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ABSTRACT
A core challenge in model-based offline reinforcement learning

is constructing penalties over the state-action space of the offline

dataset, which is typically high-dimensional. We define “cliffs” as re-

gions in the state-action space where data density changes sharply,

and our investigation shows that existing approaches struggle with

accuracy near these cliffs. The formation of cliffs could be influ-

enced by human-defined parameters and objective physical laws,

often beyond the understanding of RL agents. This results in a lack

of established methods to address this issue. To overcome these

limitations, we propose Score as a Penalty for Model-based Of-

fline Reinforcement Learning (ScorePen-MORL). This innovative

approach generates penalties based on the gradient filed of dataset

density in the state-action space. ScorePen-MORL is a plug-and-play

solution that can achieve impressive results independently while

also enhancing the performance of baseline algorithms through the

joint effect. Our empirical findings demonstrate that cliff regions

in the dataset are a significant bottleneck in offline model-based

RL, and ScorePen-MORL effectively addresses this issue by gener-

ating highly sensitive penalties for these cliff regions. Through the

empirical results on the D4RL and NeoRL benchmarks, we find our

method outperforms recent strong model-based offline RL baseline

algorithms.
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1 INTRODUCTION
Offline reinforcement learning (RL), or batch RL, enables agents to

learn from pre-collected datasets, thus avoiding the need for costly

and potentially hazardous online exploration. This is especially

beneficial in safety-critical fields like robotics [15, 41, 42] and au-

tonomous driving [19], where online trial-and-error is impractical.

By using static datasets, offline RL ensures controlled training and

reduces risks associated with online data collection.

However, this approach poses significant challenges, with distri-

bution shifts being a primary concern [5, 22, 28, 33, 58? ]. Distribu-
tion shifts refer to the situation where the agent encounters state-

action pairs that substantially deviate from the training data, poten-

tially propagating inaccurate or extreme value estimates. This can

lead to poor policy evaluation and suboptimal performance [5, 22].

Addressing distribution shifts is essential for enhancing the robust-

ness and generalization of offline RL algorithms, ensuring their

effectiveness in dynamic real-world environments. Solutions to this

issue in offline RL typically fall into model-free [23, 38] and model-

based categories [16, 27, 34, 36, 57]. Model-free approaches often

incorporate conservatism by penalizing value functions for out-of-

distribution (OOD) actions or constraining the learned policy to

remain close to the behavior policy, thereby improving stability

and robustness in learning [2–4, 21–23, 49, 53, 54].

While model-free approaches are constrained to the data within

the offline dataset, model-based offline reinforcement learning aims

to improve data efficiency and generalization by employing learned

dynamic models to generate synthetic data. This synthetic data

enables the exploration of states not represented in the original

dataset, thereby expanding the available state space and poten-

tially enhancing the policy’s performance. However, model-based

offline RL introduces new technical challenges and reveals gaps

in existing theoretical frameworks. The introduction of learned

models entails the risk of errors, making conservatism essential. Re-

cent research addresses this issue by incorporating penalties based

on metrics such as the total variation distance between learned

and ground truth models. Yet, accurately computing this distance

remains challenging, prompting alternative strategies like regulariz-

ing value functions or adversarially modifying transition dynamics

without directly quantifying model uncertainty. Techniques such
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as MOPO [57] utilize aleatoric uncertainty derived from state pre-

dictions to penalize rewards, and data density estimates have been

explored as a basis for conservatism [32]. Despite these advances,

model-based offline RL continues to face technical challenges, with

recent theoretical insights suggesting that measures like the Bell-

man error may not fully capture ideal uncertainty [45], potentially

leading to less optimal performance compared to some model-free

methods.

The complexities of model-based offline reinforcement learning

remain unresolved, with many challenges still the subject of ongo-

ing research. For example, the "edge-of-reach" issue identified by

RAVL [40] illustrates a scenario where value overestimation occurs

for states that are only reachable at the final steps of rollouts in the

learned dynamics model, underscoring the complexities involved

in ensuring reliable policy performance. This provides insight that

many of the bottlenecks and challenges in model-based offline RL

may reside in subtle, hard-to-detect areas.

In this paper, we begin by identifying a critical challenge in

model-based offline RL, referred to as the “cliff regions” issue. This

issue exposes the limitations of existing penalty mechanisms, which

often depend on uncertainty measures and data density estimates,

particularly in regions of the offline dataset where data density

undergoes abrupt changes. We observe that existing methods gen-

erate penalties near these regions that fail to accurately reflect

uncertainty, resulting in ineffective utilization of the knowledge in

these regions. This issue is exacerbated when critical information

for optimizing policies is located in or near such regions, such as

the endpoints for a navigation task, leading to poor performance in

addressing the task. Furthermore, cliff regions pose significant ana-

lytical challenges; they are difficult to locate within the dataset due

to the unknown ground truth density function of the original data

distribution. Additionally, analyzing the diverse and unpredictable

origins of cliff regions, such as physical constraints like joint limits

in robotic systems, is challenging.

