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ABSTRACT
In this paper, we consider the stochastic multi-armed bandits prob-
lem with adversarial corruptions, where the random rewards of
the arms are partially modified by an adversary to fool the al-
gorithm. We apply the policy gradient algorithm SAMBA to this
setting, and show that it is computationally efficient, and achieves a
state-of-the-art𝑂 (𝐾 log𝑇 /Δ) +𝑂 (𝐶/Δ) regret upper bound, where
𝐾 is the number of arms, 𝐶 is the unknown corruption level, Δ
is the minimum expected reward gap between the best arm and
other ones, and 𝑇 is the time horizon. Compared with the best
existing efficient algorithm (e.g., CBARBAR), whose regret upper
bound is𝑂 (𝐾 log2𝑇 /Δ) +𝑂 (𝐶), we show that SAMBA reduces one
log𝑇 factor in the regret bound, while maintaining the corruption-
dependent term to be linear with 𝐶 . This is indeed asymptotically
optimal. We also conduct simulations to demonstrate the effective-
ness of SAMBA, and the results show that SAMBA outperforms
existing baselines.
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1 INTRODUCTION
Multi-armed bandits (MAB) model requires the learning policy to
learn from feedback to optimize decision-making in complex and
uncertain environments [9]. In this model, there are 𝐾 arms, and
each arm 𝑎 is associated with a reward distribution F𝑎 . In each
round 𝑡 ∈ [𝑇 ], a player can choose one arm 𝑎 from the 𝐾 arms to
pull and observe a reward 𝑅𝑎 ∼ F𝑎 . Denote 𝑟𝑎 the expected reward
of arm 𝑎, 𝑎∗ = argmax𝑎 𝑟𝑎 the optimal arm, and 𝑟∗ = max𝑎 𝑟𝑎 the
highest expected reward. Thenwe let Δ𝑎 = 𝑟∗−𝑟𝑎 , Δ = minΔ𝑎>0 Δ𝑎 ,
and define cumulative regret as the expected difference between the

Corresponding authors: Siwei Wang (siweiwang@microsoft.com), Zhixuan Fang
(zfang@mail.tsinghua.edu.cn).

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

cumulative reward from pulling the optimal arm and the cumulative
reward of the algorithm, i.e., pulling arm 𝑎 once incurs a regret of
Δ𝑎 . The aim of the player is to choose arms properly to minimize
cumulative regret.

MAB captures the basic tradeoff between exploration and ex-
ploitation in online learning, and is widely adopted in real-world
applications, e.g., when a news website picks an arriving article
header to show to maximize the users’ clicks, and when an investor
chooses a stock for investment to maximize the total wealth [18].
Because of this, there is abundant research related toMAB problems,
which proposes solutions including Upper Confidence Bound [4],
Active Arm Elimination [8], Thompson Sampling [2], etc.

However, in some applications, such as a recommendation sys-
tem that suggests restaurants to customers, while most inputs fol-
low a stochastic pattern from a fixed distribution, some inputs
would be corrupted, e.g., injected by fake reviews from the restau-
rant’s competitors [16]. In addition, in machine learning applica-
tions, data may be imperfect or manipulated. Studying corruption
bandits helps develop learning algorithms that remain effective
even when data is corrupted, which is useful in fields such as feder-
ated learning [7] and distributed sensor networks [6].

Corruption also exists in other applications such as online ad-
vertising and cybersecurity. In this paper, we consider the sto-
chastic multi-armed bandits problem with adversarial corruptions,
where the rewards of the arms are partially modified by an ad-
versary to fool the algorithm [10, 14]. At each time step 𝑡 , be-
fore an arm is pulled, the adversary can make corruptions, i.e.,
shift the expected reward of any arm 𝑎 to any corrupted value
with cost max𝑎 |𝑟𝑎 − 𝑟 ′𝑎 (𝑡) |, where 𝑟 ′𝑎 (𝑡) is the expected reward
of arm 𝑎 after such corruption. The only constraint for the adver-
sary is that his total cost cannot exceed corruption level 𝐶 , i.e.,∑
𝑡 max𝑎 |𝑟𝑎 − 𝑟 ′𝑎 (𝑡) | ≤ 𝐶 , while this 𝐶 also keeps unknown to the

player.
Existing algorithms pay a high cost for robustness against ad-

versarial corruptions. The current state-of-the-art combinatorial
algorithms (i.e., those containing solely combinatorial operations
such as enumeration and basic calculations, and with computational
cost in each time step independent of the time horizon 𝑇 ) exhibit a
regret upper bound of𝑂 (log2𝑇 +𝐶) for corrupted bandits, e.g., Xu
and Li [21]. This implies that the algorithm’s regret is not tight
(i.e., it has one more log𝑇 factor compared to the Ω(log𝑇 ) regret
lower bound [16]), and suffers an 𝑂 (log2𝑇 ) regret even if there is
no corruption.

In this paper, our aim is to solve the above challenge and find
efficient bandit algorithms that can handle adversarial corruptions
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without overhead, i.e., the regret upper bound approaches the bound
in standard MAB as corruption level 𝐶 decays to zero. Recent
work [20] proposes a combinatorial algorithm Stochastic Approxi-
mation Markov Bandit Algorithm (SAMBA) to solve the standard
MAB problem. In this paper, we employ this algorithm to address
the corrupted bandits problem.

We are interested in SAMBA due to its adoption of a Markovian
policy, in which the distribution of the chosen arm at step 𝑡 + 1
depends solely on the distribution of the chosen arm at step 𝑡 , as
well as the chosen arm and the observation at step 𝑡 . This is a
desired property for corrupted bandits and reduces the complexity
of the analysis. Based on such a property, we show that SAMBA
achieves a regret upper bound of 𝑂 (log𝑇 + 𝐶), which is a major
improvement compared to the𝑂 (log2𝑇 +𝐶) regret upper bound of
the best existing combinatorial algorithms. Meanwhile, our regret
upper bound matches i) the Ω(log𝑇 ) regret lower bound when
there is no corruption; and ii) the Ω(𝐶) regret lower bound with
corruption level𝐶 . This shows that SAMBA is indeed asymptotically
optimal. We also conduct experiments to compare the performance
of SAMBAwith other existing baselines, whose results demonstrate
the empirical effectiveness of SAMBA.

