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ABSTRACT
Machine learning (ML) models have become essential tools in vari-

ous scenarios. Their effectiveness, however, hinges on a substantial

volume of data for satisfactory performance. Model marketplaces

have thus emerged as crucial platforms bridging model consumers

seeking ML solutions and data owners possessing valuable data.

These marketplaces leverage model trading mechanisms to prop-

erly incentive data owners to contribute their data, and return a

well performing ML model to the model consumers. However, ex-

isting model trading mechanisms often assume the data owners

are willing to share their data before being paid, which is not rea-

sonable in real world. Given that, we propose a novel mechanism,

named Structural Importance based Model Trading (SIMT) mech-

anism, that assesses the data importance and compensates data

owners accordingly without disclosing the data. Specifically, SIMT

procures feature and label data from data owners according to their

structural importance, and then trains a graph neural network for

model consumers. Theoretically, SIMT ensures incentive compat-

ible, individual rational and budget feasible. The experiments on

five popular datasets validate that SIMT consistently outperforms

vanilla baselines by up to 40% in both MacroF1 and MicroF1.
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1 INTRODUCTION
In today’s digital age, data has become an essential asset, serving

as the foundation for AI and machine learning advancements. To

meet the increasing demand for high-quality data, a new business
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paradigm known as the model marketplace has emerged [22], ex-

emplified by platforms like Modzy. A model marketplace facilitates

the exchange between model consumers, who seek AI models for

various tasks, and data owners, who possess the feature and la-

bel data necessary for model training. The marketplace purchases

data from data owners, uses it to train AI models, and then sells

these trained models to consumers. However, a key challenge in

model marketplaces is determining how to properly compensate

data owners for their contributions, a problem referred to as data
pricing. This problem is challenging because the importance of data

is difficult to evaluate. Most existing studies assume that market-

places acquire data from data owners before paying them and use

the subsequent performance improvements as a measure of data

importance. For example, [2, 11, 16, 22, 42] rely on this assumption

to establish pricing mechanisms based on the marginal impact of

data on model accuracy. However, this pre-purchased inspection

assumption is impractical in real-world settings. Data owners are

often unwilling to release their data without proper payment, fear-

ing that the data, once disclosed, may immediately provide valuable

insights to buyers, reducing the incentive to pay.

This leads to a critical question: How can we measure data impor-
tance for model training without direct inspection, thereby facilitating
data pricing? Several studies have attempted to address this question

by introducing exogenous metrics for measuring data importance,

such as data age, accuracy, volume [13], the extent of perturbations

[9, 37], or data owners’ reputation [44]. However, these metrics

often fail to accurately reflect the contribution of data in the context

of model training, particularly when dealing with complex models

like Graph Neural Networks (GNNs).

Graph-structured data is prevalent in many real-world scenarios,

where the relationships between entities are often as important

as their attributes. GNNs excel in tasks involving such data, cap-

turing both node features and network structure. However, data

ownership is often decentralized, with different entities control-

ling separate “pockets” of the network. This creates a need for a

marketplace where subgraphs can be purchased and integrated to

enable comprehensive model training [3]. For example, in finance,

each bank holds its own subset of transaction data, but detecting

fraud often requires analysing transaction flows across multiple

institutions. Similarly, in healthcare, patient interactions are frag-

mented across hospitals, clinics, and insurance companies, forming

an interconnected yet distributed network. In supply chain manage-

ment, companies typically have visibility into their direct suppliers
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and customers, but the complete supply chain network spans many

interdependent organisations. In all of these cases, the full value of

the network data cannot be realised without aggregating subgraphs

from multiple sources. For data consumers, aggregating subgraphs

from multiple sources is essential for training reliable GNN models,

enabling applications like fraud detection, personalized healthcare,

and supply chain risk analysis.

In this paper, we advance existing research by exploring the pric-

ing of individual data points within subgraphs for GNN training.

This introduces a distinct challenge, as the value of any given node

to the model’s performance is highly dependent on its structural

role and connectivity within the broader network. To address this,

we aim to develop pricing mechanisms that capture the marginal

contribution of each data point, taking into account both its lo-

cal features and its position within the global network structure.

Notably, this is the first work to tackle the problem of pricing graph-

structured data in a model marketplace for GNNs.

In the following, we list our main contributions:

• We propose Structural Importance based Model Trading (SIMT), a

novel model marketplace framework for GNNs that integrates

two phases: data procurement and model training. Figure 1 shows
the conceptual framework of SIMT.

• For data procurement, we put forward a new method for assess-

ing the importance of graph-structured data. For this we present

a novel marginal structural entropy to quantify node informative-

ness. This method of importance assessment is integrated with an

auction mechanism to select data owners and fairly compensate

them based on their contributions. We prove that this mechanism

is incentive compatible, individual rational, and budget feasible.

• For model training, we introduce the method of feature prop-
agation to impute missing feature data for unselected nodes,

enabling effective learning with partial data. We also design an

edge augmentationmethod to enhance graph structure by adding

connections involving unselected nodes, improving the GNN’s

ability to generalize.

• The proposed SIMTmethodwas evaluated on fivewell-established

benchmark datasets, and consistently outperformed four baseline

mechanisms in node classification tasks. SIMT achieved up to

a 40% improvement in MacroF1 and MicroF1 scores compared

to the Greedy and ASCV methods, demonstrating its superior

performance under various budget constraints.

2 RELATEDWORK
Data pricing has been extensively studied in two main contexts:

data marketplaces and model marketplaces.
Data Pricing in DataMarketplaces. In data marketplaces, pricing

mechanisms revolve around trading raw datasets or simple queries.

Previous work has focused on pre-purchase decisions, where data

is evaluated before it is accessed, which aligns with our setting. For

instance, the importance of datasets is often quantified by metrics

such as size, as explored by [19], or privacy levels, as in [28]. Other

studies, such as [41] and [15], assess data importance based on its

utility to consumers, proposing auction mechanisms and contracts

to compensate data owners accordingly.

When it comes to query-based data pricing, metrics like privacy

levels directly impact the accuracy of responses, thereby influencing

data value. For instance, [12, 31] propose auction mechanisms that

incorporate privacy in queries, while [21] introduces a take-it-or-

leave-it contract for count queries. Further work by [10, 45] expands

these ideas to linear predictor queries and broader query settings.

In data marketplaces, data importance is often easily quantifiable

using metrics like size or privacy levels. However, in the context of

model marketplaces, the contribution of individual data points to

machine learning model performance is more complex and requires

novel pricing methods.

Data Pricing in Model Marketplaces. In model marketplaces,

data pricing is typically based on how much a dataset improves a

machine learning model’s performance. [1] introduced a theoret-

ical framework for data pricing that balances budget constraints

with model performance. Subsequent works, such as those by [2]

and [11], assume the model’s benefit is known and focus on fairly

distributing rewards among data owners. A common method for

this is the Shapley value [32], which compensates each data owner

based on their contribution to the model.

Various studies have refined the utility function used in Shapley

value calculations by incorporating additional factors. [11] and [16],

for example, include 𝐾-nearest neighbors and privacy considera-

tions in their utility designs. [22] builds on this by extending the

Shapley value framework to model marketplaces. Other research,

such as [34] and [26], explores utility design in collaborative ma-
chine learning scenarios, where data owners also serve as model

consumers. In these cases, utility is defined either as the sum of the

model’s value to the owner and its marginal value to others [26],

or through metrics like information gain [34]. [42] and [14] further

define utility based on the cosine similarity of parameters or the

privacy leakage of shared model parameters.

A common limitation of these works is that they often require

training models on the entire dataset before compensating data

owners. In practice, this assumption is often unrealistic, as data

owners are usually hesitant to contribute their data upfront without

proper guarantees or compensation.