To address the "cliff regions" issue, our work leverages informa-

tion from the dataset’s gradient field by reconstructing it with a

score-based diffusion model and generating penalties based on the

model’s score outputs. We introduce a theoretical analysis demon-

strating the effectiveness of using scores as penalties to tackle the

cliff regions challenge, thereby expanding the current discourse

on the limitations of existing model-based offline reinforcement

learning (RL) approaches. Utilizing a fundamental property of score-

based diffusion models, which produce larger gradients for out-

of-distribution samples, we also investigate the exclusive use of

scores for penalty generation during training. Empirical results

show that we achieve competitive performance compared to a wide

range of methods that overlook the cliff regions issue, including

those utilizing conservatism [55], model uncertainty [13, 36], and

complexities of data distribution in synthetic rollouts [22, 52] for

penalty derivation. This work aims to enhance the robustness of

model-based offline RL methodologies, better equipping them to

address the challenges posed by dynamic environments and diverse

task requirements. The overall structure of our method refers to

Figure 1.

Our contributions are summarized as follows:We identify a previ-

ously unrecognized issue inmodel-based offline RL, termed the "cliff

regions" issue, and demonstrate its presence and impact on existing

methods through simple experiments. To address this challenge, we

propose Score as a Penalty for Model-based Offline RL (ScorePen-

MORL), which leverages a score-based diffusion model to generate

penalties based on the gradient field of data density, effectively mit-

igating the difficulties posed by cliff regions and enhancing the ro-

bustness of the learning process. We extensively evaluate ScorePen-

MORL on multiple benchmarks, including D4RL and NeoRL, and

provide a detailed analysis of how the algorithm formulates penal-

ties that encourage conservatism. Our results demonstrate that

ScorePen alleviates cliff region issues and improves policy perfor-

mance in model-based offline RL. Additionally, ScorePen-MORL is a

plug-and-play solution that can be seamlessly integrated with other

baseline algorithms, offering further performance improvements.

2 RELATEDWORKS
2.1 Offline RL
Offline (or batch) reinforcement learning (RL) aims to derive effec-

tive policies from a fixed dataset, which is gathered by unknown

behavior policies. A key challenge in this area is the distribution

shift, where agents often overestimate and favor out-of-distribution

(OOD) actions, resulting in diminished performance [5, 29]. To

tackle this issue, various strategies have been developed. These in-

clude constraining the learned policy to remain close to the original

behavior policy [4, 5, 21, 25, 39, 52], regularizing the critic to adopt

a more pessimistic outlook through ensemble techniques for OOD

actions [1, 2, 22], and implementing model-based approaches that

utilize uncertainty measurements. Importance sampling [6, 24, 47]

techniques also play a vital role in alleviating the adverse effects of

distribution shifts.

Particularly noteworthy are methods that learn density models

of the training data to constrain the agent’s behavior within the

data distribution [5, 6, 18, 22, 30, 35]. Additionally, some approaches

utilize the gradient field of the dataset to guide corrections in the

offline RL agent’s actions [26]. Building on these insights, our work

introduces a novel solution that leverages the score-based diffusion

model and the knowledge from the gradient field of the offline

dataset to address the cliff regions issue, offering greater flexibil-

ity in tackling bootstrapping errors and providing a more robust

framework for policy learning in offline RL. This approach enables

more precise value function approximations, enhancing overall

performance in offline RL tasks.

2.2 Model-based Offline RL
In the domain of model-based offline reinforcement learning (RL),

recent advancements have increasingly emphasized the integration

of penalization strategies designed to address model estimation

errors [16, 34, 57]. A notable example is the Method of Penalization

for Offline Policy Optimization (MOPO) [57], which implements

a penalization mechanism that adjusts the reward function in ac-

cordance with the maximum aleatoric uncertainty arising from dis-

crepancies between the true and estimated models. This approach

effectively aims to temper overoptimistic estimates that could lead

to suboptimal policy decisions.

The Model-based Reinforcement Learning (MOReL) framework

[16] employs a pessimistic strategy using an unknown state-action
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(a) Dynamics model training (b) Score-based diffusion model training

(c) ScorePen-MORL training

෠𝑇𝜃(𝑠
′, 𝑟|𝑠, 𝑎)

sample

dataset

ℎ𝜉(𝐱)
sample

dataset
𝐱 = (𝑠, 𝑎)

sample
dataset

෠𝑇𝜃
Synthetic 

data

Construct 𝐷𝑚𝑜𝑑𝑒𝑙

Score 

penalization

Bellman error

ℎ𝜉(𝐱)

Value 

function

Policy ascent 

with 𝐷 ∪ 𝐷𝑚𝑜𝑑𝑒𝑙

𝜋𝜙(⋅ |𝑠)

𝑄𝜓(𝑠, 𝑎)

update

Figure 1: The overall structure of ScorePen-MORL involves training an ensemble of dynamics models to generate synthetic data
and a score-based diffusion model to reconstruct the gradient field of the offline dataset. During value function optimization,
the scores produced by the diffusion model are used to penalize the targets associated with the synthetic data.

detector to set a threshold that mitigates risks from model uncer-

tainty, highlighting the importance of conservative estimates in

uncertain environments. LOMPO [34] extends this approach by in-

corporating latent dynamics models for image data and quantifying

uncertainty through log-likelihood variance. COMBO [56] adopts a

Dyna-style approach, applying CQL to enforce low Q-values on out-

of-distribution (OOD) samples generated by the dynamics model.

RAMBO [37] incorporates conservatism by adversarially training

the dynamics model to minimize the value function while ensuring

accurate transition predictions. Concurrently proposed with our

method, CBOP [14] utilizes the model-based value expansion (MVE)

framework, adapting the weighting of h-step returns and employing

value variance across a model ensemble for conservative estimation.