1.1 Our Main Contribution
The aim of this research is to develop a combinatorial anti-corruption
multi-armed bandits algorithm that is fast, easily implementable,
and has a better performance guarantee than existing works. We
employ SAMBA algorithm to tackle the corrupted bandits problem,
marking the inaugural utilization of a policy gradient algorithm in
this scenario.

Our primary contribution lies in three aspects. Firstly, we are
the first to employ and analyze combinatorial policy gradient algo-
rithms in the context of corrupted bandits. Secondly, we theoret-
ically prove SAMBA’s exceptional performance in the corrupted
bandits setting. In addition, we demonstrate the empirical perfor-
mance advantage of SAMBA over existing baselines. Our analysis is
groundbreaking, as it is the first to prove that a combinatorial algo-
rithm can achieve the optimal regret upper bound in the corrupted
bandits setting. This result highlights the significance of our work
in advancing the understanding and practicality of combinatorial
approaches for dealing with corruption in bandit problems.

1.2 Related Work
Lykouris et al. [16] is the first to consider stochastic bandits with
adversarial corruptions. They propose Fast-Slow Active Arm Elimi-
nation Race algorithm that achieves a high probability regret upper
bound of 𝑂

(
𝐾𝐶

∑
𝑖≠𝑖∗

log2𝑇
Δ𝑖

)
when 𝐶 is known, and Multi-layer

Active Arm Elimination Race algorithm that achieves the same
high probability regret upper bound when𝐶 is unknown. They also
show that a linear degradation to the total corruption amount 𝐶
is the best one can do, i.e., with corruption level 𝐶 , any algorithm
must suffer a regret lower bounded by Ω(𝐶).

Gupta et al. [9] introduces a new algorithm called BARBAR,
which reduces the regret upper bound to𝑂

(
𝐾𝐶+∑𝑖≠𝑖∗ log2𝑇

Δ𝑖

)
when

𝐶 is unknown. Liu et al. [15], Xu and Li [21] make some further

improvements on BARBAR, providing the solutions under coopera-
tive bandits setting [15] and combinatorial bandits setting [21]. In
addition, they reduce the𝑂 (𝐾𝐶) term in the regret upper bound to
𝑂 (𝐶), i.e., the regret upper bound of Liu et al. [15] is𝑂

(
𝐶 + 𝐾 log2𝑇

Δ

)
,

and the regret upper bound for Xu and Li [21] is𝑂
(
𝐶+∑𝑖≠𝑖∗ log2𝑇

Δ𝑖

)
.

Except for the combinatorial algorithms that come from tradi-
tional bandit literature, there is another type of non-combinatorial
algorithms that come from “best-of-both-worlds (BOBW)” liter-
ature. In BOBW, the algorithm needs to ensure good regret per-
formance under both the stochastic scenario and the totally ad-
versarial scenario [5]. Some of the BOBW algorithms also per-
form well in corrupted bandits. For example, Zimmert and Seldin
[24] uses Tsallis-INF algorithm with Tsallis entropy regularization
and Jin and Luo [12] uses Follow-the-Regularized-Leader (FTRL)
method [3, 22, 23] with a novel hybrid regularizer to solve the
corrupted bandits problem, both of which are based on online mir-
ror descent (OMD) method and lead to a regret upper bound of
𝑂
(
𝐶 + 𝐾 log𝑇

Δ

)1. However, OMD algorithms are not combinatorial
and require more computational power than combinatorial algo-
rithms such as BARBAR and SAMBA. Specifically, in each time step,
the OMD algorithms need to solve a convex optimization problem,
and the regret analysis is based on the actions corresponding to
the optimal points. In practice, one can only use optimization al-
gorithms (e.g., gradient descent) to look for near-optimal points.
Since there are totally 𝑇 convex optimization problems to solve, to
guarantee a similar regret bound, the gap between the approximate
points and the optimal points should depend on 𝑇 (e.g., 1

𝑇
). There-

fore, the complexity required for each step also depends on 𝑇 . As a
comparison, combinatorial algorithms (e.g., BARBAR and SAMBA)
only need 𝑂 (𝐾) additions or multiplications in each time step.

Recent findings show that sampling algorithms can be more com-
putationally efficient than optimization algorithms [17, 19]. Honda
et al. [11] incorporates this idea and uses follow-the-perturbed-
leader-based (FTPL) method [1, 13] which replaces the procedure
of solving the optimization problem in FTRL by multiple samplings
and resamplings. However, FTPL does not completely solve the
complexity challenge. Specifically, though the expected computa-
tion cost at each time step is 𝑂 (𝐾), the variance of computation
cost at each time step is 𝑂 (𝑇 ), making it still non-combinatorial.

An overall comparison of different algorithms is given in Ta-
ble 1. Note that the state-of-the-art combinatorial algorithms have
𝑂 (log2𝑇 +𝐶) regret upper bounds, while only non-combinatorial
algorithms can achieve 𝑂 (log𝑇 +𝐶) regret upper bound. Our anal-
ysis shows that a combinatorial algorithm, SAMBA, can achieve an
𝑂 (log𝑇 +𝐶) regret upper bound, which matches the regret lower
bound for the corrupted bandits.

