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ABSTRACT
Announcement games, where information is disseminated by an-

nouncers and challenged by validators, are prevalent in real-world

scenarios. Validators take effort to verify the validity of the an-

nouncements, gaining rewards for successfully challenging invalid

ones, while receiving nothing for valid ones. Optimistic Rollup, a

Layer 2 blockchain scaling solution, exemplifies such games, offer-

ing significant improvements in transaction throughput and cost

efficiency. We present a game-theoretic model of announcement

games to analyze the potential behaviors of announcers and valida-

tors. We identify all Nash equilibria and study the corresponding

system losses for different Nash equilibria. Additionally, we propose

a refinement of the original mechanism that can reduce system loss.

Finally, we analyze the impact of various system parameters on sys-

tem loss under the Nash equilibrium and provide recommendations

for parameter settings.
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1 INTRODUCTION
Announcement games are prevalent in various real-world scenarios.

In these games, announcers disseminate essential information on

public platforms for specific purposes, such as PhD defenses or

tender bidding. The announcement remains effective for a prede-

termined period, during which any party can challenge its validity.

Upon raising an objection, the announcer and the objector engage

in a contest stage, where the validity of both the objection and the

announcement is scrutinized under supervision. The outcome de-

termines the invalidity of either the announcement or the objection,

with the loser incurring penalties and the winner gaining rewards.

Importantly, if no valid objection is made during the announcement

period, the announcement is deemed approved, even if it is invalid,
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thereby allowing the announcer to secure a significant advantage

and causing potential system losses.

A concrete example of an announcement game is the optimistic

mechanism in the blockchain Layer-2 (L2) ecosystem. Layer-1 (L1)

refers to the base layer of the blockchain architecture, such as

Bitcoin or Ethereum’s mainnet. L2 solutions, on the other hand, are

secondary frameworks or protocols built on top of the L1 blockchain.

They aim to enhance the scalability and efficiency of the blockchain

without compromising its underlying security.

L2 solutions achieve this by processing transactions
1
off themain

blockchain and only recording final state on the L1 blockchain. A

prominent L2 scaling solution is Optimistic Rollups. This approach

allows certain users (known as aggregator) package a certain num-

ber of L2 transactions into a block and publish it on the L1, including

a final state indicating the processing result of packaged transac-

tions. The validity of the state cannot be directly verified on L1 due

to scalability limitations. However, any user is allowed to challenge

a fraud state and provide necessary evidence, before the block is

finalized. L1 blockchain is able to determine whether the evidence

is correct. If so, the block is discarded and the L1 state reverts. If

there is no valid evidence within the announcement period, the

block is deemed finalized. Therefore, the optimistic mechanism,

with its challenge-based verification process, provides a scalable

and efficient solution for ensuring transaction validity, while still

remaining a security issue that fraud blocks may be finalized.

Generally speaking, an optimistic rollup game includes the fol-

lowing roles:

• Aggregator: The party proposing an L2 block, which can

be either valid or invalid, corresponding to honest or attack

actions, respectively. If an attack is chosen, the aggregator

can specify an unlawfully but public earned income within

the L2 block. In this case it is referred to as the attacker.

• Validator: The party responsible for verifying the validity

of the L2 block proposed by the aggregator. The action space

of the validator includes:

– Honest-verifier (verify): The validator actively verifies

the validity of the L2 block and issues a challenge if the

result of the verification is negative. In either case, the

validator needs to bear the verification cost.

– Free-rider (no verify and no challenge): The validator

neither verifies nor challenges, assuming the L2 block is

correct, and has no cost.

1
A transaction is an instruction to change the state of a blockchain, which can be

initiated by anyone.
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– Chance-taker (no verify but challenge): The validator

does not verify but issues a challenge, assuming the L2

block is incorrect, and has no cost.

If the validator chooses to verify, it is referred to as the

verifier; if the validator chooses to challenge, it is referred

to as the challenger. In L2 scenario, both the validator and

the aggregator are required to stake a deposit, for penalizing

dishonst actions.

Announcement games have broad applications, encompassing

various domains such as public bidding, tender processes, academic

announcements, and blockchain systems like Optimistic Rollup.

A common issue in these scenarios is that when an incorrect an-

nouncement is finalized, the system incurs substantial losses. For

instance, in Optimistic Rollup, if a malicious block is finalized, the at-

tacker gains benefits that are undeserved, undermining the system’s

stability and credibility. Therefore, achieving lower system losses

of announcement games is a crucial research focus, enhancing effi-

ciency and reliability across these diverse fields. The announcement

game addresses the complex behaviors and decision-making pro-

cesses of participants. The probability of validator verification and

the probability of aggregator attacking affect each other, leading to

the formation of a Nash equilibrium. The situation becomes more

intricate with multiple validators, as each validator’s behavior is

also affected by others. Based on the above findings, it is of interest

to study the system losses in equilibrium and how to reduce these

losses by adjusting system parameters and fine-tuning mechanisms.

Contribution. In summary, the contributions of this paper in-

clude:

(1) We study the equilbrium for 𝑛-validator case and find that

the number of equilibria depends on a specific parameter,

which is the ratio of the average earnings of validators plus

the false positive loss to the reward of the success challenger,

i.e.

𝑇
2
+𝑓𝑝𝑉
𝛿𝑆

from Tabel 1.

(2) We find all equilibria contain purely free-rider and mixed

strategy of free-rider and verifier, and corresponding system

losses exhibit monotonicity with respect to the number of

mixed-strategy players in the equilibrium.

(3) We purpose a refinement of the original mechanism which

subsidizes malicious aggregators get caught. This mecha-

nism, implementable by blockchain smart contract, enables

the aggregator to be inclined to choose smaller amounts (𝑍

in Tabel 1) when attacking, in the equilibrium state.