A more realistic setting, which is closer to our approach, has

been explored by studies [9, 37, 44]. [9] assume that data impor-

tance is known and apply a VCG auction mechanism to select and

compensate data owners. [44] propose an auction mechanism that

incorporates the reputation of data owners as a reflection of their

contribution, while [37] design an auction that selects data owners

based on their privacy requirements. Although these approaches

offer valuable insights, they rely on exogenous metrics, such as

reputation or privacy, which are often difficult to obtain or may not

accurately reflect the intrinsic value of data for model training.

In contrast, our work proposes a novel method to measure data
importance without direct data inspection. By focusing on the struc-

tural properties of graph data and using techniques like structural

entropy, we aim to create a fair and effective data pricing mecha-

nism that overcomes the limitations of previous methods.

Comparison with FL and AL. While Federated Learning (FL)

and Active Learning (AL) are well-known paradigms for training

models with distributed data, our approach differs in key ways.

(1) In FL, each data owner trains a local model on private data,

which is then aggregated into a global model while preserving

privacy [43]. SIMT, by contrast, does not require data owners to

train models. Instead, data is directly provided to a central model,
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Figure 1: The framework of structural importance-based model trading (SIMT) mechanism.

allowing for optimizations like data augmentation that are not

possible in FL’s gradient-based aggregation. This eliminates the

computational burden on data owners and allows for more flexible

model improvements. (2) In AL, the model iteratively queries data

points to refine learning, typically in multiple rounds [29]. SIMT,

however, collects data in a single round, reducing overhead and

cost. Furthermore, while AL assumes access to unlabeled data with

labels provided iteratively [7, 46], SIMT addresses the real-world

challenge of compensating data owners, ensuring they are fairly

rewarded for their contributions upfront.

3 PROBLEM FORMULATION
3.1 Model Marketplace for Graph Data
We consider a model marketplace where amodel consumer interacts
with multiple data owners to trade graph-structured data. This data

is distributed among the various data owners. Let the overall graph

be represented as an attributed graph G B (𝑉 , 𝐸,𝑿 ,𝒚), where 𝑉 is

the set of nodes, representing individual data subjects, 𝐸 ⊆ 𝑉 ×𝑉
is the set of edges. 𝑿 ∈ R𝑛×𝑚 is the feature matrix, where 𝑛 is the

number of nodes and𝑚 is the dimensionality of the feature vector,

and 𝒚 ∈ R𝑛 is the label vector, where each entry corresponds to a

label for each node. The adjacencymatrix and normalised adjacency

matrix of G are denoted as 𝑨 and
˜𝑨, resp.

For each node 𝑣 ∈ 𝑉 , let 𝒙𝑣 ∈ R𝑚 and 𝑦𝑣 represent the feature

vector and label of node 𝑣 , resp. 𝑁𝑣 ⊆ 𝑉 represents the set of

neighbours of node 𝑣 , and 𝑑𝑣 B |𝑁𝑣 | denote the degree of node 𝑣 .
The graph G is distributed among multiple data owners, each

controlling a subgraph. Let 𝑂 denote the set of data owners, where

𝑜 B |𝑂 | represents the total number of data owners. For each

data owner 𝑖 ∈ 𝑂 , the subgraph held by owner 𝑖 is represented
as G𝑖 B (𝑉𝑖 , 𝐸𝑖 ,𝑿 [𝑉𝑖 ],𝒚[𝑉𝑖 ]), where 𝑉𝑖 ⊆ 𝑉 is the set of nodes

controlled by data owner 𝑖 , 𝐸𝑖 = 𝐸 ∩ (𝑉𝑖 × 𝑉𝑖 ) is the set of edges
between nodes in 𝑉𝑖 , 𝑿 [𝑉𝑖 ], and 𝒚[𝑉𝑖 ] are the feature matrix, and

label vector induced by the nodes in 𝑉𝑖 , resp. Let 𝑛𝑖 B |𝑉𝑖 | be the
number of nodes in subgraph G𝑖 .

Denote the edges within subgraphs as ¤𝐸 and the edges between

the subgraphs as ¥𝐸. We assume that ¤𝐸∩ ¥𝐸 = ∅ and then 𝐸 = ¤𝐸∪ ¥𝐸. We

also assume that the internal structure of each subgraph, including

the features and labels of nodes, is private to the corresponding

data owner. However, the connections between subgraphs (i.e., ¥𝐸
the edges connecting nodes from different subgraphs) are known

by the model consumer. Data owners are willing to sell the feature,

label, and connection data for the nodes they control.

Each data owner 𝑖 ∈ 𝑂 attaches a valuation to her attribute

and label data of a single node, denoted by 𝜃𝑖 ∈ Θ, where Θ is

the set of all possible valuations. The valuation 𝜃𝑖 indicates the

minimum payment required by the data owner to allow the use of

the attribute and connection data of a single node for model training.

The valuation 𝜃𝑖 is privately known only to the data owner, but they

may report a different valuation 𝜃 ′
𝑖
≠ 𝜃𝑖 if it serves their interests.

We assume that each data owner values all their data subjects

equally, implying that the total valuation is linearly dependent on

the number of data records. Let 𝜽𝑖 be 𝑖’s valuation vector for all

nodes, i.e., 𝜽𝑖 B (𝜃𝑖,1, . . . , 𝜃𝑖,𝑛𝑖 ) = 𝜃𝑖 · 1, where 𝜃𝑖,𝑣 is the valuation
of 𝑖 for node 𝑣 . The valuation of all data owners form a valuation

matrix, denoted by 𝜽 , which is the concatenation 𝜽1 | · · · | 𝜽𝑜 ∈ Θ𝑛
.

The model consumer has a budget, denoted by 𝛽 ∈ R+, for buying
the prediction model trained on structure and attribute data.

The model marketplace involves designing a mechanism that

procures the attribute/structure data from data owners, and train a

GNN model for the model consumer.

3.2 Incentive Mechanism
Definition 3.1. A mechanism𝑀 consists of two functions, (𝜋 (·),

𝑝 (·)), where 𝜋 : Θ𝑛 → {0, 1}𝑛 is an allocation function and 𝑝 : Θ𝑛 →
R𝑛 is a payment function.

Given a set of data owners and amodel consumer, themechanism

takes the reported valuation 𝜽 ′ ∈ Θ𝑛
as input, and outputs alloca-

tion result and payment result. The allocation function and the pay-

ment function determine which nodes are selected for model train-

ing and how much to pay for the data owners, resp. We write the

allocation result 𝝅 (𝜽 ′) as (𝝅1 (𝜽 ′), . . . , 𝝅𝑜 (𝜽 ′)) and the payment

result 𝒑(𝜽 ′) as (𝒑1 (𝜽 ′), . . . ,𝒑𝑜 (𝜽 ′)), where each 𝝅𝑖 (𝜽 ′),𝒑𝑖 (𝜽 ′) is
a 𝑛𝑖 -dimensional vector with each element 𝜋𝑖,𝑣, 𝑝𝑖,𝑣 being an alloca-

tion and payment for 𝑖’s node 𝑣 . The allocation and payment of node

𝑣 give data owner 𝑖 a utility 𝑢𝑖,𝑣 (𝜽 ′) = (𝑝𝑖,𝑣 (𝜽 ′) −𝜃𝑖,𝑣)𝜋𝑖,𝑣 (𝜽 ′). The
utility of data owner 𝑖 is 𝑢𝑖 =

∑
𝑣∈𝑉𝑖 𝑢𝑖,𝑣 . Once a node is selected,

its connection, feature and label data are used for model training.