2 PRELIMINARIES
2.1 Multi-armed Bandits
A multi-armed bandits instance is a tuple (A, 𝒓,𝑇 ). Here, i) A =

{1, 2, · · · , 𝐾} is the set of arms and 𝐾 is the number of arms; ii)

1Though they claimed that their regret upper bound is𝑂
(𝐾 log𝑇

Δ +
√︃
𝐶𝐾 log𝑇

Δ

)
, we

emphasize that the definition of their regret is not the same as the one we and other
corrupted bandits works use. In fact, there is an𝑂 (𝐶 ) gap between the two kinds of
regret.
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Table 1: Comparison of corrupted bandits algorithms

Algorithm Known 𝐶 Combinatorial Regret Bound

Fast-Slow AAE Race [16] Yes Yes 𝑂

(
𝐾𝐶

∑
𝑖≠𝑖∗

log2𝑇
Δ𝑖

)
Multi-Layer AAE Race [16] No Yes 𝑂

(
𝐾𝐶

∑
𝑖≠𝑖∗

log2𝑇
Δ𝑖

)
BARBAR [9] No Yes 𝑂

(
𝐾𝐶 +∑𝑖≠𝑖∗ log2𝑇

Δ𝑖

)
Cooperative Bandit Algorithm Robust
to Adversarial Corruptions [15]

No Yes 𝑂

(
𝐶 + 𝐾 log2𝑇

Δ

)
CBARBAR [21] No Yes 𝑂

(
𝐶 +∑𝑖≠𝑖∗ log2𝑇

Δ𝑖

)
Tsallis-INF [24], FTRL [12], FTPL [11] No No 𝑂

(
𝐶 + 𝐾 log𝑇

Δ

)
SAMBA [20] (with our analysis) No Yes 𝑶

(

𝑪
𝚫
+

𝑲 log𝑻
𝚫

)

Regret Lower Bound [16] – – Ω
(
𝐶 + 𝐾 log𝑇

Δ

)
𝒓 = [𝑟1, · · · , 𝑟𝐾 ] ∈ [0, 1]𝐾 are the corresponding expected rewards
of the 𝐾 arms; and iii) 𝑇 is the time horizon. At each time step
𝑡 ≤ 𝑇 , the player must choose an arm 𝑎(𝑡) ∈ A to pull. After that,
he will receive a random reward (feedback) 𝑅𝑎 (𝑡 ) (𝑡). In this paper,
for simplicity of analysis, we focus on the case that the random
rewards are Bernoulli, i.e., 𝑅𝑎 (𝑡 ) (𝑡) are drawn from a Bernoulli
distribution with mean 𝑟𝑎 (𝑡 ) independently. Our results can be
easily extended to the general bounded-reward case.

The player can use the history informationH𝑡−1 to generate a
random distribution 𝑝 (𝑡) on the action set A, and then draw his
choice 𝑎(𝑡) from 𝑝 (𝑡), whereH𝑡−1 = {(𝑎(𝜏), 𝑅𝑎 (𝜏 ) (𝜏))}𝜏≤𝑡−1 are
the previous arm-reward pairs. The goal of the player is to choose
the random distribution 𝑝 (𝑡) properly to maximize the cumula-
tive reward, or minimize the cumulative regret. The cumulative
regret is defined as the expected reward gap between the real gain
and the best one can do, i.e., always selecting the arm with the
highest expected reward. By denoting 𝑎∗ = argmax𝑎∈A 𝑟𝑎 and
𝑟∗ = 𝑟𝑎∗ , the cumulative regret of policy 𝜋 equals 𝑅𝑔(𝑇 ) := 𝑟∗𝑇 −
E
[∑𝑇−1

𝑡=0
∑
𝑎∈A 𝐼𝑎 (𝑡)𝑅𝑎 (𝑡)

]
=
∑
𝑎:𝑎≠𝑎∗ (𝑟∗−𝑟𝑎)E

[∑𝑇−1
𝑡=0 𝑝𝑎 (𝑡)

]
, where

𝐼𝑎 (𝑡) = 1 if and only if arm 𝑎 is pulled in round 𝑡 . Let Δ𝑎 =

𝑟∗ − 𝑟𝑎 and assume that Δ𝑎 > 0 for any 𝑎 ≠ 𝑎∗ (i.e., there is
one unique optimal arm), we can write the cumulative regret as
𝑅𝑔(𝑇 ) = ∑

𝑎:𝑎≠𝑎∗ Δ𝑎E
[∑𝑇−1

𝑡=0 𝑝𝑎 (𝑡)
]
.

2.2 Corrupted Bandits
In a corrupted bandits instance, except for the basic components
of the bandit model, there is another adversary who aims to fool
the player. Specifically, the adversary is aware of the history infor-
mation as well as the learning policy of the player. However, he
cannot obtain the same randomness as used by the user. That is, the
adversary knows the random distribution 𝑝 (𝑡) of how the player
will choose arm 𝑎(𝑡), but does not know the exactly chosen arm
𝑎(𝑡). Based on this knowledge, at each time step 𝑡 , the adversary can
change the expected reward of each arm from 𝒓 to 𝒓 ′ (𝑡), at a cost
of 𝑐 (𝑡) = max𝑎∈A |𝑟𝑎 − 𝑟 ′𝑎 (𝑡) |. In this case, if the player chooses to

pull the arm 𝑎(𝑡), then his random reward (and feedback) 𝑅𝑎 (𝑡 ) (𝑡)
is no longer drawn from Bernoulli distribution with mean 𝑟𝑎 (𝑡 ) ,
but from Bernoulli distribution with mean 𝑟 ′

𝑎 (𝑡 ) (𝑡).
The goal of the adversary is to let the player suffer regret as much

as possible, given the constraint that his total cost of corruption
could not exceed the corruption level 𝐶 . Here, the definition of
cumulative regret is the same as classic MAB problems, i.e., we are
still comparing the arms under their true expected rewards but not
the corrupted expected rewards2. On the other hand, the goal of
the player is to design algorithms such that the regret is still limited
even if there is such an adversary. As in many existing works, we
assume that the player does not know the corruption level 𝐶 .

Note that our corruption method is slightly different from the
existing literature, i.e., the adversary changes the expected reward
but not the realized feedback. In fact, if we use a function to change
the realized reward feedback 𝑅 to 𝑅′ = 𝑓 (𝑅) (even for random func-
tions) after seeing the feedback 𝑅 ∼ D, we can get a new reward
distribution D′ where 𝑅′ ∼ D′. Hence, our approach (directly
changing the reward distribution to D′) is more general than the
classic approach. Moreover, the constraint on the adversary in the
classic approach is

∑
𝑡 |𝑅𝑎 (𝑡) −𝑅′𝑎 (𝑡) | ≤ 𝐶 , while in our approach it

is
∑
𝑡

��E[𝑅𝑎 (𝑡) − 𝑅′𝑎 (𝑡)]�� ≤ 𝐶 , which is looser than the former one.
As a result, the adversary in our approach could be more powerful
than the classic one with the same 𝐶 .