(4) Analyzing the impact of different parameters on system

losses and providing suggestions to optimize the design and

efficiency of the system.

2 RELATEDWORKS
Blockchain technology’s rapid growth has highlighted significant

scalability issues in L1 blockchains, such as Bitcoin [12] and Ethereum

[16], which limit transaction throughput and speed due to their

consensus mechanisms [3]. L2 scaling solutions, such as State Chan-

nels, Plasma, Sidechains, and Rollups, address these limitations by

operating on L2 chains to enhance scalability and efficiency [14].

Over the past year, the volume of atomic arbitrage MEV (Maximal

Extractable Value) transactions on major L2 networks has exceeded

$3.6 billion, accounting for 1% to 6% of all DEX (decentralized ex-

change) trading volumes [13]. Among these, Optimistic Rollups

have gained substantial traction, with Rollups currently handling

a significant portion of Ethereum’s transaction volume [15]. Opti-

mistic Rollups, such as Arbitrum [4] and Optimism [2], offer advan-

tages like greater decentralization and compatibility with existing

smart contracts by assuming transaction validity unless challenged.

However, most current L2 solutions still face centralization issues.

To address this, our article provides an in-depth analysis of the

Optimistic Rollup system, offering essential theoretical insights for

achieving full decentralization in the future.

Related studies in game theory have extensively explored an-

nouncement games in various contexts, highlighting the strategic

behavior of participants in scenarios involving public announce-

ments [6]. Ågotnes et al. [1] analyze the rational strategies in public

announcement games, combining logic and game theory in the

study of rational information exchange. Loi Luu et al. [10] anal-

yse the incentivization of validators in blockchain settings. Their

study shows that practical attacks exist which either waste miners’

computational resources or lead miners to accept incorrect script re-

sults, known as the verifier’s dilemma. These studies also highlight

that announcement games are a practical scenario in blockchain.

Hans et al. [7] study blockchain security through the lens of game

theory, focusing on the design of reward-sharing mechanisms for

validation. Another related paper is [5], where costs of validation

differ, and the authors look at the problem of delegating validation.

A concurrent study by Li [9] engages with equilibrium in op-

timistic rollup. The author presents a model of a potential attack

on the well functioning of optimistic rollups and concludes that

their current design is not secure. However, the analysis does not

take the deposit of validators into consideration and erroneously

assumes uniform behavior among validators, resulting in flawed

conclusions. Similarly, another concurrent study [11] also investi-

gates equilibrium in optimistic rollup, providing both lower and

upper bounds on the optimal number of validators, and advise on

optimal design of rewards for optimal design of rewards. However,

their model is criticized for its simplicity and lack of considera-

tion for system benefits. Daji et al. [8] first focus on the behavior

of chance-taker validators. Their study analysis the equilibrium

of a single aggregator and validator, although it does not extend

to multi-player scenarios. Our model is optimized based on the

aforementioned works. We include the chance-taker as an optional

behavior for validators and assume that each validator’s behavior

is independent. Additionally, we define the benefits of various be-

haviors for different roles and introduce system rewards. Finally,

our model also considers scenarios involving multiple validators.

3 MODEL
Our model mainly consists of two types of roles: the aggregatorsA
and the validatorsV . AggregatorsA propose L2 blocks, which can

be either valid or invalid. To deter fraudulent proposals, aggregators

must stake a deposit, which they forfeit if their block is invalidated.

Validators V verify the validity of the L2 blocks. They have three

strategic choices: verifier, free-rider or chance-taker. Validators also

act to maximize their utilities. We state some explanations and

assumption in this section.
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Table 1: The Notation of Parameters

Notations The Definition of Notations

Z Malicious Block Value

S Aggregator’s deposit

B Aggregator’s reward

T Validator’s reward

n The number of validators

𝑉 the validators’s deposit.

C Cost of validation

𝛿 The proportion of the attacker’s deposit that

the challenger receives.

𝑓𝑝 The proportion of penalty deposit when the

validator pledges the wrong block.

𝑓𝑛 The proportion of penalty deposit when the

validator challenges the right block.

3.1 Parameters
Table 1 presents the various parameters of the game.

• Malicious block value 𝑍 : The attacker can arbitrarily assign

a value to the malicious block, which he gains as well as the

system losses if that block is finalized. This value includes

the aggregator’s reward.

• Deposit 𝑆 and 𝑉 : When dishonest players are caught, their

deposits are forfeited. The system requires each aggregator

to stake a fixed deposit 𝑆 to penalize malicious behavior. The

same applies to validators, who are required to pledge a fixed

deposit 𝑉 on the block.

• System reward 𝐵 and 𝑇 : If a block is finalized, the system

allocates two constant amounts for rewarding the aggregator

and the validator set, denoted by the aggregator’s reward 𝐵

and the validator’s reward 𝑇 . Each validator then receives a

portion of the validator reward proportional to their deposit

amount. This ensures that system payouts do not exceed a

certain amount.

• Cost 𝐶 : We assume that the cost for each honest validator is

constant, referring to the computational cost of validation.

There is no cost for dishonest (free-rider and chance-taker)

validators. Additionally, the cost for aggregators is normal-

ized to zero.

• Reward proportion of challenger 𝛿 : When an aggregator be-

haves maliciously and is challenged by a validator, the ag-

gregator forfeits their deposit 𝑆 , with a portion 𝛿𝑆 awarded

to the validator. This ensures that payouts come solely from

malicious actors, deterring collusion between aggregators

and validators to exploit the system.