Let 𝜽−𝑖 denote the valuation of all data owner but 𝑖 and Θ−𝑖
denote the set of all possible 𝜽−𝑖 . A mechanism𝑀 should satisfy:

• Incentive Compatible (IC): Each data owner 𝑖 ∈ 𝑂 gains maximum

utility when truthfully reporting her valuation, i.e., 𝑢𝑖 (𝜃𝑖 , 𝜽−𝑖 ) ≥
𝑢𝑖 (𝜃 ′𝑖 , 𝜽−𝑖 ), ∀𝜃𝑖 , 𝜃

′
𝑖
∈ Θ,∀𝜽−𝑖 ∈ Θ−𝑖 .

• Individual Rational (IR): Each data owner 𝑖 ∈ 𝑂 gains an non-

negative utility when participating in the mechanism, i.e.,

𝑢𝑖 (𝜃𝑖 , 𝜽−𝑖 ) ≥ 0, ∀𝜃𝑖 ∈ Θ,∀𝜽−𝑖 ∈ Θ−𝑖 .
• Budget Feasible (BF): Total payment given to all data owners is

not exceed the budget 𝛽 , i.e.,
∑
𝑖∈𝑂 𝒑𝑖𝝅𝑖 ≤ 𝛽 .
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3.3 Graph Neural Network Models
We use GNN as the prediction model. Given a graph, GNN predicts

the node labels by stacking multiple layers. Let 𝐿 be the number of

layers in a GNNmodel. The main idea is to iteratively aggregate the

feature information of each node from its neighbours. Specifically,

given an attributed graph G = (𝑉 , 𝐸,𝑿 ,𝒚), and a GNN with 𝐿

convolution layers, at a layer ℓ ≤ 𝐿, the feature embedding 𝒉ℓ𝑣 of
node 𝑣 ∈ 𝑉 is generated through aggregation and update:

• Aggregation: aggregate the feature embeddings 𝒉ℓ𝑢 of all neigh-

bours 𝑢 of 𝑣 by an aggregate function such as mean and sum,

with trainable weights, i.e., 𝒏ℓ𝑣 B Aggregator
ℓ
(
{𝒉ℓ𝑢 ,∀𝑢 ∈ 𝑁𝑣}

)
.

• Update: update the feature embedding 𝒉ℓ+1𝑣 at the next layer by

an update function of the embedding 𝒉ℓ𝑣 and the aggregated em-

beddings 𝒏ℓ𝑣 , i.e., 𝒉
ℓ+1
𝑣 B Updater

ℓ
(
𝒉ℓ𝑣, 𝒏

ℓ
𝑣

)
. Initially, the feature

embedding of node 𝑣 is its feature vector, i.e., 𝒉0𝑣 B 𝒙𝑣 .

3.4 Optimisation Problem
As discussed in the Introduction, a key issue in determining com-

pensation for data owners in a model marketplace is assessing the

importance of their data to model training without direct inspection.

To summarise, the problem in this paper is:

Given the model marketplace with a model consumer and several

data owners, we, as a data broker, aim to design a mechanism that

procures the attribute/structural data from data owners, and train

a GNN model for the consumer with the following subgoals:

• assessing the importance of data to model training without dis-

closing the feature and label data;

• optimising GNN performance within the budget; and

• ensuring the mechanism is IC, IR, and BF.

More formally, let ◦ denote the Hadamard product operator,

which selectively includes elements from ¤𝐸,𝑿 ,𝒚 according to the

indicator vector 𝝅 = (𝝅1, . . . , 𝝅𝑜 ). We define 𝑓𝐺𝑁𝑁 (·) as the output
of a GNN model trained on a selected subset of the data with the

known ¥𝐸. The problem in the paper can be formulated as:

min | |𝒚 − 𝑓𝐺𝑁𝑁 (𝝅 ◦ G)||
s.t. 𝑢𝑖 (𝜃𝑖 , 𝜽−𝑖 ) ≥ 𝑢𝑖 (𝜃 ′𝑖 , 𝜽−𝑖 ), ∀𝜃𝑖 , 𝜃

′
𝑖 ∈ Θ,∀𝜽−𝑖 ∈ Θ−𝑖 . (IC)

𝑢𝑖 (𝜃𝑖 , 𝜽−𝑖 ) ≥ 0, ∀𝜃𝑖 ∈ Θ,∀𝜽−𝑖 ∈ Θ−𝑖 (IR)∑︁
𝑖∈𝑂

𝒑𝑖𝝅𝑖 ≤ 𝛽 (BF)

𝒑𝑖 ≥ 0, 𝜋𝑖,𝑣 ∈ {0, 1} ∀𝑖 ∈ 𝑂,∀𝑣 ∈ 𝑉𝑖

4 PROPOSED METHOD
In this section, we propose a mechanism that procures the most

contributing data and trains a GNN model using the procured data.

By considering the correlation between graph structure, features,

and labels, we leverage the graph structure to offer insights into

the contribution of the associated data. Then, we combine this con-

tribution assessment with the data owners’ valuation in an auction

mechanism to select the most cost-effective data. Subsequently,

we augment the procured data using feature imputation and edge

augmentation and use the augmented data to train a two-layer

GNN model, which is returned to the model consumer. The overall

framework is shown in Figure 1.

4.1 Structural Importance
We begin by evaluating the importance of data to model training

without inspecting the feature and label data. Our solution is moti-

vated by the observation that the structure of a graph often encodes

valuable information about its features and labels. According to the

well-known homophily assumption, nodes with similar features

and labels are more likely to be closely connected [25, 39]. This

is further validated by our case studies on five real-world graphs.

We analyse the connections both within and between classes, and

the results show that the number of edges within the same class is

substantially higher than between different classes, as illustrated in

Figure 2. The strong correlation between graph structure and the

associated features and labels motivates our approach to leverage

the graph structure as auxiliary information in the data selection

process. Thus we propose to use the structural importance of data
owner to represent her data importance.

Figure 2: Proportion of intra-class and inter-class edges

The sample dataset for model training should be both informa-

tive, reducing the uncertainty of the model, and representative,

capturing the overall pattern of the entire dataset [46]. Therefore,

we measure the structural importance of data owners in terms of

informativeness and representativeness. Nevertheless, determining

the informativeness and representativeness of nodes in a graph

often relies on the true classes and node features, which are not

available due to the absence of true feature and label data. To ad-

dress this, we first use structural clusters to approximate the true

classes. With this clustering, we propose the notion of marginal
structural entropy to quantifies informativeness, and deploy PageR-

ank centrality to quantify representativeness.

Structuring clustering. A crucial tool for the structural clustering

is structural entropy. Let 𝐺 = (𝑉 , 𝐸) represent a graph without

attributes. Suppose 𝑃 B {𝐶1,𝐶2, . . . ,𝐶𝑇 } is a partition of 𝑉 , where

each𝐶𝑡 is called a cluster and𝑇 is the number of clusters. Structural
entropy of 𝐺 relative to 𝑃 captures the information gain due to the

partition. For each cluster𝐶𝑡 ∈ 𝑃 , write 𝑑𝑡 as the sum of degrees 𝑑𝑣
of all nodes 𝑣 ∈ 𝐶𝑡 . Write𝑔𝑡 as the number of the edges between the

nodes in 𝐶𝑡 and those in the other clusters. The structural entropy
[23] of 𝐺 relative to 𝑃 is

H𝑃 (𝐺) = −
𝑇∑︁
𝑡=1

𝑑𝑡 − 𝑔𝑡
2|𝐸 | log

𝑑𝑡

2|𝐸 | .