2.3 SAMBA Algorithm
The SAMBA algorithm [20] is described in Algorithm 1. The

policy is a probability distribution vector 𝑝 (𝑡) = [𝑝1 (𝑡), . . . , 𝑝𝐾 (𝑡)]
from which an arm is sampled in each round, and is initialized to
𝑝𝑎 (1) = 1/𝐾,∀𝑎 ∈ [𝐾]. In each round 𝑡 , an arm 𝑎(𝑡) is sampled
from the distribution 𝑝 (𝑡). The player then pulls arm 𝑎(𝑡) and gets a
reward 𝑅𝑎 (𝑡 ) (𝑡) (a possibly corrupted reward in corrupted bandits).
2Most of the existing literature uses this definition, e.g., [9, 15, 16, 21]. As for those
who compare the arms under their corrupted expected rewards, e.g., [12, 24], directly
adding𝐶 to their regret upper bound leads to a regret bound under our definition.
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Algorithm 1 SAMBA Algorithm
Require: 𝛼 ∈ (0, 1)
1: Init: 𝑝𝑎 (1) ← 1/𝐾 for 𝑎 = 1, . . . , 𝐾
2: for 𝑡 = 1 to 𝑇 do
3: Update leading arm: 𝑎𝑙 ← argmax𝑎 𝑝𝑎 (𝑡)
4: Draw 𝑎(𝑡) from randomly 𝑝 (𝑡), observe 𝑅𝑎 (𝑡 ) (𝑡)
5: if 𝑎(𝑡) = 𝑎𝑙 then
6: for all 𝑎′ ≠ 𝑎𝑙 do
7: 𝑝𝑎′ (𝑡 + 1) ← 𝑝𝑎′ (𝑡) − 𝛼

𝑝2
𝑎′ (𝑡 )𝑅𝑎 (𝑡 ) (𝑡 )
𝑝𝑎𝑙 (𝑡 )

8: end for
9: else
10: 𝑝𝑎 (𝑡 ) (𝑡 + 1) ← 𝑝𝑎 (𝑡 ) (𝑡) + 𝛼𝑝𝑎 (𝑡 ) (𝑡)𝑅𝑎 (𝑡 ) (𝑡)
11: for all 𝑎 ∉ {𝑎(𝑡), 𝑎𝑙 } do
12: 𝑝𝑎 (𝑡 + 1) ← 𝑝𝑎 (𝑡)
13: end for
14: end if
15: 𝑝𝑎𝑙 (𝑡 + 1) ← 1 −∑𝑎′≠𝑎𝑙 𝑝𝑎′ (𝑡 + 1)
16: end for

The probabilities of all the non-leading arms ∀𝑎 ≠ 𝑎𝑙 in 𝑝 (𝑡) will be
updated after the player observes the reward 𝑅𝑎 (𝑡 ) (𝑡) according to

𝑝𝑎 (𝑡 + 1) ← 𝑝𝑎 (𝑡) + 𝛼𝑝𝑎 (𝑡)2
(
𝑅𝑎 (𝑡)𝐼𝑎 (𝑡)
𝑝𝑎 (𝑡)

−
𝑅𝑎𝑙 (𝑡)𝐼𝑎𝑙 (𝑡)
𝑝𝑎𝑙 (𝑡)

)
(1)

where 𝑎𝑙 is the current leading arm, i.e., the arm with the highest
probability 𝑝𝑎 (𝑡). Note that the update scheme applies importance
sampling because the player can only observe the reward from
the pulled arm. After updating the probability of the non-leading
arms, the leading arm’s probability is given by 𝑝𝑎𝑙 (𝑡 + 1) = 1 −∑
𝑎′≠𝑎𝑙 𝑝𝑎′ (𝑡 + 1).
Walton andDenisov [20] prove that SAMBA achieves an𝑂 (log𝑇 )

regret upper bound in the classic MAB model, which is stated in
the following fact.

Fact 1 (Walton and Denisov [20]). If constant 𝛼 < Δ
𝑟 ∗−Δ ,

then the SAMBA algorithm for multi-armed bandits problem without

corruption ensures a regret 𝑅𝑔(𝑇 ) ≤ 𝐾
𝛼Δ log𝑇 + 𝑄0 = 𝑂

(
𝐾
Δ log𝑇

)
,

where 𝑄0 :=
∑∞
𝑡=0 P(𝑝𝑎∗ (𝑡) ≤

1
2 ) < ∞ is proved in Walton and

Denisov [20] to be a finite constant.

3 REGRET OF SAMBA UNDER CORRUPTED
BANDITS

Though SAMBA is not specially optimized for the corrupted bandits
setting, we surprisingly find out that it works very well even when
there is an adversary who tries to fool the algorithm by corruptions.

Theorem 2. If constant 𝛼 < Δ
𝑟 ∗−Δ , then the SAMBA algorithm

for multi-armed bandits problem with adversarial corruption level 𝐶
ensures a regret

𝑅𝑔(𝑇 ) = 𝑂
(
𝐾

Δ
log𝑇 + 𝐶

Δ

)
.

Compared with the existing results, SAMBA achieves a more
favorable regret bound by reducing one log𝑇 factor in the existing
results (e.g. the 𝑂

(
𝐾
Δ log2𝑇 + 𝐶

)
bound in Liu et al. [15], Xu and

Li [21]), resulting in improved performance as the time horizon 𝑇

increases. In addition, SAMBA still maintains a linear dependence
on the unknown corruption level 𝐶 . This linear term ensures that
SAMBA performs well even in the presence of high corruption
levels. Due to the space limit, we only provide some technique
highlights here, and defer the complete proof to Appendix A in the
extended version of this paper, available online.

As we have mentioned before, the reason that we are interested
in SAMBA is that it is a Markovian policy, in which the influence of
one corruption only appears once. In fact, this is a very important
and desired property to deal with corruptions, and most existing
anti-corruption algorithms are trying to achieve this property. For
example, BARBAR [9] divide the game into log𝑇 episodes, and only
let the corruption in the 𝑖-th episode influence the arm chosen in
the (𝑖 + 1)-th episode. With this property, we only need to bound
the “sudden” impact of a corruption, and this substantially reduce
the complexity of analysis.