• Penalty proportion of false positive 𝑓𝑝 and false negative 𝑓𝑛 : If
a validator incorrectly pledges a malicious block, a penalty of

𝑓𝑝𝑉 is imposed. Similarly, if a validator wrongly challenges

a correct block, resulting in a failed challenge, a penalty of

𝑓𝑛𝑉 is imposed and awarded to the aggregator.

By definition, 𝛿 , 𝑓𝑝 , and 𝑓𝑛 are all within the range of [0, 1].
We make some assumptions on these parameters to assure that

there is no dominate behavior for each party.

Assumption 1. The validator does not play a dominated strategy,
that is 𝛿𝑆 > 𝑇 .

We hope validators to challenge incorrect blocks instead of col-

luding with aggregators, so the reward for finding incorrect blocks

should be greater than the reward for confirming blocks, that is

𝛿𝑆 > 𝑇 . Additionally, we do not require 𝑇 > 𝐶 , for the reason that

even the validator has a negative benefit of verifying, he may still

choose to verify because once the wrong block is discovered, there

will be a positive benefit.

Assumption 2. The aggregator does not play a dominated strategy,
that is 𝑍 > 𝐵.

For the aggregator, choosing a larger value 𝑍 does not incur

additional cost, as the difference in block values is only a numerical

difference throughout the entire block. Moreover, the block value

is a public information because it is on chain. So the validators can

choose their behavior according to the block value.

3.2 Payoff Matrix
Based on the above analysis, when there is only one aggregator

and one validator, the validator will not incur any penalties when

choosing the free-rider strategy.

In most scenarios, the chance-taker strategy is dominated be-

cause validatorsmust incur a cost to verify for a successful challenge.

In L2 scenarios, precise verification of state transitions is required.

Without it, validators are disable to win the battle even if the block

is incorrect, known as the burden of proof. However, in cases where

official authorities handle validation, such as reporting cheating in

a game, the chance-taker strategy is viable. This paper focuses on

the chance-taker case in a single validator game.

Table 2 presents a game involving one aggregator and one val-

idator in a bimatrix format.

• If the aggregator attacks and the validator challenges, the

aggregator loses his deposit and the validator earns a portion

of the aggregator’s deposit. Additionally, the validator incurs

costs if he verifies.

• If the aggregator attacks and there is no challenger, the ag-

gregator earns the malicious block value, and the validator

receives the validator reward.

• A honest aggregator always earns the aggregator reward.

The validator receives the validator reward if he does not

challenge. Honest validators incur costs, while free-riders

pay nothing. However, if the validator challenges the correct

block, he loses a portion of his deposit, which goes to the

aggregator.

3.3 Multiple Players
We assume that when there are multiple challengers, they equally

share the challengers’ benefit 𝛿𝑆 , as only the first challenger will

gain and each challenger has equal probability to be the first one.

Considering multiple aggregators is pointless because there is

no strategic interaction between aggregators. Validators join the

game based on the first proposed block. If the first proposed block

is invalid, the game proceeds with the second proposed block, and

so forth.
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Table 2: Payoff matrix of one aggregator and one validator.
The first number indicates the utility for the aggregator,
while the second number represents the utility for the val-
idator.

Not Attack Attack

Free-rider (B, T) (Z, T)

Chance-taker (𝐵 + 𝑓𝑛𝑉 ,−𝑓𝑛𝑉 ) ( −𝑆, 𝛿𝑆)
Verifier (B, T-C) (−𝑆, 𝛿𝑆 −𝐶)

Table 3: Payoff matrix of one aggregator and 𝑛 validators,
where𝑚 of the 𝑛 validators choose to verify. The first num-
ber indicates the utility for the aggregator, while the second
number represents the utility for the validator.

Not Attack Attack

2*Free-rider 2*(𝐵, 𝑇𝑛 ) Detected (−𝑆,−𝑓𝑝𝑉 )
Not Detected (𝑍, 𝑇𝑛 )

Verifier (𝐵, 𝑇𝑛 −𝐶) (−𝑆, 𝛿𝑆𝑚 −𝐶)

Table 3 presents a game involving one aggregator and 𝑛 valida-

tors in a bimatrix format. The first number represents the utility

(payoff) for the aggregator, and the second number represents the

utility for the validator. We assume that𝑚 out of𝑛 validators choose

to verify. We also do not consider the chance-taker case with multi-

ple players.

• If the aggregator attacks and is detected by any validator, the

aggregator loses his deposit, and each challenger’s earning

is part of the aggregator’s deposit, distributed evenly among

the challengers in expectation. Moreover, if both free-riders

and challengers exist simultaneously, all free-riders lose a

portion of their deposits.

• If the aggregator attacks and there is no challenger, the aggre-

gator earns the malicious block value, and validators share

the validator reward averagely.

• If the aggregator is honest, he always earns the aggregator

reward, and validators share the validator reward averagely.

Honest validators incur costs, while free-riders pay nothing.

4 EQUILIBRIUM ANALYSIS
In this section, we progressively analyze the equilibrium for the

cases of a single validator, two validators, and multiple validators.

4.1 One validator
We use 𝛽 to denote the probability of A attacking and 𝛼 as the

probability of V verifying. Upon not verifying, V challenge with

probability𝛾 to be a change-taker (so w.p. 1−𝛼−𝛾 ,V is a free-rider).

Recall the payoff matrix of Table 2 from Section 3.

Lemma 4.1. There is no pure strategy equilibrium between A and
V .

Due to space limitations, the proofs of the lemmas and theorems

in this paper are included in the supplementary meterial.