A greater value ofH𝑃 (𝐺) means that the corresponding partition 𝑃

gains more information about the graph𝐺 and thus 𝑃 is preferable.
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Given that, we would like to obtain a good partition by max-

imising the structural entropyH𝑃 (𝐺). Unfortunately, maximising

the structural entropy H𝑃 (𝐺) is NP-hard [20, 40]. As an alterna-

tive, we propose an algorithm Clustering(𝐺) that harnesses the
power of unsupervised GCN models [40] to obtain a partition 𝑃 .

Specifically, Clustering(𝐺) first employs the Singular Value De-

composition (SVD) [5] to generate spectral features, and a clas-

sical Variational Graph Auto-Encoder (VGAE) model [18] with

reconstruction loss taking the generated spectral features as input

to learn node embeddings. Using the obtained node embedding,

Clustering(𝐺) then trains a linear classifier to get a partition by

maximising structural entropy.

Structural Informativeness. Given the learned clustering 𝑃 , we

propose the notion of cluster-based marginal structural entropy to

measure the structural informativeness of data owners. Basically,

the marginal structural entropy captures the information gain of a

node to the clustering. The lower the marginal structural entropy

of a node has, the more uncertainty this node has, and thus more

information the node’s data will capture. More formally, we define

the marginal structural entropy of node 𝑣 as the information gain

due to existence of 𝑣 , i.e., the difference between the structural

entropy of graph 𝐺 relative to 𝑃 and that of 𝐺 without node 𝑣

relative to 𝑃 ′. Then the normalised marginal structural entropy 𝜖𝑣 of
𝑣 is the normalised difference in structural entropy with partition

𝑃 and another partition 𝑃 ′ that moves 𝑣 out of its cluster 𝐶𝑡 , i.e.,

𝜖𝑣 = (H𝑃 (𝐺) − H𝑃 ′ (𝐺))/H𝑃 (𝐺). Let 𝑛𝑣,𝑡 be the number of nodes

that are incident to 𝑣 and belong to 𝐶𝑡 . After calculation, we have

the following (see App. A for the detailed calculation):

Definition 4.1. The normalised marginal structural entropy of

node 𝑣 ∈ 𝐶𝑡 to structural entropyH𝑃 (𝐺) is

𝜖𝑣 =
(𝑑𝑡 − 𝑔𝑡 ) log 𝑑𝑡

𝑑𝑡−𝑑𝑣 + 2𝑛𝑣,𝑡 log
𝑑𝑡−𝑑𝑣
2 |𝐸 |

(𝑑𝑡 − 𝑔𝑡 ) log 𝑑𝑡
2 |𝐸 |

.

A lower normalised marginal structural entropy means more struc-

tural uncertainty of 𝑣 , making 𝑣 more informative.

Structural Representativeness. We use a classical structural cen-

trality measure, PageRank [24], to quantify the structural repre-

sentativeness of a node. We opt for PageRank centrality due to its

superior performance compared to other centrality measures, as

validated in App. D. The higher the PageRank centrality of a node

has, the more representative the node is. Let 𝛾 ∈ (0, 1) denote the
damping factor, which controls the probability of following links.

The PageRank centrality 𝜌𝑣 of node 𝑣 is:

𝜌𝑣 = 𝛾
∑︁
𝑢∈𝑁𝑣

𝜌𝑢

|𝑁𝑢 |
+ 1 − 𝛾
|𝑉 | .

Structural Importance score. Given the clustering 𝑃 , the entropy

𝜖𝑣 and the PageRank centrality 𝜌𝑣 of each node 𝑣 , we define the

structural importance score. Specifically, we first sort all nodes in

their own cluster by their entropy and PageRank values, resp. Nodes

are sorted in ascending order by entropy (as lower entropy indicates

higher informativeness) and in descending order by PageRank (as

higher PageRank indicates greater representativeness). This ensures

that more informative and representative nodes are prioritised.

For a node 𝑣 in cluster 𝐶𝑡 , let rank
entr

𝑣 denote its rank by entropy

and rank
pr

𝑣 denote its rank by PageRank. We then define node 𝑣 ’s

informativeness and representativeness based on these rankings as

𝜙 info𝑣 B
rank

entr

𝑣

|𝐶𝑡 |
, and 𝜙

rep

𝑣 B
rank

pr

𝑣

|𝐶𝑡 |
, resp.

Finally, we define the structural importance score of a node.

Following the approach in [7, 46], we introduce a parameter 𝛼 to

balance representativeness and informativeness. Intuitively, repre-

sentative data helps to learn general classification patterns, while

informative data is used to refine the classification boundaries.

Therefore, when the budget 𝛽 is relatively small compared to the

overall valuations of data owners and the partition 𝑃 is complex

(i.e., when 𝑇 is large), prioritising representative data is crucial

to learning the general classification patterns. On the other hand,

when the budget is relatively large and the partition is simpler,

a small amount of representative data is sufficient to capture the

overall pattern, allowing us to focus on acquiring more informative

data to further refine the classification. More formally, given the

average valuation 𝜃 , defined as the average of the upper and lower

bounds of data valuations, we set 𝛼 = 1

2
(1 + 𝛽

𝑛𝜃
)−𝑇 . The structural

importance score of node 𝑣 is then defined as

𝜙𝑣 B (1 − 𝛼)𝜙rep𝑣 + 𝛼𝜙 info𝑣 . (1)

4.2 Model Trading Mechanism
We propose a model trading mechanism, named Structural impor-
tance based model trading (SIMT) mechanism, which consists of two

phases: (1) data procurement phase selects the most cost effective

data owners, and (2) model training phase trains a GNN model on

the procured data; See the workflow of SIMT in Figure 1 and the

algorithm in Alg. 1.

Phase 1. Data Procurement. In Phase 1, SIMT takes the attributed

graph G and the valuation vector 𝜽 , and the budget 𝛽 as inputs

and returns an allocation result 𝝅 and a payment result 𝒑. Firstly,
Clustering(𝐺) returns a clustering 𝑃 of the nodes 𝑉 after training.

Given the clustering 𝑃 with 𝑇 clusters, the mechanism computes

the structural importance score 𝜙𝑣 of each node 𝑣 ∈ 𝑉 using Equa-

tion (1), which represents the importance of the node. Then an

auction is conducted in each cluster 𝐶𝑡 ∈ 𝑃 with budget 𝛽/𝑇 . In
the auction for each 𝐶𝑡 , nodes in 𝐶𝑡 are sorted in descending or-

der based on the ratio
𝜙𝑣

𝜃𝑖,𝑣
, where data owner 𝑖 owns node 𝑣 . The

mechanism selects the most cost-effective 𝑘 data until the total

payment exceeds the allocated budget. The payment to data owner

𝑖 for node 𝑣 is 𝑝𝑖,𝑣 = min{ 𝛽
𝑇

𝜙𝑣∑𝑘
𝑢=1 𝜙𝑢

,
𝜃 𝑗,𝑤

𝜙𝑤
𝜙𝑣}, where 𝑗 is the first

data owner who has not had any data selected and 𝑤 is her first

data in the order (if such data owner 𝑗 does not exist, we set 𝑝𝑖,𝑣 as

min{𝛽𝜙𝑣/(𝑇
∑𝑘
𝑢=1 𝜙𝑢 ), ˜𝜃𝜙𝑣/𝜙𝑘+1}, where ˜𝜃 is the upper bound of

Θ). The total payment to data owner 𝑖 is
∑

𝑣∈𝑉𝑖 ,𝑣≤𝑘 𝑝𝑖,𝑣 .