Another good property we found in SAMBA is that the “sudden”
impact of a corruption scales linearly with the corruption cost.
Roughly speaking, if there is a corruption with cost 𝑐 (𝑡) at time step
𝑡 and no corruptions after 𝑡 , then it only requires aboutΘ(𝑐 (𝑡)) steps
to counteract its influence, i.e., the probability distribution 𝑝 (𝑡 +
𝑑 · 𝑐 (𝑡)) for some constant 𝑑 becomes close to 𝑝 (𝑡) (the probability
distribution before corruption) as the corruption effect is mostly
counteracted in 𝑑 · 𝑐 (𝑡) steps. Then, by the Markovian property of
SAMBA, we could imagine that the regret incurred by corruption
is approximately the regret in the next 𝑑 · 𝑐 (𝑡) steps, and hence also
scales linearly with 𝑐 (𝑡). In this way, we can finally show that the
corruption dependent term of SAMBA is linear with 𝐶 .

To better understand the above ideas, we first briefly recall how
the analysis (without corruption) inWalton and Denisov [20] works.
They divide the learning procedure into two cases: i) the case that
𝑝𝑎∗ ≥ 1/2; and ii) the case that 𝑝𝑎∗ < 1/2. Our analysis on SAMBA
for the corrupted bandits problem also follows these two cases.

3.1 The case when 𝑝𝑎∗ < 1/2
When there is no corruption, Walton and Denisov [20] consider the
case where the optimal arm 𝑎∗ is not the leading arm 𝑎𝑙 , and use
E[𝑝−1

𝑎∗ (𝑡)] to capture the trajectory of how 𝑝𝑎∗ (𝑡) changes during
the learning procedure. Specifically, when 𝑎∗ is not 𝑎𝑙 , from some
calculations according to SAMBA’s policy update rule, one can
show that

𝑝−1𝑎∗ (𝑡 + 1) =



𝑝−1𝑎∗ (𝑡) −
𝛼

1 + 𝛼 𝑝
−1
𝑎∗ (𝑡) w.p. 𝑟∗𝑝𝑎∗ (𝑡)

𝑝−1𝑎∗ (𝑡) + 𝛼
𝑝−1
𝑎∗ (𝑡)

𝑝𝑎𝑙 (𝑡)𝑝−1𝑎∗ (𝑡) − 𝛼
w.p. 𝑟𝑎𝑙 𝑝𝑎𝑙 (𝑡)

𝑝−1𝑎∗ (𝑡) otherwise

Thus, when there is no corruption,

E[𝑝−1𝑎∗ (𝑡 + 1) |𝐻 (𝑡)] − 𝑝
−1
𝑎∗ (𝑡) =𝛼𝑟𝑎𝑙

𝑝𝑎𝑙 (𝑡)𝑝−1𝑎∗ (𝑡)
𝑝𝑎𝑙 (𝑡)𝑝−1𝑎∗ (𝑡) − 𝛼

− 𝛼𝑟∗

1 + 𝛼

≤𝛼 (𝑟∗ − Δ) (1 + 𝜖) − 𝛼𝑟∗

1 + 𝛼 (2)

where the last inequality holds because for the leading arm, 𝑝𝑎𝑙 (𝑡) >
1/𝐾 and 𝑟𝑎𝑙 ≤ 𝑟∗ − Δ, and the constant 𝜖 > 0 is chosen to satisfy
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(1 + 𝜖) (1 + 𝛼) < 𝑟 ∗
𝑟 ∗−Δ . Such 𝜖 > 0 must exist because 𝛼 < Δ

𝑟 ∗−Δ .
Let constant 𝜉 := 𝛼 𝑟 ∗

1+𝛼 − 𝛼 (𝑟
∗ − Δ) (1 + 𝜖) > 0, we can get

E
[
𝑝−1𝑎∗ (𝑡 + 1)

���𝐻 (𝑡)] − 𝑝−1𝑎∗ (𝑡) ≤ −𝜉 . (3)

Note that at the beginning of the algorithm,E[𝑝−1
𝑎∗ (0)] = 1/𝐾−1 =

𝐾 . When 𝑝−1
𝑎∗ (𝑡) ≤ 2, the arm 𝑎∗ must be the leading arm. Hence,

after at most ⌈𝐾−2
𝜉
⌉ steps, E[𝑝−1

𝑎∗ (𝑡)] can become small enough,
which results in 𝑝𝑎∗ (𝑡) being large enough and 𝑎∗ becoming the
leading arm. Furthermore, if 𝑎∗ again becomes a non-leading arm,
say at time 𝑡 ′, thenE[𝑝−1

𝑎∗ (𝑡
′)] is likely to be smaller thanE[𝑝−1

𝑎∗ (0)]
because in expectation the probability of sampling non-optimal
arms 𝑝𝑎 (𝑎 ≠ 𝑎∗) would be updated to a smaller value then. Thus,
from the Markov property, the expected number of steps needed
for 𝑎∗ to become the leading arm again is smaller than the number
of steps needed in the first time. The same reasoning applies to the
future “non-leading to leading” transitions. From such intuition,
they prove the regret that occurs when 𝑝𝑎∗ < 1

2 (not only when 𝑎∗
is a non-leading arm) can be upper bounded by some constant 𝑄0,
referring to [20] for details.