We then analyze mixed-strategy equilibria, where the action

space for V is {verifier, free-rider, chance-taker}, and that for A is

{attack, not attack}. This conclusion indicates that in the case of a

single validator, except for special circumstances, there is exactly

one equilibrium. Depending on the value of𝐶 , the validator chooses

between a mix of being a free-rider and a verifier, or a mix of being

a free-rider and a chance-taker.

Theorem 4.2. There is a Nash Equilibrium that:

• If 𝐶 >
(𝛿𝑆 −𝑇 ) (𝑇 + 𝑓𝑛𝑉 )

𝛿𝑆 + 𝑓𝑛𝑉
, A attacks with probability 𝛽 =

𝑇 + 𝑓𝑛𝑉

𝛿𝑆 + 𝑓𝑛𝑉
, whileV challenges with probability𝛾 =

𝑍 − 𝐵

𝑍 + 𝑆 + 𝜆𝑓𝑛𝑉
and otherwise is free-rider;

• If 𝐶 <
(𝛿𝑆 −𝑇 ) (𝑇 + 𝑓𝑛𝑉 )

𝛿𝑆 + 𝑓𝑛𝑉
, A attacks with probability 𝛽 =

𝐶

𝛿𝑆 −𝑇
, while V verifies with probability 𝛼 =

𝑍 − 𝐵

𝑍 + 𝑆
and

otherwise is free-rider;

• Especially, when 𝐶 =
(𝛿𝑆 −𝑇 ) (𝑇 + 𝑓𝑛𝑉 )

𝛿𝑆 + 𝑓𝑛𝑉
, there are tree equi-

libria in total with the following strategy for V :

verifier chance-taker free-rider

𝛼 0 1 − 𝛼

0 𝛾 1 − 𝛾

𝛼 𝛾 1 − 𝛼 − 𝛾

The definitions of all parameters, as well as the strategy of the
aggregator, remain the same as in the previous two cases.

Sketch. In equilibrium, the aggregator and the validator are

indifferent between their each behaviors. We obtain the result of

Theorem 4.2 by calculating the utilities corresponding to all possible

behaviors of the aggregator and the validator. See the Appendix for

the specific proof. □

We can learn from the equilibrium above that system loss mainly

comes from when a malicious aggregator proposes an incorrect

block that has not been verified by the verifier. The system loss of

one aggregator and one validator is,

L = 𝛽 (1 − 𝛼)𝑍 =
𝐶

𝛿𝑆 −𝑇

(𝑆 + 𝐵)𝑍
𝑆 + 𝑍

(1)

4.2 Extension to two validators
Starting from this section, we no longer consider the action of a

chance-taker due to the fact that the burden of proof is the more

common scenario.

When there are two validators, we denote the two validators

asV1 andV2, with the probabilities of verifying being 𝛼1 and 𝛼2,

respectively. In the following we will show that things are different

compared to the single validator case:

• The equilibrium may not necessarily be symmetric for the

validators.

• There are cases where one validator may choose a pure

strategy of being a free-rider.

• The number of equilibria depends on the value of a specific

constant, 𝑅 =
𝑇
2
+𝑓𝑝𝑉
𝛿𝑆
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Theorem 4.3. Denote 𝑅 =

𝑇
2
+ 𝑓𝑝𝑉

𝛿𝑆
. There is an equilibrium

that both V1 and V2 play the mixed strategy that they verify with

probability 𝛼 = 1 −
√︂

𝐵 + 𝑆

𝑍 + 𝑆
, while A attacks with probability 𝛽1 =

𝐶

𝛿𝑆 (1 − 1

2
𝛼) + 𝛼 ( 1

2
𝑇 + 𝑓𝑝𝑉 ) − 1

2
𝑇
.

If 𝑅 ≤ 1

2

, in addition to the above equilibrium, there is another
equilibrium thatV1 plays the mixed strategy verifying with proba-

bility 𝛼 =
𝑍 − 𝐵

𝑍 + 𝑆
, and V2 plays as a free-rider, while A attacks with

probability 𝛽2 =
𝐶

𝛿𝑆 − 𝑇
2

.

Sketch. We can derive that a symmetric equilibrium always

exists using the indifference condition, while the necessary and

sufficient condition for the existence of an asymmetric equilibrium

can be obtained through the following conditions:

Indifference condition for the mixed-strategy validator:

𝛽𝛿𝑆 + (1 − 𝛽) ( 1
2

𝑇 ) −𝐶 =
1

2

𝑇 . (2)

Difference condition for the free-rider vaildator:

(1 − 𝛼𝛽)𝑇
2

− 𝛽𝛼 𝑓𝑝𝑉 ≥ 𝛽 (𝛼 1
2

𝛿𝑆 + (1 − 𝛼)𝛿𝑆) + (1 − 𝛽) ( 1
2

𝑇 ) −𝐶

(3)

Combining them together yields 𝑅 ≤ 1

2
□

Interestingly, the system loss of the symmetric equilibrium, de-

noted by L1, is:

L1 = 𝛽1

2∏
𝑖=1

(1−𝛼𝑖 )𝑍 =
𝐶

𝛿𝑆

(
1 − 1

2
𝛼

)
+ 𝛼

(
1

2
𝑇 + 𝑓𝑝𝑉

)
− 1

2
𝑇

(𝑆 + 𝐵)𝑍
𝑆 + 𝑍

.

Similarly, the system loss of the asymmetric equilibrium, denoted

by L2, is:

L2 = 𝛽2

2∏
𝑖=1

(1 − 𝛼𝑖 )𝑍 =
𝐶

𝛿𝑆 − 1

2
𝑇

(𝑆 + 𝐵)𝑍
𝑆 + 𝑍

.