Phase 2. Model Training. Given the allocation result 𝝅 , the model

training phase uses the connections, features and labels of the se-

lected data owners to train a GNN model. However, due to budget

constraints, only a subset of features and connections can be pur-

chased, which may not be sufficient for training a robust GNN

model. To address this, we first impute the missing node features
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Algorithm 1 The SIMT mechanism

Input: Attributed graph G, data owners𝑂 , valuation vector 𝜽 , and budget 𝛽

Output: Allocation 𝝅 , payment 𝒑, and trained model 𝑓GNN
1: let𝐺 = (𝑉 , ¥𝐸 ) represent the known subgraph of G without attributes.

2: Phase 1: Data procurement
3: get a partition 𝑃 ← Clustering(𝐺 )
4: compute the structural importance score 𝜙𝑣 for each 𝑣 ∈ 𝑉 according to 𝑃

5: initialise 𝝅 = 0, 𝒑 = 0
6: for each cluster𝐶𝑡 ∈ 𝑃 do
7: sort the nodes 𝑣 ∈ 𝐶𝑡 by

𝜙𝑣
𝜃𝑖,𝑣

in a descending order

8: find the largest 𝑘 such that 𝜃𝑘 ≤
𝜙𝑘∑

𝑢≤𝑘 𝜙𝑢

𝛽

𝑇

9: for 𝑣 ≤ 𝑘 do
10: Let 𝑖 ∈ 𝑂 be the data owner of node 𝑣

11: set 𝜋𝑖,𝑣 = 1, 𝑝𝑖,𝑣 = min{ 𝛽
𝑇

𝜙𝑣∑𝑘
𝑢=1

𝜙𝑢
,
𝜃 𝑗,𝑤

𝜙𝑤
𝜙𝑣 }

12: procure data to get 𝑿𝑠 ,𝒚𝑠 , update𝐺 and normalized adjacency matrix
˜𝑨

13: Phase 2: Model training
14: initialise 𝑿 ′ ← [𝑿𝑠 , 0𝑢 ]⊺
15: while 𝑿 ′ has not converged do
16: 𝑿 ′ ← ˜𝑨𝑿 ′

17: 𝑿 ′ ← [𝑿𝑠 ,𝑿 ′𝑢 ]⊺
18: do edge augmentation on𝐺 and get𝐺

19: 𝑓GNN ← Train(𝐺,𝑿 ′,𝒚𝑠 )

and augment the missing edges before training. After acquiring the

features from the selected nodes, we apply the feature propagation

algorithm [30] to infer the features of the unselected nodes, pro-

ducing a new feature matrix 𝑿 ′. Additionally, we use the 𝐺 (𝑛,𝑚)
Erdos-Renyi (ER) model [4] to generate missing edges, where𝑚 and

𝑛 are determined by the edge density of the known graph. Then we

incorporate contrastive learning [27] to mitigate the randomness

introduced by the ER model, resulting in an augmented graph 𝐺 .

The GNN training algorithm then takes the augmented graph 𝐺 ,

the new feature matrix𝑿 ′ and labels𝒚𝑠 as input and returns a GNN
model to the consumer.

Node feature imputation. Features are crucial when training GNN

[36, 38], and we apply a feature imputation method to the procured

data to address missing values. Among various feature imputation

methods, we choose the Feature Propagation algorithm due to its

strong convergence guarantees, simplicity, speed, and scalability

[30].We use subscripts 𝑠 and𝑢 to denote the selected and unselected

nodes, resp.Write𝑿 = [𝑿𝑠 ,𝑿𝑢 ]⊺ and𝒚 = [𝒚𝑠 ,𝒚𝑢 ]⊺ . Also, we write
the normalised adjacency matrix

˜𝑨 and the graph Laplacian Δ of

G as
˜𝑨 =

[
˜𝑨𝑠𝑠

˜𝑨𝑠𝑢

˜𝑨𝑢𝑠
˜𝑨𝑢𝑢

]
,Δ =

[
Δ𝑠𝑠 Δ𝑠𝑢
Δ𝑢𝑠 Δ𝑢𝑢

]
, resp. In the feature

imputation process, the feature matrix 𝑿 ′ is initialised with the

known feature 𝑿𝑠 and a zero matrix 0𝑢 for the unselected nodes.

The feature matrix𝑿 ′ is then iteratively updated as follows:𝑿 (𝑡 ) =[
𝑰 0
˜𝑨𝑢𝑠

˜𝑨𝑢𝑢

]
𝑿 (𝑡−1) ,where this process continues until the feature

matrix converges. The steady status of the feature matrix is [30]:

lim𝑡→∞ 𝑿 (𝑡 ) =
[

𝑿𝑠

−Δ−1𝑠𝑠
˜𝑨𝑢𝑠𝑿𝑠

]
.

Edge Augmentation. Given the critical role of message passing

in GNNs, the absence of certain edges may impede this process,

leading to sub-optimal model performance. To alleviate this is-

sue, we introduce augmented edges to enhance message passing.

Specifically, we employ the ER model [4] to generate edges for data

owners with multiple unselected nodes. However, the introduc-

tion of augmented edges may inadvertently introduce noise, which

could mislead the model by learning from incorrect connections. To

counteract this, we integrate contrastive loss [27], denoted by 𝐿ctr,

into the GNN training process. This loss function encourages the

model to maximise the similarity between the augmented graph and

the original (non-augmented) graph views. Given a graph G and

an augmented graph G, let 𝒉𝑣 and 𝒉′𝑣 be the feature embeddings in

G and G, resp. The contrastive loss of a node 𝑣 is:

𝐿ctr (𝑣) = − log
exp(𝒉𝑣 · 𝒉′𝑣/𝜏)∑

𝑢∈𝑉 exp(𝒉𝑣 · 𝒉′𝑢/𝜏)
,

where 𝜏 represents the temperature parameter, which scales the

similarities between the embeddings 𝒉𝑣 and 𝒉′𝑣 .

4.3 Analysis
Now we show that SIMT satisfies IC, IR and BF properties. Addi-

tionally, we analyse its time complexity.

Theorem 4.2. The SIMT mechanism is incentive compatible, indi-
vidual rational and budget feasible.

Proof. We first show that the mechanism is IR. In each auction

of cluster𝐶𝑡 , the utility that a data owner 𝑖 obtains from a node 𝑣 >

𝑘 when she truthfully reports is𝑢𝑖,𝑣 (𝜽 ) = 𝜃𝑖,𝑣𝜋𝑖,𝑣 (𝜃 ) −𝑝𝑖,𝑣 (𝜃 ) = 0−
0 ≥ 0; the utility that a data owner 𝑖 obtains from 𝑣 ≤ 𝑘 is 𝑢𝑖,𝑣 (𝜃 ) =
𝑝𝑖,𝑣 (𝜃 ) − 𝜃𝑖,𝑣𝜋𝑖,𝑣 (𝜃 ) = min{ (𝛽𝜙𝑣 )/(𝑇 ∑𝑘

𝑢=1 𝜙𝑢 ), (𝜙𝑣𝜃 𝑗,𝑤 )/𝜙𝑤} − 𝜃𝑖,𝑣 ×
1} ≥ 0. Therefore, the utility of data owner 𝑖 is

∑
𝑣∈𝑉𝑖 𝑢𝑖,𝑣 ≥ 0. Also,

SIMT satisfies BF. The total payment in cluster 𝐶𝑡 is∑𝑘
𝑣=1min{ (𝛽𝜙𝑣 )/(𝑇 ∑𝑘

𝑢=1 𝜙𝑢 ), (𝜃 𝑗,𝑤𝜙𝑣/𝜙𝑤} ≤
∑𝑘
𝑢=1 𝜙𝑢×𝛽/(𝑇

∑𝑘
𝑢=1 𝜙𝑢 ) =

𝛽/𝑇 . Then the total payment in 𝑇 clusters is ≤ 𝛽 , which shows BF.