The latest methods, including Count-MORL [17], which enhances

model-based offline RL by introducing count-based conservatism

through state-action pair counts to quantify estimation error, and

MOBILE [46] which penalize Bellman estimation inconsistencies

using uncertainty from a model ensemble.

2.3 Score-based Model
Recently, score-based generative models [8–10, 43, 44, 48] have

garnered significant attention in the field of machine learning. The

core principle behind these models is the representation of real data

distributions through a score function, which constitutes a vector

field indicating the direction of the greatest probability increase

for the data. By utilizing the learned score function as a prior, we

can employ Langevin Markov Chain Monte Carlo (MCMC) [50]

sampling techniques to generate high-quality data from random

noise. Score-based models have demonstrated remarkable success

across various modalities, including images [12, 44], audio [20], and

graphs [31].

In reinforcement learning (RL), various approaches [51] have

integrated score-based models to tackle challenges like object re-

arrangement. These methods typically aim to increase the likeli-

hood of states within the original distribution but often require

joint training with baseline algorithms, complicating implemen-

tation and limiting scalability. DiffCPS [11] introduces diffusion

models to offline RL by addressing constrained policy search with

a primal-dual approach, approximating policy solutions through

dual iterations to achieve competitive performance. In contrast,

our method, ScorePen-MORL, incorporates score-based diffusion

models into the training of model-based offline RL, functioning

as a plug-and-play solution. The penalties generated by ScorePen-

MORL can be applied independently or in conjunction with other

baseline algorithms, enhancing their performance.

3 PRELIMINARIES
3.1 Markov Decision Process
We consider a Markov decision process (MDP), defined by the tu-

ple 𝑀 = (S,A, 𝑃, 𝑟, 𝑑0, 𝛾), where S and A denote the state and

action spaces, respectively. The transition dynamics are described

by 𝑃 : S × A → Δ(S), and the reward function is 𝑟 : S × A →
[−𝑅max, 𝑅max]. Here, 𝑑0 ∈ Δ(S) represents the initial state distribu-
tion, and 𝛾 ∈ [0, 1) is the discount factor. The policy 𝜋 : S → Δ(A)
defines a probability distribution over actions for each state.

The value function 𝑉 𝜋
𝑃,𝑟

(𝑠) is expressed as:

𝑉 𝜋
𝑃,𝑟

(𝑠) := E𝜋,𝑃

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠

]
, (1)

which captures the expected cumulative discounted reward when

starting from state 𝑠 and following policy 𝜋 , under the dynamics

governed by 𝑃 and the reward function 𝑟 .

To describe the discounted state visitation distribution under

policy 𝜋 and transition dynamics 𝑃 , we define:

𝑑𝜋
𝑃
(𝑠) := (1 − 𝛾)

∞∑︁
𝑡=0

𝛾𝑡 Pr(𝑠𝑡 = 𝑠 | 𝜋, 𝑃), (2)

which gives the discounted probability of being in state 𝑠 at any time

step 𝑡 . Similarly, the discounted state-action visitation distribution

is given by:

𝑑𝜋
𝑃
(𝑠, 𝑎) := 𝑑𝜋

𝑃
(𝑠)𝜋 (𝑎 | 𝑠), (3)

which represents the joint distribution of visiting state 𝑠 and taking

action 𝑎 under policy 𝜋 and transition dynamics 𝑃 .
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3.2 RL and Offline RL
The objective of reinforcement learning (RL) is to learn a policy

𝜋 (𝑎 |𝑠) that maximizes the expected cumulative return under 𝑑0:

max

𝜋
𝑉 𝜋
𝑀

:= E𝑠∼𝑑0

[
𝑉 𝜋
𝑃,𝑟

(𝑠)
]
=

1

1 − 𝛾
E(𝑠,𝑎)∼𝑑𝜋

𝑃
[𝑟 (𝑠, 𝑎)] . (4)

In offline reinforcement learning (RL), the objective is to learn a

policy based solely on a pre-collected, static dataset without further

interaction with the environment. The agent is provided with the

offline dataset:

D =
{(
𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠

′
𝑖

)}𝑛
𝑖=1

, (5)

which contains transition tuples gathered by a behavior policy 𝜋𝛽 .

The specifics of this policy is usually unknown. A major challenge

in offline RL arises from the fact thatD only covers a limited subset

of the full state-action space. This limitation becomes particularly

problematic when critical transitions or actions that the optimal

policy depends on are missing from the dataset. As such, offline RL

aims to design algorithms capable of learning a policy 𝜋 from this

fixed dataset, with the goal of minimizing the sub-optimality gap,

represented as𝑉 𝜋∗
𝑀

−𝑉 𝜋
𝑀
, where the goal is to make 𝜋 approximate

the optimal policy 𝜋∗ as closely as possible.

