeding them
into neural networks. Time slot )9 is normalized by division with
the number of time slots in a day ( 24X ), while power-related variables
such as building power B()9 ), estimated peak power %̂<0G ()9 ) are
scaled by their respective statistical values from training data. Fur-
thermore, we normalize the energy capacity ⇠�% (+ ) of each car
by division with the maximum capacity among EVs,max(⇠�% (+ )).
For the action �()9 ) = [% (⇠8 ,)9 )]⇠8 2C , we constrain the output
within the range [�1, 1] using the tanh activation function. It is
�nally translated into the charging power range [⇠<8=

8 ,⇠<0G
8 ] by

scaling the value using a constant factor.

4.2.5 Heuristics and Action Post Processing. To enhance the ease
of learning in this complex decision space, we use the RL model

on weekdays and the peak hours of TOU price within each billing
period (for both training and inference). For o�-peak hours and
weekends, we use a heuristic based on the least laxity task sched-
uling algorithm (described in Section 5) to ensure EVs achieve the
required SoC before departure, calculating the minimum charge
needed for each time slot. O�-peak hours o�er lower electricity
prices, allowing for higher EV charging rates, and are excluded
from demand charge calculations, making heuristics e�ective for
optimization. Similarly, weekends see fewer EV arrivals and lower
power demand, with Transmission System Operators excluding
them from demand charge assessments. Following the EV manufac-
turer guidelines, we limit charging to SoC boundaries by clipping
the actions of the learned policy within [(>⇠min, (>⇠max] through
post-processing to satisfy Constraints (3) and (4)

4.3 Inference
During execution, our RL-based policy, which is a trained actor
network with the action masking procedure, operates at X time
intervals to determine the charging power for all chargers. At each
time slot, the state features are generated from data captured from
the environment, including charger status (connected EV’s current
SoC, expected departure time, and SoC), the building’s current
power and charging rate limits. While we use the estimated peak
power %̂<0G as the state feature based on training samples, as shown
in Figure 2b, it can be replaced by any data-driven forecasting or
prediction model. Then, we input all the normalized state features,
as described in Section 4.1, into the trained RL model to get the
charging actions for the next time interval.

5 EXPERIMENTS AND ANALYSIS
To demonstrate the performance of our proposed approach, we use
data collected from our Nissan’s research laboratory. We evaluate
our approach against several baselines in terms of total bill and
peak shaving (demand charge savings).
Data Collection We collected real-world data from Nissan’s re-
search laboratory in Santa Clara, California, including building
power, EV charger usage, and EV telemetry, over a nine-month
period from May 2023 to January 2024. To model the distributions
of EV arrivals, SoC requirements, and building power�uctuations,
we used Poisson distribution based on historical data. Character-
istics of the datasets are shown in Appendix A.2. The number of
EVs arriving at the o�ce on weekdays varies daily, illustrating the
inherent uncertainties. Arrival and departure hours relative to SoC
are depicted in Figure 4 in the appendix, which also presents the
distribution of peak power draw and corresponding hours. Main
environment parameters are provided in Table 7 (appendix). We
sampled 1000 billing episodes for each month.
Downsampling. We found that increasing training samples be-
yond a certain limit raised computational demands and worsened
performance (see ablation study in Section 5.2). To address this, we
applied k-means clustering [5] with : = 5, using optimal demand
charges from the MILP solution to select 60 training samples and 50
testing samples per cluster, ensuring exclusivity. As shown in Ta-
ble 6 (appendix), the training and testing datasets span nine months,
capturing variations in daily EV arrivals, peak building loads. Daily
arrivals range from 6.87 (August) to 20.36 (December), re�ecting
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seasonal demand shifts, while monthly peak building loads vary
from 116.49 kW (December) to 221.02 kW (August), demonstrating
diverse energy consumption patterns a�ecting charging strategies.
Estimated Peak Power. To enhance training e�cacy, we split
the monthly dataset into daily episodes for the model to learn
from varying weekday conditions. We include a monthly peak
power estimate for each month as an input feature derived from
optimal action sequences generated by the MILP solver, using the
lower bound of the 99% con�dence interval from training data as a
conservative demand charge estimate. This input feature is further
tuned during RL training.
Hyperparameter Tuning. Hyperparameter tuning is performed
on the parameters outlined in Table 5 in the Appendix, which also
shows the parameters of the best models selected for each of the
nine months. To evaluate the model’s performance, we employ a
3-fold cross-validation approach, dividing the 60 monthly training
samples into 40 samples for training and 20 samples for evaluation.
Baseline Approaches.We transform training data into input sam-
ples for our digital twin/simulator, Optimus [24], which simulates
the EV charging scenario. To evaluate our RL approach, we com-
pare it with an optimal oracle, a real-world charging baseline, and
several heuristics. Brief baseline descriptions are provided here,
with details in Appendix A.3.