Now let’s consider what happens if there is an adversary to
deploy corruptions. We also consider the case where 𝑎∗ is not the
leading arm first. In such case, 𝑝−1

𝑎∗ (𝑡 + 1) is updated as

𝑝−1𝑎∗ (𝑡) −
𝛼

1 + 𝛼 𝑝
−1
𝑎∗ (𝑡) w.p. 𝑟 ′𝑎∗ (𝑡)𝑝𝑎∗ (𝑡)

𝑝−1𝑎∗ (𝑡) + 𝛼
𝑝−1
𝑎∗ (𝑡)

𝑝𝑎𝑙 (𝑡)𝑝−1𝑎∗ (𝑡) − 𝛼
w.p. 𝑟 ′𝑎𝑙 (𝑡)𝑝𝑎𝑙 (𝑡)

𝑝−1𝑎∗ (𝑡) otherwise

Then, we can derive

E[𝑝−1𝑎∗ (𝑡 + 1) |𝐻 (𝑡)] − 𝑝
−1
𝑎∗ (𝑡)

≤𝛼 (𝑟𝑎𝑙 + 𝑐 (𝑡))
𝑝𝑎𝑙 (𝑡)𝑝−1𝑎∗ (𝑡)

𝑝𝑎𝑙 (𝑡)𝑝−1𝑎∗ (𝑡) − 𝛼
− 𝛼 (𝑟

∗ − 𝑐 (𝑡))
1 + 𝛼

≤𝛼 (𝑟∗ − Δ + 𝑐 (𝑡)) (1 + 𝜖) − 𝛼 (𝑟
∗ − 𝑐 (𝑡))
1 + 𝛼

= − 𝜉 + 𝛼𝑐 (𝑡)
(
1 + 𝜖 + 1

1 + 𝛼
)

where the first inequality is because 𝑟 ′𝑎𝑙 (𝑡) ≤ 𝑟𝑎𝑙 + 𝑐 (𝑡) and
𝑟𝑎∗ (𝑡) ≥ 𝑟𝑎∗ − 𝑐 (𝑡). We can see that, except for the regular bias −𝜉 ,
the corruption 𝑐 (𝑡) can increase E[𝑝−1

𝑎∗ (𝑡)] by at most 𝛼𝑐 (𝑡)
(
1 +

𝜖 + 1
1+𝛼

)
. Hence, one can imagine that if the total corruption level

is upper bounded by 𝐶 , then we need to run the algorithm for an
extra number of 𝑂 (𝐶

𝜉
) time steps to counteract the influence of

corruption. Here, we omit the technical details, which are relegated
to Appendix A.

3.2 The case when 𝑝𝑎∗ ≥ 1/2
On the other hand, if 𝑝𝑎∗ ≥ 1/2, then 𝑎∗ must be the leading arm.
In this case, [20] uses E[𝑝𝑎 (𝑡)] to capture the trajectory of how
𝑝𝑎 (𝑡) changes during the learning procedure for each arm 𝑎 ≠ 𝑎∗.
Specifically, one can show that for 𝑎 ≠ 𝑎∗,

E[𝑝𝑎 (𝑡 + 1) − 𝑝𝑎 (𝑡) |𝐻 (𝑡)] ≤ 𝛼𝑝𝑎 (𝑡)2 (𝑟𝑎 − 𝑟𝑎∗ ) ≤ −𝛼Δ𝑝𝑎 (𝑡)2 . (4)

Figure 1: Recovery process.

Figure 2: Consecutive corruptions.

Let 𝑞𝑎∗ := 1 − 𝑝𝑎∗ =
∑
𝑎:𝑎≠𝑎∗ 𝑝𝑎 . From (4) and Jensen’s inequality,

E[𝑞𝑎∗ (𝑡 + 1) |𝐻 (𝑡)] − 𝑞𝑎∗ (𝑡) ≤
∑︁
𝑎:𝑎≠𝑎∗

−𝛼Δ𝑝𝑎 (𝑡)2 ≤ −
𝛼Δ

𝐾
𝑞𝑎∗ (𝑡)2 .

(5)
Thus, E[𝑞𝑎∗ (𝑡)] is in the same order as 𝐾

2𝐾+𝛼Δ𝑡 (whose trajectory
can be easily verified to satisfy the above equation). Hence, by
taking the sum, the regret that occurs when 𝑝𝑎∗ ≥ 1/2 is upper
bounded by 𝑂 ( 𝐾

𝛼Δ log𝑇 ). Details can be found in Appendix A.
Now, we consider the case where there are adversarial corrup-

tions. When 𝑝𝑎∗ ≥ 1/2, then 𝑎∗ is the leading arm and for any
𝑎 ≠ 𝑎∗, we have

E[𝑝𝑎 (𝑡 + 1) − 𝑝𝑎 (𝑡) |𝐻 (𝑡)] ≤ 𝛼𝑝𝑎 (𝑡)2
(
(𝑟𝑎 + 𝑐 (𝑡)) − (𝑟𝑎∗ − 𝑐 (𝑡))

)
≤ 𝛼 (2𝑐 (𝑡) − Δ)𝑝𝑎 (𝑡)2 .

That is, except for regular bias −Δ𝑎𝑝2𝑎 (𝑡), the corruption 𝑐 (𝑡) can
increase E[𝑝𝑎 (𝑡)] for at most 2𝛼𝑐 (𝑡)𝑝2𝑎 (𝑡). However, this increase
is not a constant, and one cannot directly obtain how many time
steps are needed to counteract the influence of corruption. The trick
here is to notice that after corruption, 𝑝𝑎 becomes larger, and hence
its decreasing rate 𝛼𝑝2𝑎 becomes larger than 𝛼𝑝2𝑎 (𝑡𝑐 ) before it fully
recovers from the corruption, where 𝑡𝑐 is the time step that the
corruption occurs. Formally, we first define the recovery process as
follows.

Definition 3 (Recovery process). The recovery process of a
corruption at time 𝑡𝑐 is a time interval [𝑡𝑐 + 1, 𝑡 ′𝑐 ] on process {𝑞𝑎∗ (𝑡)}
such that 𝑡 ′𝑐 is the first time step satisfying 𝑡 ′𝑐 ≥ 𝑡𝑐 + 1 and 𝑞𝑎∗ (𝑡 ′𝑐 ) ≤
𝑞𝑎∗ (𝑡𝑐 ).

Roughly speaking, the recovery process of corruption at time 𝑡𝑐
is the time steps required to let 𝑞𝑎∗ (𝑡) fall below 𝑞𝑎∗ (𝑡𝑐 ).