It is not hard to see that 𝛽1 > 𝛽2 is equivalent to 𝑅 < 1

2
, which

always holds when the later equilibrium exist. Therefore, the system

tends to set 𝑅 < 1

2
to introduce an equilibrium with lower losses.

4.3 Extension to 𝑛 validators
Based on the above analysis, we extend this model to multiplayer

games. Unlike Li [9], the 𝑛 validators are not considered as a unified

entity; instead, each validator operates as an independent agent.

We first derive two propositions that no naive pure equilibrium

exists in this case either.

Proposition 4.4. In equilibrium, the aggregator does not play a
pure strategy.

If the aggregator always attacks, validators will challenge the

malicious blocks, causing the aggregator to lose their deposit and

switch to honest behavior. Conversely, if the aggregator never

attacks, validators will free-ride, prompting the aggregator to start

attacking for higher revenue.

Proposition 4.5. In equilibrium, there is no strategy where all 𝑛
validators are free-riders or where any individual purely verifies.

Assuming that all validators are free-riders, the aggregator has a

strong incentive to attack. In this scenario, if any validator switches

their behavior from a free-rider to a verifier, they will achieve

greater utility. Consequently, this situation cannot constitute an

equilibrium.

From the two properties above, we can conclude that all valida-

tors are either purely free riders or play a mixed strategy (with

respect to free riding and verifying). We use "𝑚-NE" to denote
the equilibrium where 𝑛 −𝑚 validators are purely free riders,
and𝑚 validators play a mixed strategy.

Symmetry of Equilibrium. We prove that all 𝛼𝑖 can take at most

two distinct values. This implies that under equilibrium, the valida-

tors take at most three distinct actions.

Theorem 4.6. In equilibriumwith one aggregator and𝑛 validators,
the behavior of the validator group adheres to the following rules:

(1) 𝑘 validators adopt a mixed strategy with probability 𝛼1;
(2) 𝑚 − 𝑘 validators adopt a mixed strategy with probability 𝛼2;
(3) 𝑛 −𝑚 validators play a pure strategy as free-riders.

A special case arises when 𝛼1 = 𝛼2, indicating that all validators
employing a mixed strategy are symmetric.

Sketch. We prove the conclusion by contradiction. Assume

there is an additional probability 𝛼3 besides 𝛼1 and 𝛼2. Then denote

𝐹𝑖 as the probability that there are 𝑖 validators verifying among the

remaining𝑚 − 2 validators. The validator with probability 𝛼1 is

indifferent between being an honest verifier and a free-rider:

𝛽 [𝛼2𝛼3
𝑚−3∑︁
𝑘=0

𝐹𝑘
𝛿𝑆

𝑘 + 3

+ (1 − 𝛼2)𝛼3
𝑚−3∑︁
𝑘=0

𝐹𝑘
𝛿𝑆

𝑘 + 2

+ (1 − 𝛼3)𝛼2
𝑚−3∑︁
𝑘=0

𝐹𝑘
𝛿𝑆

𝑘 + 2

+ (1 − 𝛼2) (1 − 𝛼3)
𝑚−3∑︁
𝑘=0

𝐹𝑘
𝛿𝑆

𝑘 + 1

] + (1 − 𝛽)𝑇
𝑛
−𝐶

=𝛽 (1 − 𝐹0 (1 − 𝛼2) (1 − 𝛼3) (−𝑓𝑝𝑉 ) + (1 − 𝛽 (1 − 𝐹0 (1 − 𝛼2) (1 − 𝛼3))
𝑇

𝑛
(4)

The same equation holds symmetrically for the probabilities 𝛼2 and

𝛼3. However, by combining these equations, we reach a contradic-

tion when 𝛼1 ≠ 𝛼2 ≠ 𝛼3. This completes the proof. □

According to Theorem 4.6, validators choosing a mixed strategy

exhibit at most two distinct verification probabilities. We first an-

alyze the symmetric case where all probabilites are identical, and

then observe the asymmetric case where there are two different

probabilities.

4.3.1 The Symmetric Case. We define the constant 𝑅, which plays

a crucial role in determining the properties of the equilibrium.

Definition 4.7.

𝑅 =

𝑇
𝑛 + 𝑓𝑝𝑉

𝛿𝑆

Compared to the constant in the two-validator case, it just replace

the number 2 with 𝑛.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1375



Number of Equilibra. In this paragraph we analyze the number

of (symmetric) equilibria. It is sufficient to consider the condition

where𝑚-NE exist.We use 𝛼𝑚 to denote the (identical) proba-
bility of being verifier that𝑚 mixed strategy validators take.
Let 𝐴 be the probability where no valitador verifies. It is not
hard to see that

Lemma 4.8.

𝐴 =
𝐵 + 𝑆

𝑍 + 𝑆
= (1 − 𝛼𝑚)𝑚 ;

The first equation comes from the indifferent condition of the

aggregator. The second equation simply comes from the multiplica-

tion rule for independent events.

By defining the following constant sequence, we find that whether

𝑚-NE exists depends on the relationship between 𝑅 and this se-

quence.

Definition 4.9.

Γ𝑚 =

[
1

𝑚(𝑚 + 1)

(
1

𝐴
− 1

)
− 𝛼𝑚

𝑚 + 1

]
1 − 𝛼𝑚

𝛼2𝑚
(𝑚 > 0) .

Γ0 = 0

We have the following property of Γ𝑚 :

Lemma 4.10. Γ𝑚 is increasing with𝑚.

It can be computed that Γ1 = 1/2, which implies the result for

the two-validator case.

The theorem about the number of equilibria is stated as follows:

Theorem 4.11. 𝑛-NE always exists. For 0 < 𝑚 < 𝑛,𝑚-NE exist if
and only if 𝑅 ≤ Γ𝑚 .