• OptimalMILP Solver (MILP):Wemodel deterministic sequences
of EV arrivals and departures and solve the problem using the
MILP formulation with IBM ILOG CPLEX Optimization Stu-
dio [2]. The results serve as an upper bound for comparison, as
they utilize an oracle for optimality.

• Fast Charge (FC): This approach simulates current real-world
charging procedures, charging all connected EVs as quickly as
possible to SOC<0G .

• Trickle Charging (Trickle): The trickle charging approach
utilizes the trickle charging rate, de�ned as theminimum required
charge at each time slot: % (⇠8 ,)9 ) = KWHR (⇠8 ,)9 )/g' (⇠8 ,)9 ),
to charge all EVs until they reach their required SoC.

• Trickle Least Laxity First (T-LLF): We de�ne the Trickle LLF
algorithm (detailed in the Appendix) based on the Least Laxity
First approach, a dynamic priority-driven method for scheduling
multiprocessor real-time tasks [9]. In EV charging, we de�ne
laxity as the di�erence between the remaining time before depar-
ture and the time required to reach the desired SoC at a constant
charging rate [28]. At each time slot, we compute the “power
gap” (as %̂<0G ()9 ) �B()9 )), using the estimated peak power and
the current building power. This power gap is allocated to all EVs
by distributing the trickling charger rate to those prioritized by
their laxity.

• Trickle Early Deadline First (T-EDF): We propose the Trickle
EDF algorithm in a similar manner to Trickle LLF, with the only
di�erence being the prioritization method. Trickle EDF follows
the Early Deadline First approach (based on time of departure of
an EV), which was originally designed as a dynamic scheduling
algorithm for real-time systems [22].

• Charge First Least Laxity First (CF-LLF): We compute the
available “power gap”, as in Trickle LLF. Then we calculate the
sum of the trickle charging rates for all EVs at the current time
slot; if this sum is less than the available “power gap”, we have

capacity for overcharging. We� rst assign the charging rate for
all EVs to be their trickle charging rates, and then, we charge
EVs connected to bi-directional chargers to reach their maxi-
mum SoC, following the reverse order of their laxity until the
power gap is consumed. If the trickle sum exceeds the power gap,
bidirectional EVs are discharged, also based on reverse laxity, to
�ll the negative gap before resuming the trickle charging. See
Algorithm 4 in the appendix.

• Charge First Deadline First (CF-EDF): This follows the same
procedure as Charge First LLF but utilizes a di�erent prioritiza-
tion metric, focusing on the remaining time before EV departure.

5.1 Results
We evaluate all approaches using two metrics: 1) Total Bill: The
sum of electricity cost and demand charge over the billing period,
computed by Eq. (6) and 2) Peak Shaving: It is the di�erence in
demand charge between (i) the building’s power usage (without
any charging) and (ii) by adding charging the EVs under the respec-
tive policies. Positive values indicate that the policy reduced the
demand charge by controlling the charging actions. Additionally,
missing SoC—the energy shortfall between required and actual SoC
at departure—is critical in the V2B problem. Our RL model, with
action masking, ensures all EVs reach their required SoC before de-
parture by applying force charging and discharging in Mask 2 and
Mask 3. For fairness, these force procedures are applied across all
proposed heuristics, e�ectively minimizing missing SoC. Therefore,
we do not report this metric separately.

We assess the RL model’s long-term performance fromMay 2023
to January 2024, comparing it against baseline approaches on 50
testing samples. Table 1 compares the total bill over nine months
across di�erent policies. While MILP o�ers an oracle-based opti-
mal solution, it is impractical for real-world use and serves as a
performance upper bound. The results show that the trained RL
model consistently achieves the lowest total bills from May 2023
to January 2024 (except June 2023), outperforming other real-time
policies in eight of the nine months and signi�cantly reducing costs
compared to the real-world Fast Charge procedure as detailed in
Table 1. Additionally, heuristic approaches using the First Charge
logic, like First Charge LLF or EDF, consistently result in relatively
lower total bills and demand charges compared to other heuris-
tics. This indicates that the First Charge approach is e�ective in
balancing the charging and discharging process, o�ering better
overall performance across all heuristics. Table 9 in Appendix A.4
illustrates the peak shaving performance across all approaches,
showing that our RL approach achieved peak shaving in six months
(indicated by positive values), demonstrating its e�ectiveness in
reducing demand charges through EV charging.

5.2 Ablation Study
We evaluate the contributions of key techniques in our approach
through ablation. For the ablation studies, we trained RL models
on monthly samples of three months, May to July 2023, and tested
their performance on the total bill. The ablations explored are: 1)
RL\500 , RL training with more (500) training samples. 2)RL\C , RL
training using 60 randomly selected samples from 1000 generated
samples. 3) RL\F , RL models trained using the complete set of 100
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Table 1: Total Bill on Test Set (Lower is Better). Best Values in Bold. MILP Provides the Optimal Solution with Oracle Input.
(Peak Shaving Results is shown in Table 9 in the Appendix.)