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1358



0 1000 2000 3000 4000 5000
Corruption Level

0

2500

5000

7500

10000

12500

15000

17500

C
um

ul
at

iv
e 

R
eg

re
t

Cumulative Regret ~ Corruption Level (consecutive, at beginning)
SAMBA
Fast-Slow
BARBAR
OMD
CBARBAR

(a) Corruption scheme 1: consecutive, at beginning.
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(b) Corruption scheme 2: even steps, at beginning.

0 1000 2000 3000 4000 5000
Corruption Level

1000

2000

3000

4000

5000

6000

7000

8000

C
um

ul
at

iv
e 

R
eg

re
t

Cumulative Regret ~ Corruption Level (consecutive, middle point)
SAMBA
Fast-Slow
BARBAR
OMD
CBARBAR

(c) Corruption scheme 3: consecutive, in the middle.
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(d) Corruption scheme 4: at random steps.

Figure 3: Comparison of different algorithms: the cumulative regrets under different corruption levels and different corruption
schemes. SAMBA achieves the lowest cumulative regret in most settings, particularly outperforming baselines when 𝐶 = 0,
demonstrating its𝑂 (log𝑇 ) regret versus𝑂 (log2𝑇 ) for others. However, as corruption𝐶 increases, SAMBA’s advantage diminishes,
consistent with its regret bound of 𝑂 (𝐶 + log𝑇 ), while OMD shows worse performance due to its high complexity and large
constant factors.

If there is a large corruption in only one step, say step 𝑡0 with
corruption level 𝑐 (𝑡0) > Δ/4, then E[𝑞𝑎∗ ] may increase after 𝑡0 and
subsequently gradually decrease, as shown in Figure 1. What we
want to do is to upper bound the expected number of steps during
the recovery process after corruption 𝑐 (𝑡0) (colored magenta in
Figure 1). Here we use the optional stopping theorem to give such
a bound. Let 𝜙 = min{𝑡 > 𝑡0 : 𝑞𝑎∗ (𝑡) ≤ 𝑞𝑎∗ (𝑡0)}. When 𝑡0 < 𝑡 ≤ 𝜙 ,
it holds that 𝑞𝑎∗ (𝑡) ≥ 𝑞𝑎∗ (𝑡0). Then,

E[𝑞𝑎∗ (𝑡 + 1) |𝐻 (𝑡)] − 𝑞𝑎∗ (𝑡) ≤ −
𝛼Δ

2𝐾 𝑞𝑎
∗ (𝑡)2 ≤ −𝛼Δ2𝐾 𝑞𝑎

∗ (𝑡0)2 .

Thus, {𝑞𝑎∗ (𝑡) |𝑡 > 𝑡0} is a supermartingale. From the optional stop-
ping theorem,

E[𝑞𝑎∗ (𝜙 ∧ 𝑡)] +
𝛼Δ

2𝐾 𝑞𝑎
∗ (𝑡0)2E[𝜙 ∧ 𝑡]

≤ E[𝑞𝑎∗ (𝜙 ∧ (𝑡0 + 1))] +
𝛼Δ

2𝐾 𝑞𝑎
∗ (𝑡0)2E[𝜙 ∧ (𝑡0 + 1)] .

Here, ∧ denotes the pairwise minimum. Then, applying the mono-
tone converge theorem, we get

E[𝜙 − 𝑡0 − 1] ≤ lim
𝑡→∞

E[𝜙 ∧ 𝑡] − E[𝜙 ∧ (𝑡0 + 1)]

≤ 2𝐾
𝛼Δ𝑞𝑎∗ (𝑡0)2

(E[𝑞𝑎∗ (𝑡0 + 1)] − E[𝑞𝑎∗ (𝜙)]). (6)

Therefore,

E[𝜙 − 𝑡0] ≤
2𝐾

𝛼Δ𝑞𝑎∗ (𝑡0)2
(
(2𝑐 (𝑡) − Δ) 𝛼

𝐾
𝑞𝑎∗ (𝑡0)2 +

𝛼Δ

2𝐾 𝑞𝑎
∗ (𝑡0)2

)
+ 1

=
4𝑐 (𝑡)
Δ

. (7)

If there are consecutive corruptions (other corruptions come
before recovery from the previous corruption), then the total extra
regret incurred by these corruptions is upper bounded by the regret
calculated by considering these corruption steps separately from
“inner” corruptions to “outer” corruptions. Here we use Figure 2
as an example. Corruptions are made at the time steps 𝑡1, 𝑡2, 𝑡3.
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We first deal with 𝑐 (𝑡3), then 𝑐 (𝑡2), and finally 𝑐 (𝑡1). The length
of the recovery process for 𝑐 (𝑡3) (colored purple) can be bounded
directly by the previous derivation. After dealing with (𝑡3, 𝑡 ′3], we
can remove this interval and combine the rest together. Then, we
consider the interval (𝑡2, 𝑡3] ∪ (𝑡 ′3, 𝑡

′
2] as a whole and apply the

optional stopping theorem to it, which holds because 𝑞𝑎∗ (𝑡 ′3) ≤
𝑞𝑎∗ (𝑡3). The same analysis holds for 𝑐 (𝑡1) (details can be found in
Appendix A). In this way, we can upper bound the expected number
of total recovery steps needed by

∑𝑇−1
𝑡=0

4𝑐 (𝑡 )
Δ = 4𝐶

Δ .
From the above analysis, we know that in both cases (𝑝𝑎∗ < 1/2

or 𝑝𝑎∗ ≥ 1/2), the influence of corruption𝐶 would be counteracted
by 𝑂 (𝐶) time steps, leading to an additional regret of 𝑂 (𝐶). There-
fore, along with Fact 1, we can get the final regret upper bound as
𝑂 (𝐾 log𝑇 +𝐶). The formal proofs can be found in Appendix A.

Remark 1. In BARBAR (and CBARBAR), the algorithm is divided
into log𝑇 phases (the length of each phase keeps doubling). To ensure
that the algorithm is robust against corruptions, any arm should be
pulled 𝑂 (log𝑇 ) times in each phase (so that the empirical mean is
accurate enough) to detect the corruptions. This leads to a 𝑂 (log2𝑇 )
regret even when there is no corruption. In SAMBA, the algorithm
and analysis are based on expectations but not accurate empirical
means. Thus, we do not require pulling each arm 𝑂 (log𝑇 ) times in
each phase to detect the influence of corruption, and instead, only a
constant number of pulls in each phase is enough. In this way, we
reduce one log𝑇 factor in the regret upper bound (note that when
there is no corruption, every arm is pulled Θ(log𝑇 ) times, which is
enough to guarantee good performance).