Next we show IC. Each of data subject is assigned to an auction

associated with a cluster 𝐶𝑡 . As the assignment is independent of

the reported valuation of the data owner, we just need to show that

in the auction for each cluster is IC. In one auction, we consider

an arbitrary data owner. When she report truthfully, there are two

cases regarding each of her node, either being selected or not. We

discuss the two cases separately.

(1) Consider an arbitrary node 𝑣 that is selected. Assume that in

the ranking, the (𝑘 + 1)-th node is possessed by data owner 𝑗 ,

i.e., the (𝑘 + 1)-th ratio is 𝜙𝑘+1/𝜃 𝑗,𝑘+1. Note that the data owner 𝑗

could be 𝑖 . If 𝑖 reports a lower valuation 𝜃 ′
𝑖,𝑣

< 𝜃𝑖,𝑣 or a higher

valuation 𝜃𝑖,𝑣 < 𝜃 ′
𝑖,𝑣

< 𝜃 𝑗,𝑘+1𝜙𝑣/𝜙𝑘+1, as the marginal contribution

𝜙𝑣 is independent from the reported valuation, the ratio 𝜙𝑣/𝜃 ′𝑖,𝑣 ≥
𝜙𝑘+1/𝜃 𝑗,𝑘+1 and her ranking is still in the top 𝑘 . Further, the payment

of 𝑖 for 𝑣 is independent from 𝑖’s report. As a consequence, her

utility of 𝑣 is 𝑢𝑖,𝑣 (𝜽 ′𝑖 , 𝜽−𝑖 ) = 𝑢𝑖,𝑣 (𝜽𝑖 , 𝜽−𝑖 ). If she reports a even

higher valuation 𝜃 ′
𝑖,𝑣
≥ 𝜃 𝑗,𝑘+1𝜙𝑣/𝜙𝑘+1, the ratio 𝜙𝑘+1/𝜃 𝑗,𝑘+1 > 𝜙𝑣/𝜃 ′𝑖,𝑣 .

Then her allocation becomes 0 and her utility of 𝑣 is 𝑢𝑖,𝑣 (𝜽 ′𝑖 , 𝜽−𝑖 ) =
0 ≤ 𝑢𝑖,𝑣 (𝜽𝑖 , 𝜽−𝑖 ).
(2)Consider a node 𝑣 that is not selected. Assume that in the ranking,

the 𝑘-th node is possessed by data owner 𝑗 , i.e, the 𝑘-th ratio is

𝜙𝑘/𝜃 𝑗,𝑘 . Here, 𝑗 could also be 𝑖 . If 𝑖 reports a higher valuation 𝜃 ′
𝑖,𝑣

>

𝜃𝑖,𝑣 or a lower valuation 𝜃 𝑗,𝑘𝜙𝑣/𝜙𝑘 ≤ 𝜃 ′𝑖,𝑣 < 𝜃𝑖,𝑣 , the ratio 𝜙𝑘/𝜃 𝑗,𝑘 ≥
𝜙𝑣/𝜃 ′𝑖,𝑣 , and 𝑣 ’s ranking is still not among the first 𝑘 . Then 𝑖’s utility

of 𝑣 is 𝑢𝑖,𝑣 (𝜽 ′𝑖 , 𝜽−𝑖 ) = 𝑢𝑖,𝑣 (𝜽𝑖 , 𝜽−𝑖 ) = 0. If 𝑖 reports a much lower

valuation 𝜃 ′
𝑖,𝑣

< 𝜃 𝑗,𝑘𝜙𝑣/𝜙𝑘 , and her ranking is among the first 𝑘 . Her
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utility 𝑢𝑖 (𝜽 ′𝑖 , 𝜽−𝑖 ) = 𝜃𝑖−min{ 𝛽
𝑇

𝜙𝑣∑𝑘
𝑢=1 𝜙𝑢

,
𝜃 𝑗,𝑤

𝜙𝑤
𝜙𝑣} ≤ 0 = 𝑢𝑖 (𝜽𝑖 , 𝜽−𝑖 ) .

□

Time complexity. Given a GNN, recall𝑚 is the dimensions of the

input and let𝑚
h
be the hidden layers. The computational complex-

ity of a typical GNN is𝑂 ( |𝐸 |𝑚 + |𝑉 |𝑚𝑚
h
). The computational com-

plexity of SIMT is𝑂 (( |𝐸 |𝑚+|𝑉 |𝑚𝑚
h
)+(|𝐸 |𝑚+|𝑉 |𝑚𝑚

h
)+(|𝑉 |+|𝐸 |)),

where the first one terms correspond to the complexity of training

the GNN, while the last two terms account for the computation of

clustering and PageRank centrality resp.

5 EXPERIMENT
We conduct experiments to validate the performance of proposed

SIMT mechanism in terms of node classification accuracy. (1) To

demonstrate the overall performance of SIMT, we compare it with

multiple baselines under different budgets. (2) To underscore the

impact of each component, we perform a detailed ablation study.

5.1 Experiment Setup
Dataset. Five widely-used datasets are included in our experi-

ments: Cora, Citeseer, Pubmed, Amazon and Coauthor [7, 17, 30, 33].

The dataset statistics are listed in Table 3 in App. B. For each dataset,

we randomly sample 15% of the data as test set, which remains un-

touched during data procurement. This set is consistent across all

baselines. Once getting the selected data from auction, we further

split 80% as training data and remaining 20% for validation. To

accommodate different real-world scenarios, we follow the setup in

existing studies [14, 16, 22, 26, 34, 42] to validate SIMT on various

datasets and varying hyperparameters.

Data valuations. We generate a set of random numbers to rep-

resent the data valuations. The valuations are sampled at random

i.i.d. following a series of normal distributions N(𝜇, 𝜎2). We get a

𝜇 drawn fromU[0.8, 1.2] for each class to capture the difference in

valuations between classes. Then for each data owner, we set the

valuation of each data subject as the mean of the generated valu-

ations of her data subjects. We set 𝜎 = 0.1. The effect of different

𝜎s on performance is investigated and the results are in App. C. To

ensure all valuations are non-negative, we use a resample trick [6].

The generated valuations are in the range [0, 2]. Note that when
the domain is different, we could scale it into [0, 2].

Budget.We set the budget in {50, 100, 150, 200, 250, 300}. Given
that the data valuation range is [0, 2], the number of selected data

is approximately from 50 to 300, which is aligned with the setup of

the studies on label selection e.g. [7, 46].

Structural clustering.Here, we give the configuration of themodel

used for Clustering(𝐺). We deploy SVD [5] to generate spectral

node features, VGAE [18] to learn node embeddings followed by a

linear classifier to learn the partition. We set the hidden size as 32,

the learning rate as 0.01, the L2 regularisation as 5× 10−4. The total
training budget is 400 epochs. The clustering model is initialised to

solely minimise the reconstruction loss. We repeat this process 100

epochs to comprehensively capture the graph structure information.

Using the obtained node embeddings, we train the linear classifier

to learn a partition, maximising the structural entropy. This process

is repeated 300 epochs to obtain a robust partition.

GNN model. We employ classical GNN models as 𝑓GNN to learn

node classification. Following the configurations of [17], we set

the hidden size as 32, the total training budget as 200, the learn-

ing rate as 0.01 and the L2 regularisation as 5 × 10−4. The models

are optimised with minimising both reconstruction loss 𝐿recon and

classification loss 𝐿
class

on the train data. We repeat 10 training

iterations with different random seeds and report the average per-

formance. To mitigate the impact of randomness in train-validation

splitting, each training iteration creates 10 train-validation splits,

trains 10 independent models according to the split and reports the

best model according to their performance on the validation set.