Policy MAY JUN JULY AUG SEP OCT NOV DEC JAN

MILP 6201.1±50 6713.3±61 7371.0±40 9308.9±51 7231.0±36 7640.6±66 6625.9±42 6079.8±54 6495.1±55
RL (Ours) 6222.6±26 6857.1±122 7392.2±51 9363.3±81 7243.0±24 7696.3±71 6654.9±61 6243.7±158 6635.0±80
CF-LLF 6245.9±32 6843.4±42 7396.8±26 9435.8±47 7284.1±41 7742.1±48 6675.9±32 6261.8±99 6646.3±81
CF-EDF 6247.6±34 6849.6±48 7399.0±28 9436.1±47 7289.5±48 7747.6±49 6676.3±31 6276.6±87 6639.9±69
T-LLF 6310.7±66 6920.0±75 7432.6±34 9537.5±52 7326.9±48 7800.1±48 6796.9±46 6344.5±132 6670.3±79
T-EDF 6326.6±58 6920.0±56 7455.4±34 9543.0±54 7364.5±48 7819.7±57 6809.7±42 6356.4±88 6673.2±60
Trickle 6333.8±44 6955.6±46 7506.0±37 9570.8±53 7402.1±47 7844.1±60 6842.9±44 6393.1±60 6706.8±53
FC 6308.7±50 6968.6±72 7537.3±83 9541.7±61 7403.6±81 7804.0±69 6813.0±70 6646.9±144 6706.4±77

Table 2: Ablation Results for the Total Bill Over Three Months (Lower is Better).

RL (Ours) RL\500 RL\C RL\F RL\E RL\P RL\A Random\A

20471.9±137 20494.8±174 20511.6±184 20594.1±181 21130.2±214 21157.0±204 21273.7±209 21627.3±180

state features de�ned in Section 4.1. 4) RL\E, RL training where the
monthly estimated peak power is set to 0, removing the in�uence
of long-term peak power estimation. 5) RL\P, RL training without
policy guidance. 6) RL\A, RL training without action masking,
except for forced charging and discharging (Masks 2 and 3), which
are retained to minimize missed SoC. 7)Random\A , where actions
are randomly selected instead of using a trained actor network,
followed by action masking. We present the sum of the monthly
total bills from May to July 2023 for all approaches in the ablation
study in Table 2 and Appendix A.3.

We evaluate the impact of downsampling using k-means cluster-
ing to generate 60 training samples from a pool of 1000. TheRL\500
approach, which uses 500 samples, showed no improvement in per-
formance but increased computational burden during training. We
also testedRL\C , where samples were randomly selected instead of
clustered, resulting in a performance drop. These� ndings con�rm
that our downsampling method maintains RL performance while
improving e�ciency.

We then examine theRL\F approach, which performsworse, sug-
gesting that condensing state features with domain-speci�c knowl-
edge improves training and leads to better outcomes. The RL\P
approach, which removes policy guidance, results in decreased per-
formance, highlighting its importance in optimizing actions during
training. This guidance narrows down the action exploration space,
directing the model toward better solutions.

TheRL\E approach shows worse results, highlighting the impor-
tance of accurate long-term peak power estimation during training.
This value is used in action masking to improve the charging ac-
tions without increasing the monthly peak power and in�uences
the reward function by penalizing actions that raise peak power.
When set to 0, the RL model fails to converge to a good global
optimum, emphasizing the critical role of peak power estimation
in achieving optimal performance.

Training without the action masking procedure in RL\A leads
to a signi�cant performance drop, demonstrating its importance in
improving RL performance. This also highlights the challenge of

training RL models with 15 chargers in a continuous action space.
Action masking incorporates heuristics to guide actions, resulting
in signi�cant improvements.

To assess the impact of the actor network, we replaced it with a
random policy in the Random\A approach, where random charg-
ing actions are generated before applying action masking. Its poor
performance highlights that action masking alone is insu�cient,
emphasizing the actor network’s critical role in achieving optimal
outcomes. While all proposed heuristics (except FC and Trickle) ad-
here to action masking constraints, including forced charging and
power allocation based on estimated peak power, the RL approach
consistently outperforms them, reinforcing the importance of the
actor network.

6 CONCLUSION
We propose an RL-based approach to address V2B challenges in
smart buildings by optimizing charging power for heterogeneous
(mixed-mode) EV chargers. The goal is to minimize overall costs,
including energy bills and demand charges, while ensuring EVs
reach their required SoC. Our solution addresses key challenges
such as multi-agent decision-making, centralized control of up to
15 chargers, and continuous charging power adjustments, all aimed
at minimizing the total energy bill over a month. We evaluate our
approach against heuristic algorithms in simulated V2B scenarios
with real-world data from an EV manufacturer. Results show that
our trainedmodels e�ectively manage online EV charging, reducing
monthly total bills while meeting SoC requirements.
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