3.3 Model-based Offline RL
In model-based offline reinforcement learning (RL), the objective

is to derive an optimal policy by leveraging a learned dynamics

model. Given an offline datasetD, the dynamics model𝑇 is typically

trained using maximum likelihood estimation (MLE), minimizing

the negative log-likelihood of state transitions in the dataset as

follows:

min

𝑇

E(𝑠,𝑎,𝑠′ )∼D
[
− log𝑇 (𝑠′ | 𝑠, 𝑎)

]
. (6)

Throughout this process, the reward function 𝑟 (𝑠, 𝑎) is assumed

to be known or well learned. With the trained model 𝑇 , we can

construct an estimated MDP, denoted as M̂. Any reinforcement

learning or planning algorithm can then be applied to M̂ to derive

the optimal policy. However, since the dataset D only covers a

limited portion of the state-action space, the learned model may

be inaccurate for unobserved state-action pairs, making the policy

vulnerable to model exploitation. To address this issue, conservative

model-based methods like MOPO [57] and MOReL [16] introduce

uncertainty-aware optimization, penalizing policies for taking ac-

tions in regions where the model is uncertain. These methods aim to

optimize a lower bound on policy performance by incorporating un-

certainty estimates into the reward function, thereby discouraging

the policy from exploiting unreliable model predictions.

Despite the use of synthetic rollouts, model-based offline RL

methods must contend with the challenge of model inaccuracies.

A common solution is to incorporate conservatism, as seen in

uncertainty-penalized methods that adjust the reward by subtract-

ing a penalty proportional to model uncertainty. MOPO [57] pro-

pose a penalized reward function of the form:

𝑟 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) − 𝜆𝑢 (𝑠, 𝑎), (7)

where 𝑢 (𝑠, 𝑎) represents the estimated model uncertainty for the

state-action pair (𝑠, 𝑎). The policy is then optimized to maximize

the cumulative penalized rewards:

E𝑠∼𝑑0

[
𝑉 𝜋

𝑃,𝑟
(𝑠)

]
=

1

1 − 𝛾
E(𝑠,𝑎)∼𝑑𝜋

�̃�

[𝑟 (𝑠, 𝑎) − 𝜆𝑢 (𝑠, 𝑎)] . (8)

However, the primary challenge in such approaches, including

those of MOPO [57], Morel [16], and COMBO [55], is the difficulty

of obtaining a reliable uncertainty estimate𝑢 (𝑠, 𝑎), which accurately
reflects the model’s estimation error for unobserved state-action

pairs in the offline dataset.

4 METHOD
In this section, we propose our method, Score as a Penalty for

Model-based Offline Reinforcement Learning (ScorePen-MORL).

First, we describe the training process of our score-based diffusion

model. Next, we provide the motivation and theoretical analysis

for using the score as a penalty in model-based offline RL. Finally,

we explain how the penalty is applied during training and provide

the complete structure including pseudocode for ScorePen-MORL.

4.1 Training Score-based Diffusion Model to
Learn Offline Dataset Gradient Field

Before delving into the core details of our method, we first describe

how a score-based diffusion model is used to approximate the gra-

dient field of the dataset, ∇𝑥 log𝑝D (𝑥), where 𝑝D (𝑥) denotes the
probability distribution of state-action pairs 𝑥 = (𝑠, 𝑎) in the offline

dataset D. Utilizing the denoising score-matching model, this can

be achieved through minimizing the following loss:

L𝜃 =
1

2

E𝑞 (x̃ |x)𝑝D (x)
[

ℎ𝜉 (x̃) − ∇�̃� log𝑞(x̃ | x)



2
2

]
. (9)

Here, x̃ represents the noisy state-action pair, which follows the

forward transition distribution in the diffusion model:

𝑞(x̃ | x) := N(𝑥 | 𝛼𝑡𝑥, 𝜎2𝑡 𝐼 ),

where 𝛼𝑡 and 𝜎𝑡 are pre-defined noise schedules. However, this loss

is hard to optimize in practive. Thanks to the score-based diffusion

model, We can then rewrite the loss function:

L𝜃 =
1

2

E𝑞 (x̃ |x)𝑝D (x)

[


ℎ𝜉 (x + 𝜎z) + 𝑧

𝜎




2
2

]
, (10)

where 𝑧 ∼ 𝑁 (0, 𝐼 ). When the loss converges, we can sample the gra-

dient ∇𝑥 log𝑝D (x) ≈ ℎ𝜉 (x) from the learned score function ℎ∗ (𝑥)
by solving the diffusion ordinary differential equations (ODEs) /

stochastic differential equations (SDEs).

4.2 Motivation and Theoretical Analysis of
Using Score as Penalty in Model-based
Offline RL

Methods like Count-MORL [18] have shown that the estimation

error between the estimated and true transition dynamics is smaller

for state-action pairs more frequently observed in the offline dataset

D, providing an upper bound on the convergence rate based on

frequency. We introduce Theorem 1 and Corollary 1 of the Count-

MoRL [18] as our Lemma 4.1 and 4.2:

Lemma 4.1 (Theorem 1 in [18]). Fix 𝛿 ∈ (0, 1), assume |𝑀 | < ∞
and 𝑃∗ ∈ 𝑀 . Given a state-action pair (𝑠, 𝑎) is observed in 𝐷 with
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𝐷𝑠,𝑎 = {(𝑠𝑖 , 𝑎𝑖 , 𝑠′𝑖 )}𝑠𝑖=𝑠,𝑎𝑖=𝑎 and 𝑛(𝑠, 𝑎) = |𝐷𝑠,𝑎 |. Define the MLE of
transition dynamics as