In other word, if Γ𝑚−1 < 𝑅 ≤ Γ𝑚 (0 < 𝑚 < 𝑛), all equilibria are:
𝑚-NE, (𝑚 + 1)-NE, ..., (𝑛 − 1)-NE, 𝑛-NE.

Sketch. Similar to the two-validator case, we derive the main

result from the indifference condition for the mixed-strategy val-

idator

𝛽 ( 1 −𝐴

𝑚𝛼𝑚
𝛿𝑆 − 𝐴

1 − 𝛼𝑚
(𝑓𝑝𝑉 + 𝑇

𝑛
) + 𝑓𝑝𝑉 ) = 𝐶, (8)

and the difference condition for the free-rider validator

𝛽 ( 1 −𝐴(1 − 𝛼𝑚)
(𝑚 + 1)𝛼𝑚

𝛿𝑆 −𝐴(𝑓𝑝𝑉 + 𝑇

𝑛
) + 𝑓𝑝𝑉 ) ≤ 𝐶. (9)

Some mathematical transformations are performed. Combine the

above two formulas together it yields 𝑅 ≤ Γ𝑚 . Due to Lemma 4.10

we also have 𝑅 ≤ Γ𝑘 ,∀𝑘 > 𝑚, which proves the second part of the

theorem. □

System Loss. In this paragraph we analyze the system loss of all

equilibria and show proof that they exhibit monotonicity. We use
𝛽𝑚 to denote the probability that the aggregator attack in
𝑚-NE, and the corresponding system loss is L𝑚 .

Theorem 4.12. If Γ𝑚−1 < 𝑅 ≤ Γ𝑚 , then 𝛽𝑚 < 𝛽𝑚+1 < · · · < 𝛽𝑛 ,
which means that L𝑚 < L𝑚+1 < · · · < L𝑛 .

Sketch. We first deduce from the indifference condition to yield:

𝛽𝑚 =
𝐶

𝑃𝑚𝛿𝑆 −𝑄𝑚 (𝑓𝑝𝑉 + 𝑇
𝑛 ) + 𝑓𝑝𝑉

,

where

𝑃𝑚 =
1 −𝐴

𝑚𝛼𝑚
, 𝑄𝑚 =

𝐴

1 − 𝛼𝑚
,

and both 𝑃𝑚 and 𝑄𝑚 are within the range of (0, 1) and increasing

with𝑚.

Let Δ𝑚 =
𝑃𝑚−𝑃𝑚+1
𝑄𝑚−𝑄𝑚+1

, we have the following properties:

Lemma 4.13. Δ𝑚 is increasing with𝑚.

Lemma 4.14. Γ𝑚 < Δ𝑚 .

Accoording to (8), we have 𝛽𝑚 ≤ 𝛽𝑚+1 ⇐⇒ 𝑅 ≤ Δ𝑚 . Com-

bining the above lemmas and the precondition, we have 𝑅 ≤ Γ𝑚 <

Δ𝑚 < Δ𝑚+1 < ... < Δ𝑛 , thus 𝛽𝑚 < 𝛽𝑚+1 < .. < 𝛽𝑛 , which prove

the theorem. □

In summary, we show the number of equilibria is determined by

the relationship between Γ𝑚 and 𝑅, and their corresponding system

loss is monotonic with respect to𝑚. The optimal equilibrium when

Γ𝑚−1 < 𝑅 ≤ Γ𝑚 is when there are 𝑚 mixed strategy validators,

which is the minimum possible number.

The maximum system loss for the symmetric case is when there

are 𝑛 mixed strategy validators, which is given by:

L𝑠𝑦𝑚𝑛
= 𝛽𝑛

𝑛∏
𝑖=1

(1−𝛼𝑖 )𝑍 =
𝐶

𝑃𝑛𝛿𝑆 −𝑄𝑛 (𝑓𝑝𝑉 + 𝑇
𝑛 ) + 𝑓𝑝𝑉

· (𝑆 + 𝐵)𝑍
𝑆 + 𝑍

.

4.3.2 The Asymmetric Case. Next, we consider the asymmetric

case.

Suppose there are 𝑘 validators who play the mixed strategy with

probability 𝛼1, and𝑚 − 𝑘 validators who play the mixed strategy

with probability 𝛼2. This scenario introduces variability in validator

strategies, making the analysis more complex than the symmetric

case. To facilitate the following analysis, we assume 𝛼1 < 𝛼2.

Let

𝑝3 =

𝑘−1∑︁
𝑖=0

𝐶𝑖
𝑘−1𝛼

𝑖
1
(1−𝛼1)𝑘−1−𝑖

𝑚−𝑘−1∑︁
𝑗=0

𝐶
𝑗

𝑚−𝑘−1𝛼
𝑗

2
(1−𝛼2)𝑚−𝑘−1− 𝑗 1

𝑖 + 𝑗 + 2

,

𝑝4 =

𝑘−1∑︁
𝑖=0

𝐶𝑖
𝑘−1𝛼

𝑖
1
(1−𝛼1)𝑘−1−𝑖

𝑚−𝑘−1∑︁
𝑗=0

𝐶
𝑗

𝑚−𝑘−1𝛼
𝑗

2
(1−𝛼2)𝑚−𝑘−1− 𝑗 1

𝑖 + 𝑗 + 1

,

𝑝5 = (1 − 𝛼1)𝑘−1 (1 − 𝛼2)𝑚−𝑘−1
, we state the lemma as follows.