Ultimately, we evaluate the model performance using the test data.

In other words, each experimental result is derived from 100 runs.

We present the results using a GCNmodel and defer the exploration

on the effects of different GNN architectures in App. F.

Subgraph. Each data owner possesses a subgraph with at least

one node. We vary both the number 𝑜 of data owners and the size

𝑛𝑖 of theire subgraphs. We first fix the number of data owners at

10, and vary the subgraph size within {20, 40, 60, 80} to investigate

the effect of subgraph size. Next, we fix the subgraph size at 80, and

vary the number of data owners within {5, 10, 15, 20} to investigate
the effect of the number of data owners. The comparison results

are presented in App. E.

Baselines. To validate the overall performance of the SIMT, we

benchmark it against four baseline mechanisms. These baselines

incorporate different methods for assessing data importance within

our proposed model trading framework. The baselines are:

• Greedy [35]: The Greedy mechanism treats all data as equally

important and procures data based solely on the valuations of

data owners. No feature propagation is applied.

• ASCV [8]: The ASCVmechanism first trains a VGAEmodel on the

graph to learn node embeddings with optimising reconstruction

loss, and evaluates data importance by the nodes’ contribution to

the reconstruction loss. The greater the contribution of the node,

the more important the corresponding owner’s data is. Then the

auction procures data according to the ratio of data importance

to valuation. No feature propagation is applied.

• Greedy(P): The Greedy(P) mechanism is the same as the Greedy

except for that a feature imputation is applied.

• ASCV(P): The ASCP(P) mechanism is the same as the ASCV

except for that a feature imputation is applied.

Note that ASCV is originally designed using various techniques to

evaluate data importance. However, in the absence of features, only

the VGAE technique can be directly applied in our scenario. For fair

comparison, we redesign all baselines to avoid pre-purchase inspec-

tion of data, and set same seeds for all places involving randomness,

including edge augmentation and model initialisation.

Implementation. All experiments are conducted on a single ma-

chine with AMD Ryzen 9 5900X 12-Core CPU, and NVIDIA GeForce

RTX 3090 GPU. The code is implemented using Python 3.10 and

Pytorch 2.0.1. Our code is available in the supplementary material.

5.2 Overall Performance
The experiment results are presented in Table 1. Here, we fix the

number of data owners at 10, with each owner holding 80 data

subjects. As shown in the table, SIMT consistently outperforms all
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Table 1: Node classification performance under different budgets

budget 50 100 150 200 250 300 - -

metric MacroF1 MicroF1 MacroF1 MicroF1 MacroF1 MicroF1 MacroF1 MicroF1 MacroF1 MicroF1 MacroF1 MicroF1

average

accuracy

ave. accuracy

#bought.items

Cora

Greedy 12.3 ± 4.2 21.5 ± 6.3 17.6 ± 5.6 29.1 ± 11.1 20.6 ± 6 33.9 ± 9.8 23.6 ± 6 36.7 ± 9.8 26.5 ± 5.9 40.1 ± 9.3 28.0 ± 4.7 41.5 ± 8.8 33.8 0.16

ASCV 10.9 ± 4.5 21.0 ± 6.6 16.2 ± 5.3 29.1 ± 8.2 23.8 ± 6.9 36.0 ± 5.1 23.7 ± 4.5 36.0 ± 4.9 28.1 ± 5.6 38.5 ± 5.0 32.4 ± 8.9 43.9 ± 6.2 34.1 0.20

Greedy(P) 24.6 ± 10.6 36.1 ± 14.4 29.0 ± 9.6 40.6 ± 12 32.3 ± 8.5 44.5 ± 10 36.0 ± 9.8 48.8 ± 8.4 37.3 ± 9.3.5 48.9 ± 8 38.6 ± 10 50.8 ± 8.3 45.0 0.22

ASCV(P) 21.9 ± 5.8 34.8 ± 6.8 37.2 ± 11 46.9 ± 9.8 47.3 ± 7 53.7 ± 6.5 55.3 ± 5.9 61.2 ± 4.9 60.3 ± 5.1 65.2 ± 5.1 65.0 ± 6.3 68.1 ± 5.7 55.0 0.33

SIMT 36.1 ± 10.7 48.4 ± 9.5 46.7 ± 8.8 55 ± 6.7 56.8 ± 10 62.5 ± 8.6 62.2 ± 5.8 67.8 ± 3.3 63.4 ± 5.3 69.6 ± 2.8 66.7 ± 6.8 71.8 ± 4.5 62.5 0.37

Citeseer

Greedy 6.7 ± 2.7 17.7 ± 7.2 11.0 ± 5.3 22.6 ± 8.3 14.4 ± 5.1 24.5 ± 7.8 18.7 ± 6 29.0 ± 7.8 20.5 ± 7.4 31.0 ± 8.1 21.9 ± 6.6 32.6 ± 8.3 24.6 0.12

ASCV 8 ± 3.4 17.4 ± 7.5 12.9 ± 5.7 21.8 ± 7.4 16.9 ± 4.8 26.5 ± 4.7 20.8 ± 5.2 29.6 ± 6.6 24.3 ± 5.3 34.4 ± 5.2 28.1 ± 5.2 36.8 ± 6.4 27.8 0.17

Greedy(P) 15.3 ± 7.5 24.5 ± 9.3 21.5 ± 8.5 30.7 ± 9.6 23.9 ± 7.9 33.2 ± 8 27.4 ± 10 36.5 ± 7.7 29.8 ± 9.8 39.0 ± 7.7 32.9 ± 11.1 42.4 ± 8.5 34.4 0.17

ASCV(P) 19.8 ± 7.1 27.2 ± 9.5 32.2 ± 5.9 38.3 ± 9.2 38.9 ± 4 43.8 ± 6.3 42.4 ± 7 48.0 ± 7.6 46.7 ± 2.7 50.5 ± 4.5 48.6 ± 4 51.9 ± 6 43.3 0.26

SIMT 28.7 ± 5.8 39.4 ± 6.3 37.0 ± 5.6 47.4 ± 6.1 41.7 ± 6 50.2 ± 6.3 45.4 ± 5.2 53.4 ± 6.7 47.2 ± 5.1 55.8 ± 3.8 50.0 ± 4.9 57.9 ± 4.8 50.7 0.30

Pubmed

Greedy 15.7 ± 3.8 30.8 ± 9.8 16.3 ± 3.4 30.8 ± 9.7 19.2 ± 5.9 34.0 ± 8.9 20.8 ± 7 35.0 ± 8.4 22.6 ± 9.1 37.5 ± 8.9 21.2 ± 8.3 35.8 ± 9.6 34.0 0.14

ASCV 17.2 ± 4.3 33.7 ± 9 17.4 ± 4.7 33.9 ± 9.2 17.0 ± 4 33.8 ± 9.1 18.1 ± 5.7 34.2 ± 9.3 16.8 ± 3.8 33.8 ± 9 18.1 ± 6.2 34.5 ± 9.8 34.0 0.16

Greedy(P) 19.7 ± 7.7 34.1 ± 9.4 25.1 ± 12.1 39.3 ± 10.5 27.6 ± 13.3 40.9 ± 11.4 29.9 ± 14.9 43.0 ± 13.3 30.6 ± 15.4 43.4 ± 13.6 31.2 ± 14.4 43.9 ± 12.6 40.8 0.17

ASCV(P) 20.0 ± 9.8 35.8 ± 11.7 21.4 ± 12.5 36.3 ± 12.5 22.1 ± 13.5 36.9 ± 13.2 23.3 ± 15.7 37.8 ± 14.7 23.4 ± 16.1 37.7 ± 14.7 23.9 ± 16 37.9 ± 14.2 37.0 0.17