4 SIMULATION
We then conduct experiments to compare the empirical perfor-
mance of SAMBA with four baseline algorithms. We set the param-
eters to 𝑇 = 100, 000, 𝐾 = 9 and the 9 arms are of mean rewards
0.1, 0.2, . . . , 0.9 respectively, 𝛼 = 0.05 in SAMBA, and 𝛿 = 1/𝑇
in Fast-Slow AAE. We test with five different corruption levels
𝐶 = 1000, 2000, . . . , 5000 and on four different corruption schemes:

(1) All corruption added at the beginning consecutively, i.e., at
steps 0, 1, 2, 3, . . .;

(2) All corruption added at the the even steps at the beginning,
i.e., at steps 0, 2, 4, 6, . . .;

(3) All corruption added concentratedly in the middle, i.e., at
steps 𝑇 /4,𝑇 /4 + 1,𝑇 /4 + 2, . . .;

(4) All corruptions added at random steps among the first𝑇 /10 =
10, 000 steps.

Table 2: The average single-run time (in seconds) and stan-
dard deviation (SD) of different algorithms.

SAMBA Fast-Slow BARBAR CBARBAR OMD

Time (s) 2.2594 1.2942 0.7401 0.7823 1733.3
SD (s) 0.01422 0.01057 0.00701 0.00684 10.903

First, we compare the time costs of these corrupted bandits al-
gorithms, and the results are shown in Table 2. We can see that
the combinatorial algorithms have a much lower time cost than
the OMD methods, e.g., SAMBA runs more than 500x faster than
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Figure 4: Comparison of different algorithms: the trend of
their cumulative regret with the time when 𝐶 = 2000 under
corruption schemes 3 and 4.

OMD. This indicates the efficiency of our algorithm, i.e., it is a
combinatorial algorithm with asymptotically optimal regret upper
bound.

Then, we consider the cumulative regret under different corrup-
tion levels. The experiment result is shown in Figure 3. It shows
the mean and standard deviation of the cumulative regret for the
four algorithms under different settings. Each experiment runs for
100 times, except the one on the OMD algorithm which runs very
slow due to its requirement of solving an optimization problem
in each step. We can see that SAMBA performs the best in terms
of cumulative regret in most settings. Specifically, when 𝐶 = 0,
SAMBA outperforms the baselines, which demonstrates SAMBA’s
𝑂 (log𝑇 ) regret advantage over other algorithms’ 𝑂 (log2𝑇 ) regret.
However, it seems that SAMBA’s performance advantage over base-
line algorithms decreases as the corruption level 𝐶 increases. This
actually matches SAMBA’s regret bound of 𝑂 (𝐶 + log𝑇 ). When 𝐶
is large, the regret is determined primarily by 𝐶 rather than the
log𝑇 term. As for OMD, it has a much higher time complexity, and
performs worse than SAMBA when the corruption level is small,
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because some large constant factors appear in the regret upper
bound.

In addition, we compare the cumulative regret of different al-
gorithms over time. The curves for two corruption schemes and
corruption level 𝐶 = 2, 000 are shown in Figure 4. Here, BARBAR
and CBARBAR are implemented by selecting 𝑛𝑎 (𝑚) times of arm 𝑎

in phase𝑚, where 𝑛𝑎 (𝑚) is predetermined before phase𝑚. Thus,
the non-optimal arms are sampled together, leading to a step-like
curve. In Figure 4a, the consecutive corruptions in the middle incur
a regret surge (a large number of non-optimal arms selected after
the concentrated corruptions) for BARBAR, while SAMBA actu-
ally converges quickly and tolerates the abrupt corruptions in the
middle well.

We also conduct experiments with varying numbers of arms to
compare the performance of different algorithms. The tested values
of 𝐾 (number of arms) are 6, 8, 10, 15, 20, and 30. The mean reward
for each arm is uniformly distributed in the range [0, 1]. The mean
cumulative regrets (with 𝑇 = 100, 000) are summarized in Table 3.
The corruption level is set to 𝐶 = 3, 000, with corruption scheme 3.

Table 3: Comparison of the mean cumulative regret under
different algorithms and different number of arms (𝐾), with
corruption level 3000 and corruption scheme 3.

Algorithm
Number of Arms (𝐾 )

6 8 10 15 20 30

SAMBA 629.9 884.2 1054.8 1722.7 2947.4 3534.4
Fast-Slow 1473.7 2265.3 3519.8 7955.8 10269.1 12661.2
BARBAR 2010.5 8813.9 3599.2 4800.7 8675.4 10695.7
CBARBAR 4189.2 6901.2 6285.2 11874.3 12668.2 14644.0
OMD 2038.3 2839.5 3322.7 4575.6 8460.1 10189.2

The experimental results indicate that as the number of arms 𝐾
increases, the cumulative regrets scale approximately linearly with
𝐾 , aligning well with the theoretical bounds. In all cases, SAMBA
achieves the lowest mean cumulative regret, consistently outper-
forming the other algorithms.

5 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we apply a policy gradient algorithm SAMBA to the
stochastic multi-armed bandits problem with adversarial corrup-
tions. Our analysis is the first result of a combinatorial algorithm
that achieves an asymptotically optimal regret upper bound of
𝑂 (𝐶 + log𝑇 ), establishing our method as the state-of-the-art in
the corrupted bandits setting. We have also conducted simulations,
demonstrating that SAMBA outperforms existing baselines.

There are several directions for future work. For example, it
would be interesting to generalize SAMBA as well as our analysis
to the combinatorial bandit setting or linear bandit setting, and
it would also be valuable to validate the algorithm’s performance
in real-world applications, e.g., to conduct experiments on actual
systems or design large-scale simulations that capture realistic
complexities.
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