𝑃 (· | 𝑠, 𝑎) ∈ argmax

𝑃∈M

∑︁
(𝑠,𝑎,𝑠′ ) ∈D𝑠,𝑎

log 𝑃
(
𝑠′ | 𝑠, 𝑎

)
(11)

for a given (𝑠, 𝑎). Then, with probability at least 1 − 𝛿 ,

TV

(
𝑃 (· | 𝑠, 𝑎), 𝑃★(· | 𝑠, 𝑎)

)
≤

√︄
2 log( |M|/𝛿)

𝑛(𝑠, 𝑎) (12)

Lemma 4.2 (Corollary 1 in [18]). Given a state-action pair
(𝑠, 𝑎) ∈ 𝑆 ×𝐴, with probability at least 1− 𝛿 , the estimated transition
dynamics 𝑃 satisfies the following inequality:

TV

(
𝑃 (· | 𝑠, 𝑎), 𝑃★(· | 𝑠, 𝑎)

)
≤ 𝐶𝛿

𝑃
(𝑠, 𝑎) (13)

where 𝐶𝛿

𝑃
(𝑠, 𝑎) := min

(
1,

√︃
2 log( |M|/𝛿 )

𝑛 (𝑠,𝑎)

)
.

By focusing on the dataset’s gradient field rather than data den-

sity, we aim to reformulate this lemma to express the relationship

between the estimation error and the score ∇𝑥 log 𝑝D (𝑥), which
directly captures the gradient field information. We then use the

true dataset density function to approximate the 𝑝 (𝑠, 𝑎), which is

the original distribution the dataset 𝐷𝑠,𝑎 is sampled from. We can

have Definition 4.3 similar to the Definition 1 in Count-MORL [18]:

Definition 4.3. Given true density function 𝑝 (𝑠, 𝑎) and the volume

of the whole dataset |𝐷𝑠,𝑎 |, we define the estimation error bound

𝐶𝛿

𝑃
: S × A → [0, 1] based on the true dataset density:

𝐶𝛿

𝑃
(𝑠, 𝑎) := min

(
1,

√︄
2 log( |M|/𝛿)
𝑝 (𝑠, 𝑎) · |𝐷𝑠,𝑎 |

)
(14)

The approximation error can be defined as follows:

Definition 4.4. Define the maximal approximation error between

estimation error bounds based on the true count and approximate

count over all state-action pairs as

𝜖 := sup

(𝑠,𝑎) ∈S×A

���𝐶𝛿

𝑃
(𝑠, 𝑎) −𝐶𝛿

𝑃
(𝑠, 𝑎)

��� . (15)

The following lemma shows the gap of returns between the

estimated MDP �̂� and the true MDP𝑀∗
of any given policy 𝜋 :

Lemma 4.5 (Lemma 1 in [18]). Suppose𝑀∗ and �̂� are two MDPs
with the true transition dynamics 𝑃∗ and estimated transition dy-
namics 𝑃 , respectively. Given the estimation error bound based on the
approximate count and the maximal approximation error 𝜖 . Then,
with probability at least 1 − 𝛿 , for any policy 𝜋 ,

𝑉 𝜋

�̂�
−𝑉 𝜋

𝑀∗ ≤ 𝛾𝑅max

(1 − 𝛾)2
E(𝑠,𝑎)∼𝑑𝜋

𝑃

[
𝐶𝛿

𝑃
(𝑠, 𝑎)

]
+ 𝛾𝑅max

(1 − 𝛾)2
𝜖 (16)

For the term𝐶𝛿

𝑃
, after training the score-based diffusion network

𝑠𝜃 (𝑠, 𝑎), for any 𝑥 = (𝑠, 𝑎) in the entire state-action space of the

offline dataset, we can use Langevin dynamics to sample a new

point 𝑥 ′ = (𝑠′, 𝑎′) with an expected higher dataset density:

𝑥 ′ = 𝑥 + 𝜖 · ℎ𝜉 (𝑥), (17)

where 𝜖 is a constant. If 𝑝D (𝑥 ′) ≥ 𝐶𝑝 , where𝐶𝑝 is a constant such

that 0 < 𝐶𝑝 < 1, we establish the following theorem through a

straightforward derivation:

Theorem 4.6. Given 𝑥 = (𝑠, 𝑎) and 𝑥 ′ = (𝑠′, 𝑎′) sampled from x
using (9), given 𝑝 (𝑥 ′) ≥ 𝐶𝑝 , assume any order derivative of assume
p (x) exists and is continuous and bounded, we have

log

(√︄
2 log( |M|/𝛿)
𝑝 (𝑠, 𝑎) · |𝐷𝑠,𝑎 |

)
≤ 1

2

· 𝜀 · | |∇𝑥 log𝑝 (𝑠, 𝑎) | |22 +𝐶, (18)

where 𝐶 = − 1

2
log𝐶𝑝 + 1

2
· 𝜀𝑛 · 𝐶𝑅 + 1

2
log

(
2 log( |M|/𝛿 )

|𝐷𝑠,𝑎 |

)
, 𝐶𝑅 is

the maximum of the lagrange remainder
∑
𝑛=2 𝑅𝑛 (𝑥) (𝑥 ′ − 𝑥)𝑛 .

This theorem provides the theoretical basis for directly using

the score, ∇𝑥 log 𝑝D (𝑥), as a penalty. The penalty will have a high

value when 𝑥 ′ is within the distribution (i.e., 𝑝 (𝑥 ′) ≥ 𝐶𝑝 ), while

𝑥 is outside it. Suppose the agent is constrained to remain within

the dataset’s support, meaning 𝑝 (𝑥 ′) ≥ 𝐶𝑝 is always satisfied.