SIMT 22.7 ± 7.2 38.5 ± 7.6 29.9 ± 13.5 44.0 ± 10.6 36.7 ± 16.1 49.2 ± 11.9 42.0 ± 14.2 53.3 ± 10.5 43.1 ± 15.1 54.4 ± 11.6 50.2 ± 16.7 60.2 ± 11.1 49.9 0.25

Amazon

Greedy 6 ± 3.2 15.5 ± 6 8.7 ± 5.4 18.2 ± 6.8 9.7 ± 4.5 17.8 ± 5.8 10.7 ± 4.8 18.5 ± 6.4 11.3 ± 5.3 19.6 ± 5.6 13.8 ± 6.1 21.3 ± 5.5 18.5 0.08

ASCV 4.4 ± 1.5 17.3 ± 6.6 7.1 ± 3.6 20.9 ± 5.3 9.6 ± 5.2 25.2 ± 3.4 11.4 ± 7.4 27.1 ± 5.6 11.9 ± 7.2 27.3 ± 5 12.6 ± 7.2 29 ± 6 24.5 0.12

Greedy(P) 19.6 ± 5.5 24.9 ± 6.2 23.2 ± 8 29.3 ± 8.8 23.4 ± 8.4 29.6 ± 9.1 24.8 ± 8.2 31.2 ± 8.3 24.9 ± 7.8 31.7 ± 8.9 25.4 ± 7.4 32.6 ± 8.0 30.0 0.13

ASCV(P) 18.2 ± 7.5 31.1 ± 8.0 21.7 ± 7.3 34.8 ± 8.3 23.9 ± 8.1 36.3 ± 8.9 26.7 ± 7.0 41.9 ± 8.9 29.7 ± 9.4 43.4 ± 9.3 30.2 ± 9.1 44.7 ± 9.6 38.7 0.20

SIMT 30 ± 7.1 38.9 ± 7.9 38.1 ± 6.7 48.4 ± 6.6 40.7 ± 7.4 50.6 ± 6.7 44.2 ± 7.1 57.1 ± 5.9 46.2 ± 4.3 57.8 ± 3.6 51.7 ± 7.8 60.3 ± 6.5 52.2 0.28

Coauthor

Greedy 8.5 ± 5.6 24.2 ± 19.2 9.2 ± 5.9 24.5 ± 19.4 11.7 ± 6.5 29.0 ± 19.8 12.9 ± 7.5 29.8 ± 20.2 15.4 ± 9.0 34.4 ± 20.2 17.1 ± 9.0 35.2 ± 20.1 29.5 0.12

ASCV 10.3 ± 4.3 34.0 ± 17.7 11.1 ± 4.8 37.1 ± 17.7 11.8 ± 5.1 37.4 ± 17.7 12.9 ± 5.3 38.7 ± 16.7 16.1 ± 6.4 44.7 ± 14.7 16.3 ± 6.9 45.4 ± 15.1 39.5 0.18

GreedyP 18.0 ± 8.4 34.2 ± 19.3 24.7 ± 11.3 39.6 ± 20.0 27.5 ± 12.3 42.0 ± 21.0 27.5 ± 12.3 42.1 ± 21.4 29.4 ± 13.9 44.4 ± 22.3 30.0 ± 14.1 44.1 ± 22.2 41.1 0.16

ASCVP 16.8 ± 9.1 43.5 ± 18.6 26.2 ± 9.2 54.1 ± 13.9 25.6 ± 12.2 51.7 ± 18.9 30.7 ± 11.7 57.6 ± 15.3 30.8 ± 11.7 58.3 ± 15.4 32.1 ± 10.7 59.3 ± 15.1 54.1 0.24

SIMT 24.9 ± 8.9 55.5 ± 5.6 29.8 ± 9.8 57.9 ± 8.2 33.5 ± 8.4 61.5 ± 6.8 39.1 ± 7.6 63.4 ± 6.4 42.8 ± 12.0 65.2 ± 8.0 46.7 ± 11.6 68.8 ± 6.3 62.0 0.30

baselines under all budgets. Compared to the vanilla Greedy and

ASCV, SIMT improves up to 40% in bothMacroF1 andMicroF1. Also,

the last column shows the contribution per node, i.e., calculated as

the average accuracy divided by the number of purchased nodes.

The results consistently show that the contribution per node of

SIMT is higher than that of all baselines, demonstrating the data

selected by SIMT is more valuable. This validates the effectiveness

of our structural importance assessment method in Sec. 4.1.

Table 1 also shows that the ASCV/ASCV(P) mechanism outper-

forms the Greedy/Greedy(P) mechanism. This could be attributed

to that both ASCV and ASCV(P) assess the importance of data based

on their structural contribution to the reconstruction loss, which, in

a way, reflects structural uncertainty. However, ASCV and ASCV(P)

do not perform as well as SIMT. This discrepancy underscores the

effectiveness of structural importance score.

Lastly, Table 1 shows that the ASCV(P) and Greedy(P) outper-

form their vanilla versions by up to 20% in both MacroF1 and

MicroF1. This validate the need of feature imputation.

Same trend is observed in the scenario with 𝑛𝑖 = 1,∀𝑖 ∈ 𝑂 . See
more details in Table 10 of App. F.

5.3 Ablation Study
To explore the impact of each component in SIMT on its perfor-

mance, we conduct ablation studies across the five datasets and

present the average test accuracy. As shown in Table 2, the four

components, i.e., structuring clustering (clust), structural informa-

tiveness (info), structural representativeness (rep), and edge aug-

mentation (edge aug), distinctly enhances SIMT’s performance. In

general, clust plays contributes the most among all components,

which underscores the crucial role of structural clustering. Without

clustering, there is a high probability that the procured data are

unevenly distributed across the classes, leading to a biased train-

ing dataset. The second contributor is edge augmentation, which

highlights the role of missing edge augmentation in the training

Table 2: The impact of each component

dataset Cora Citeseer Pubmed Amazon Coauthor

metric acc. Δ acc. Δ acc. Δ acc. Δ acc. Δ
no cluster 55.9 -6.6 48.0 -2.7 41.8 -8.1 35.4 -16.8 45.5 -16.5

no rep 61.0 -1.5 50.6 -0.1 48.3 -1.6 50.5 -1.7 56.9 -5.1

no info 62.3 -0.2 49.5 -1.2 47.8 -2.1 50.9 -1.3 55.1 -6.9

no edge aug 59.2 -3.3 46.2 -4.5 48.7 -1.2 41.1 -11.1 58.3 -3.7

SIMT 62.5 50.7 49.9 52.2 62.0

process. Without edge augmentation, the message passing process

is likely hindered, resulting in sub-optimal performance.

We also compare the effect of data valuations deviation (in

App. C), graph centrality metrics (in App. D), subgraph parameters

(in App. E), and GNN architectures (in App. F).

6 CONCLUSION
In this paper, we aim to design amechanism that properly incentives

data owners to contribute their data, and returns a well perform-

ing GNN model to the model consumer. In particular, we focus on

the question of how we can measure data importance for model

training without direct inspection. We propose SIMT, which con-

sists of a data procurement phase and a model training phase. For

data procurement, we incorporate a structure-based importance

assessment method into an auction mechanism. For model training,

we introduce and design two effective methods to impute missing

data. As a result, SIMT ensures no data disclosure and incentive

properties. Experimental results demonstrate that SIMT outper-

forms the baselines by up to 40% in accuracy. To the best of our

knowledge, SIMT is the first model trading mechanism addressing

the data disclosure problem. In the future, we will further consider

the potential privacy leakage in the trained model.
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