Lemma 4.15. The necessary conditions for the equilibrium of asym-
metric case are:

(𝑝3 − 𝑝4)𝛿𝑆 + 𝑝5 (𝑓𝑝𝑉 + 𝑇

𝑛
) = 0 (11a)

𝐶

𝛽
− 𝑝4𝛿𝑆 − 𝑓𝑝𝑉 + 𝑝5 (𝑓𝑝𝑉 + 𝑇

𝑛
) = 0 (11b)

(1 − 𝛼1)𝑘 (1 − 𝛼2)𝑚−𝑘𝑍 −
[
1 − (1 − 𝛼1)𝑘 (1 − 𝛼2)𝑚−𝑘

]
𝑆 = 𝐵

(11c)

Combining Eq. (11a), Eq. (11b), and Eq. (11c), we can determine

the trend of 𝛼1, 𝛼2, and 𝛽 as 𝑅 changes. We set 𝑛 = 15,𝑚 = 10, and

other necessary constants. We calculated the probabilities 𝛼1 and

𝛼2 as shown in Fig. 1.

Observation 1. In equilibrium of the asymmetric case, the prob-
ability of verification will be greater for the group with more mixed
strategy validators, i.e. 𝑘 ≤ 𝑚/2.
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Figure 1: The relationship between the probabilities 𝛼1 and
𝛼2 as the number of verifier 𝑘 changes.

From Eq. (11b), we can derive that:

𝛽 =
𝐶

𝑝4𝛿𝑆 − 𝑝5 (𝑓𝑝𝑉 + 𝑇
𝑛 ) + 𝑓𝑝𝑉

.

Fig. 2 shows the variation of 𝛽 values corresponding to different

𝑘 values as 𝑅 changes when𝑚 = 10. As 𝑘 increases, the value of 𝛽

decreases, resulting in a reduction in system losses. As 𝑘 gradually

approaches
𝑚
2
, an additional 𝛽 value (equilibrium) appears, and this

𝛽 will gradually converge with the other 𝛽 . Similarly, we set𝑚 to

11 while keeping other variables unchanged, resulting in Fig. 3.

The system loss for the asymmetric case is given by:

L𝑎𝑠𝑦𝑚 = 𝛽𝑘

𝑛∏
𝑖=1

(1−𝛼𝑖 )𝑍 =
𝐶

𝑝4𝛿𝑆 − 𝑝5 (𝑓𝑝𝑉 + 𝑇
𝑛 ) + 𝑓𝑝𝑉

· (𝑆 + 𝐵)𝑍
𝑆 + 𝑍

.

(12)

From Figs. 2 and 3, we observe that

Observation 2. As 𝑘 increases, the conditions for the existence of
equilibrium become increasingly stringent (the range of 𝑅 that allows
for the existence of equilibrium becomes narrower).

Observation 3. As 𝑘 increases, the attacking probability in the
equilibrium (if exist) decreases.

𝑘 = 0 represents the symmetric case where all mixed strategy

validators play with the same probability, and 𝛽 is maximized when

𝑘 = 0. Thus the system loss in the symmetric case is always greater

than the system loss in the asymmetric case.

5 BREAKING TIE
Revisiting Table 1, all parameters can be adjusted by the system

admin expect the malicious block value 𝑍 , by which the system

loss is primarily effected. Suppose there are 𝑛 validators, and the

𝑖-th validator has a probability 𝛼𝑖 of verifying. We have

L = 𝛽

𝑛∏
𝑖=1

(1 − 𝛼𝑖 )𝑍 = 𝛽
(𝑆 + 𝐵)𝑍
𝑆 + 𝑍

. (13)

From Eq.(13), we can see that L increases as the value of 𝑍

increases. However, 𝑍 is uncontrollable by the system because 𝑍 is

the malicious block value chosen by the aggregator. In all before-

mentioned cases, the aggregator’s expected utility is indifferent
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Figure 2: The image of the 𝛽 as validators k and R changes.
The solid line represents the general 𝛽 that exists for all k,
while the dashed line represents the additional 𝛽 (equilib-
rium) that appears as k changes.
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Figure 3: The image of the 𝛽 as validators k and R changes.
The solid line represents the general 𝛽 that exists for all k,
while the dashed line represents the additional 𝛽 (equilib-
rium) that appears as k changes.

with 𝑍 , which means that he does not have a preference to 𝑍 . In

this section we analyze how to fine-tune the mechanism so that

the aggregator develops a bias toward 𝑍 .

To achieve the purpose of breaking tie, we introduce a system

interference term 𝐷 so that the penalty of attacking is related to the

probability of the aggregator attacking 𝛽 and the validator verifying

𝛼 .

The new payoff matrix is shown in Table 4. The reason why

we only add interference term 𝐷 to the bottom right corner of the

payoff matrix is that, only in this scenario the validator and aggre-

gator have engaged in a battle on L1, which can be detected by the

blockchain system. This mechanism can be implemented as follows:

dynamically record the probability 𝑝 of the aggregator’s attack

being challenged. Each time this occurs, in addition to penalizing

the aggregator, provide a return amount based on 𝑝 multiplied by

a constant.

Theorem 5.1. By adding a interference term 𝐷 , the aggregator
tends to choose a smaller 𝑍 , while the attacking probability 𝛽 remains
the same.
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Table 4: Payoff matrix with a system interference term 𝐷

𝐴 (1 − 𝛽) 𝐴 (𝛽)

𝑉𝐶 (1 − 𝛼) (B, 𝑇 ) (Z, 𝑇 )

V (𝛼) (B, 𝑇 −𝐶) (−𝑆 − 𝛼𝛽𝐷, 𝛿𝑆 −𝐶)

Proof. The indifference condition for V remains unchanged,

as the introduction of 𝐷 does not change the payoff matrix of the

validator. Therefore, when reaching equilibrium, 𝛽 = 𝐶
𝛿𝑆−𝑇 .