This penalty will theoretically prevent the agent from entering

transitions where the dataset’s density function rapidly decreases.

Notably, the score-based diffusion model naturally predicts a

large gradient when a data point is outside the dataset’s support.

This makes it feasible to useℎ𝜉 (𝑥) directly as a penalty in the model-

based offline RL setting, which assigns a large penalty to a given

transition (𝑠, 𝑎, 𝑠′) when either (𝑠, 𝑎) is outside the dataset distribu-
tion or the transition experiences a rapid decline in data density. In

Section 5, we conduct experiments to prove this hypothesis.

4.3 Employing Penalties in Training Process
Wedevelop ScorePen-MORL based onMOPO [57]. Similar toMOPO,

ScorePen-MORL trains an ensemble of dynamics models,

{
𝑇 𝑖
𝜃

}𝑁
𝑖=1

,

where the aggregate model is defined as𝑇𝜃 = 1

𝑁

∑𝑁
𝑖=1𝑇

𝑖
𝜃
. Each com-

ponent 𝑇 𝑖
𝜃
is a neural network that outputs a Gaussian distribution

over the next state and reward, trained via maximum likelihood.

ScorePen-MORL is trained in both synthetic and real data. For

each update during training, we generate synthetic rollouts with

ℎ steps from states sampled from D and then add them to the

synthetic dataset D𝑚𝑜𝑑𝑒𝑙 . We use the popular structure of soft

actor-critic (SAC) [7] to train the agent:

Lcritic = E(𝑠,𝑎,𝑟,𝑠′ )∼D∪Dmodel

[(
𝑄𝜓𝑘

− 𝑦

)
2

]
, (19)

where the target value 𝑦 is:

𝑦 =


𝑟 + 𝛾

[
min𝑘=1,2𝑄𝜓 −

𝑘
(𝑠′, 𝑎′) − 𝛼 log𝜋𝜙 (𝑎′ | 𝑠′)

]
,

for (𝑠, 𝑎, 𝑟, 𝑠′) ∈ D
𝑟 + 𝛾

[
min𝑘=1,2𝑄𝜓 −

𝑘
(𝑠′, 𝑎′) − 𝛼 log𝜋𝜙 (𝑎′ | 𝑠′)

]
− 𝛽 | |ℎ𝜉 (𝑠, 𝑎) | |22 .

for (𝑠, 𝑎, 𝑟, 𝑠′) ∈ D
model

(20)

As shown in Equation 20, we use only the second norm of the

score to penalize the targets of the samples from 𝐷
model

, following

Lemma 4.6. The policy 𝜋𝜙 (𝑎 |𝑠) is optimized by solving:

𝜋𝜙 := max

𝜙
E𝑠∼D∪Dmodel

𝑎∼𝜋𝜙

[
min

𝑘=1,2
𝑄𝜓𝑘

(𝑠, 𝑎) − 𝛼 log𝜋𝜙 (𝑎 | 𝑠)
]
. (21)
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Algorithm 1 ScorePen-MORL

Require: Dataset D, dynamics models

{
𝑇 𝑖
𝜃

}𝑁
𝑖=1

, initialized policy

𝜋𝜙 and critics {𝑄𝜓1
, 𝑄𝜓2

}.
1: Train the ensemble of dynamics models 𝑇𝜃 (𝑠′, 𝑟 |𝑠, 𝑎) =

N (𝜇𝜃 (𝑠, 𝑎), Σ𝜃 (𝑠, 𝑎)) on the offline dataset D.

2: Train the score-based diffusion model via minimizing Eq. 10.

3: for epoch = 1 to 𝑁 do
4: Generate synthetic ℎ-step rollouts by 𝑇𝜃 and add synthetic

data to D𝑚𝑜𝑑𝑒𝑙 .

5: Sample a mini-batch Batch = {𝑠, 𝑎, 𝑟, 𝑠′} from D ∪D𝑚𝑜𝑑𝑒𝑙 .

6: Compute targets for Batch according to Eq. 20.

7: Update critics𝜓1,𝜓2 with gradient descent via minimizing

Eq. 19.

8: Update actor 𝜙 with gradient ascent via minimizing Eq. 21.

9: end for

The pseudocode for the ScorePen-MORL algorithm is presented

in Algorithm 1.

5 EXPERIMENTS
In this section, we present a series of experiments aimed at address-

ing the following questions:

Q1: How does the “cliff regions” issue impact or limit current

model-based offline reinforcement learning algorithms?

Q2:How does our approach tackle the issue of the “cliff regions”?

Q3: How does ScorePen-MORL measure up against previous

state-of-the-art baseline algorithms?

Q4: Given that ScorePen-MORL and existing baseline algorithms

concentrate on different aspects, could integrating ScorePen-MORL

with them enhance overall performance?

5.1 Analysis with a Simple Environment
To address Q1 and Q2, we design a simple environment and in-

tentionally generate a dataset that creates the “cliff regions” issue.

States are represented as pairs (𝑥,𝑦), with bounded 2D actions

(𝛿𝑥 , 𝛿𝑦) that update the agent’s position according to:

(𝑥,𝑦)
(𝛿𝑥 ,𝛿𝑦 )
−−−−−−→ (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦),

subject to |𝛿𝑥 |, |𝛿𝑦 | ≤ 0.05. The reward function, defined as𝑅(𝑠, 𝑎) =
exp

(
− 1

2
∥𝑠 − 𝑔∥2

2

)
, decreases exponentially as the agentmoves away

from the goal 𝑔 = (0.2, 0.4). The initial state distribution is centered

at the origin, modeled by 𝜇0 = 𝑈 ( [−0.1, 0.1]2). The maximum steps

of one episode is 30. The dataset is confined to a square region with

a side length of 1, centered within the environment, with data points

uniformly distributed inside and none outside. The boundary of this

dataset naturally forms the cliff region. We apply ScorePen-MORL,

Count-MORL (density-based), and MOBILE (uncertainty-based) to

this dataset to illustrate the distinctions between their respective

penalty mechanisms.

Figure 2 illustrates the environment, alongwith the penalties gen-

erated by all the algorithms and their corresponding performance.

We conduct a parameter search for each method over the penalty

coefficient, 𝛽 ∈ [0.25, 2] in increments of 0.25. When the penalty

scale is low, all algorithms perform poorly as the agents consistently

approach states outside the dataset boundary while neglecting 𝑔. As

𝛽 increases, the performance of each algorithm gradually improves

and then decreases after reaching the optimal 𝛽 . However, during

this search, only ScorePen-MORL successfully finds the optimal

path. The baseline algorithms, Count-MORL and MOBILE [45], af-

ter learning to stay away from the dataset boundaries, also become

more conservative, maintaining a certain distance from both 𝑔 and

the boundaries rather than truly approaching 𝑔. Also, ScorePen-

MORL’s penalties closely follow the dataset’s boundaries, whereas

other methods struggle to capture the rectangular structure. Those

results indicate that existing model-based offline RL algorithms,

due to their inability to analyze the cliff region in the dataset ac-

curately, struggle to find a trade-off point that allows agents to

effectively utilize information near the cliff while remaining within

the dataset’s distribution support.

We continue to analyze why existing model-based offline RL

algorithms struggle with penalties near the cliff region. For density-

based approaches, penalties are generated using estimated dataset

density functions, making their effectiveness highly dependent on

the accuracy of these estimates. Inaccurate reconstructed density

model can result in cumulative errors in gradient estimation, hin-

dering the propagation of critical information from cliff regions

to the RL agent. Count-based methods, which discretize the space

using tools such as hash codes, further reduce the precision of gradi-

ent information. Uncertainty-based approaches rely on ensembles

to estimate model uncertainty. Still, the limited expressiveness of

these ensembles often leads to inaccurate uncertainty estimates in

regions with sparse data, such as cliff areas. This misjudgment can

result in penalties that fail to guide the agent’s behavior near these

challenging regions appropriately.

5.2 Evaluation on the D4RL Benchmark
To answer Q3, we evaluate ScorePen-MORL on the standard offline

RL benchmark D4RL. We compare ScorePen-MORL with various

offline RL algorithms, categorized as follows: 1)Model-free meth-
ods: BC, CQL, TD3+BC, and EDAC. 2) Model-based methods:
MOPO, COMBO, TT, RAMBO, Count-MORL, and MOBILE.

We assess these approaches across twelve datasets for the Gym

domain, covering three environments: hopper, walker2d, and halfchee-

tah, which represent different robots. Each environment features

four types of datasets: random,medium,medium-replay, andmedium-

expert. The random dataset contains transitions collected by a ran-

dom policy. The medium dataset consists of transitions collected

by an early-stopped SAC policy. Medium-replay includes the re-

play buffer generated during the training of the medium policy.

The medium-expert dataset contains a mixture of suboptimal and

expert data. All datasets utilized in our experiments are of the "v2"

version.

Table 1 presents the results of the normalized score and the

average performance across all datasets on the d4rl benchmark.

ScorePen-MORL outperforms all baseline algorithms in 8 out of 12

datasets and achieves the highest average score among all meth-

ods. These empirical results indicate that ScorePen-MORL, which

exploits the gradient field of the dataset to obtain conservatism

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1394



(a) Environment Setting
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(b) The performance of algorithms during the hyperparameter optimization of
the penalty coefficient 𝛽 averaged among 5 random seeds.
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(e) Penalties in MOBILE

Figure 2: The environmental setting is presented in (a). The performance results of algorithms with different penalty coefficients
𝛽 are shown in (b). In (c)-(e), we compare the differences of generated penalties between ScorePen-MORL and the baseline
algorithms. In (d), the penalties of Count-MORL are generated using tools like hash codes, resulting in a form that appears as a
linear transformation of the ground truth data density function. However, its boundaries do not completely align with the
dataset distribution’s edges. In (e), although uncertainty-based methods perform well in penalizing near the boundaries of the
original dataset distribution, there is a significant discrepancy in the correlation with data density near the dataset’s edges. The
penalties of MOBILE are visualized after 1 million training steps.

knowledge without requiring ensembles and their higher computa-

tional cost, can deliver a better policy than those based on dataset

density and uncertainty measures.