The expected utility of the aggregator is consist of the expected

utility of attacking and not attacking, that is 𝐸𝐴 = 𝛽 ((1 − 𝛼)𝑍 +
𝛼 (−𝑆 − 𝛼𝛽𝐷)) + (1 − 𝛽)𝐵.

Fix 𝛼 and other constants, the aggregator chooses 𝛽 that max-

imizes 𝐸𝐴 , so 𝐸′
𝐴
(𝛽) = (−𝛼𝑆 − 2𝛼2𝛽𝐷) + (1 − 𝛼)𝑍 − 𝐵 = 0. That

is

(1 − 𝛼)𝑍 − 𝛼𝑆 = 2𝛼2𝛽𝐷 + 𝐵. (14)

By replacing (1 − 𝛼)𝑍 − 𝛼𝑆 ,the expected utility 𝐸𝐴 can be sim-

plified to

𝐸𝐴 (𝛽) = 𝛼2𝛽2𝐷 + 𝐵 (15)

Based on conditions above, we then study the optimal 𝑍 that

the aggregator chooses. Now 𝛼 is a function of 𝑍 (while 𝛽 is still

irrelevant with 𝑍 ).

Take the derivative of 𝐸𝐴 with respect to 𝑍 in Eq.(15), we have

𝐸′
𝐴
(𝑍 ) = 2𝛼𝛽2𝐷𝛼 ′

Take the derivativewith respect to𝑍 in Eq.(14), we have 4𝛼𝛽𝐷𝛼 ′+
𝛼 ′𝑆 = 1 − 𝛼 − 𝛼 ′𝑍 , which implies 𝛼 ′ = 1−𝛼

4𝛼𝛽𝐷+𝑆+𝑍 > 0.

Combining with the above conclusions, we can determine the

positive or negative value of 𝐸′
𝐴
(𝑍 ) by the positive or negative

value of 𝐷 . When we set 𝐷 to a negative value, 𝐸′
𝐴
(𝑍 ) < 0 holds.

Therefore, the aggregator tends to choose a smaller Z, resulting in

decreasing the system loss. □

It is worth noting that the system interference term 𝐷 can be set

to a very small value, so the introduction of 𝐷 does not affect the

behavior of other parties.

6 SUGGESTION
Based on the discussion above, we propose several suggestions for

the system to maximize its benefits. These recommendations aim

to optimize system parameters and mitigate potential losses from

malicious behavior by aggregators.

Subsidizing caught aggregators. For the system, we suggest that

the system add an interference term 𝐷 providing subsidy to the

caught aggregators. Because the benefits of the aggregator are

independent of 𝑍 , while system loss L are positively correlated

with𝑍 . By introducing𝐷 , the aggregators prefer to choose a smaller

𝑍 explained in Section 6.

Decrease 𝑅. In the previous section, we discussed the equilibria

of games with multiple validators. We observe the rise of more bet-

ter equilibria characterized by smaller system loss as 𝑅 decreases.

Therefore, we consider reducing the value of 𝑅 from multiple as-

pects.
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tem loss L changes
by 𝑛

Decerase 𝑆 . Considering the scenario of multiple validators, the

worst system loss L of multiple validators is,

L =
𝐶

𝑃𝑛𝛿𝑆 −𝑄𝑛 (𝑓𝑝𝑉 + 𝑇
𝑛 ) + 𝑓𝑝𝑉

· (𝑆 + 𝐵)𝑍
𝑆 + 𝑍

. (16)

Treating the system loss L as a function of deposit 𝑆 , we make a

graph of the system loss L as 𝑆 changes, shown in Figure. 4. We can

learn that as 𝑆 increases, the system loss L increases. Therefore,

we can decrease 𝑆 in order to decrease the system loss of the worst

equilibrium.

It is worth noting that though decreasing 𝑆 will increase 𝑅, their

optimization directions are different: decreasing𝑅 raisesmore better

equilibrium, while decreasing 𝑆 reduces the system loss of the worst

case equilibrium.

Decrease 𝐵. Since 𝑃𝑛 and 𝑄𝑛 are related to 𝐵, we can treat the

system loss L as a function of the reward 𝐵. Figure 5 illustrates

how the system loss changes as 𝐵 varies. By decreasing 𝐵, we can

reduce the system loss in the worst equilibrium.

Increase 𝑛. Increasing the number of validators 𝑛 will also affect

the values of 𝑃𝑛 and 𝑄𝑛 , thereby increasing Γ𝑛 . This adjustment

is more conducive to achieving more better equilibrium. Figure 6

shows the change in system loss with varying 𝑛. Increasing 𝑛 can

also reduce the system loss in the worst equilibrium. Additionally,

this also helps decrease 𝑅, resulting in better equilibria.

Decrease 𝐶 . From Eq. (16), it is evident that decreasing the ver-

ification cost 𝐶 for the verifier also helps to decrease the system

loss, which demonstrates that technological progress can improve

productivity.

Increase 𝑉 and 𝑓𝑝 . Since 𝑄𝑛 < 1, L in Eq.16 is decreasing with

𝑓𝑝𝑉 . Similar to decrease 𝑆 , increasing 𝑓𝑝𝑉 also raises 𝑅, resulted in

different optimization directions.

Increase 𝛿 . Increasing 𝛿 helps to decrease the worst system loss.

At the same time, increasing 𝛿 can decrease 𝑅, raising more better

equilibria.

Decrease 𝑇 . L in Eq.16 is decreasing with 𝑇 . Therefore, decreas-

ing 𝑇 can reduce the system loss L. Additionally, this also helps

decrease 𝑅, raising more better equilibria.
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