As ScorePen-MORL mainly focuses on the cliff regions and the

gradient field of the dataset, which is different from recent strong

baseline algorithms, we expect combining ScorePen-MORL with

them will achieve better performance, which will answer to Q4. In
Table 2, we conclude the related experimental results. Combining

our method with Count-MORL or MOBILE results in performance

improvements on 7 out of 12 datasets, with 5 datasets showing

better results compared to using our method alone. The results

suggest that integrating ScorePen-MORL with other algorithms

effectively addresses the cliff region issue and leads to improved

performance, aligning with our initial hypothesis.

5.3 NEORL
NeoRL is a benchmark designed to simulate real-world scenar-

ios by collecting datasets using a more conservative policy, better

reflecting actual data-collection practices. The resulting narrow

and limited data presents challenges for offline RL algorithms. Our

study focuses on nine datasets, encompassing three environments:

HalfCheetah-v3, Hopper-v3, and Walker2d-v3. These datasets are

categorized into three types (L, M, H), representing low, medium,

and high-quality data. NeoRL provides varying training trajectories

(100, 1000, and 10000) for each task, and we selected a uniform

sample of 1000 trajectories for our experiments.

In table 3, our evaluation assesses the ScorePen-MORL’s perfor-

mance against recent strong baselines. We do not include COMBO,

TT, RAMBO, BC, TD3+BC, EDAC, and Count-MORL for low pefor-

mance or unknown parameter settings. As a result, a fair compari-

son would not be possible without appropriate tuning and publicly

available performance metrics for these methods.
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Table 1: Experimental results on the D4RL benchmark. ScorePen-MORL outperforms model-free and model-based baseline
algrotithms. All the results are averaged between 5 random seeds. The results of MOPO are derived from the reproduced
findings reported in Table 1 of the MOBILE paper.

Task Name BC CQL TD3+BC EDAC MOPO COMBO TT RAMBO Count-MORL MOBILE ScorePen-MORL

ha-r 2.2 31.3 11.0 28.4 38.5 38.8 6.1 39.5 41.0 39.3 40.3±0.2
ho-r 3.7 5.3 8.5 25.3 31.7 17.9 6.9 25.4 30.7 31.9 32.3±0.6
wa-r 1.3 5.4 1.6 16.6 7.4 7.0 5.9 0.0 21.9 17.9 19.9±1.1
ha-m 43.2 46.9 48.3 65.9 73.0 54.2 46.9 77.9 76.5 74.6 79.2±0.4
ho-m 54.1 61.9 59.3 101.6 62.8 97.2 67.4 87.0 103.6 106.6 106.0±0.7
wa-m 70.9 79.5 83.7 92.5 84.1 81.9 81.3 84.9 87.6 87.7 91.7±0.8
ha-mr 37.6 45.3 44.6 61.3 72.1 55.1 44.1 68.7 71.5 71.7 77.6±1.8
ho-mr 16.6 86.3 60.9 101.0 103.5 89.5 99.4 99.5 101.7 103.9 105.8±0.6
wa-mr 20.3 76.8 81.8 87.1 85.6 56.0 82.6 89.2 87.7 89.9 93.0±1.3
ha-me 44.0 95.0 90.7 106.3 90.8 90.0 95.0 95.4 100.0 108.2 112.3±4.2
ho-me 53.9 96.9 98.0 110.7 81.6 111.1 110.0 88.2 111.4 112.6 113.2±0.4
wa-me 90.1 109.1 110.1 114.7 112.9 103.3 101.9 56.7 112.3 115.2 112.5±1.1
Average 36.5 61.6 58.2 76.0 70.3 66.8 62.3 67.7 78.8 80.0 82.0±1.1

Table 2: Experimental results of ScorePen-MORL combined
with recent strong baseline algorithms Count-MORL and
MOBILE on the D4RL benchmark. ScorePen-MORL improves
baseline algorithms in 7 of 12 datasets. All the results are
averaged between 5 random seeds.

Task Name Count-MORL (w/ ours) MOBILE (w/ ours)

ha-r 41.0±0.9 → 47.2±1.2 39.3±3.0→ 44.6±2.8
ho-r 30.7±1.3 → 31.7±0.1 31.9±0.6 → 31.5±0.2
wa-r 21.9±0.2 → 20.4±0.3 17.9±6.6→ 19.9±0.7
ha-m 76.5±1.7 → 78.8±0.2 74.6±1.2 → 78.7±0.1
ho-m 103.6±3.7 → 105.4±0.6 106.6±0.6 → 106.1±0.7
wa-m 87.6±3.7 → 90.0±0.2 87.7±1.1→ 89.7±1.8
ha-mr 71.5±1.8 → 71.0±1.5 71.7±1.2 → 71.5±1.1
ho-mr 101.7±0.8 → 103.1±0.7 103.9±1.0 → 104.3±0.6
wa-mr 87.7±3.0 → 89.0±1.2 89.9±1.5→ 91.1±0.6
ha-me 100.0±4.9 → 100.7±3.6 108.2±2.5 → 110.0±1.9
ho-me 111.4±0.5 → 113.1±0.4 112.6±0.2 → 113.3±0.3
wa-me 112.3±1.8 → 113.8±0.4 115.2±0.7 → 114.2±3.1
Average 78.8±2.0 → 80.4±0.9 80.0±1.7→ 81.2±1.2

Our results demonstrate that ScorePen-MORL consistently achieves

superior or competitive performance across most tasks by outper-

forming baseline algorithms in 5 of 9 datasets.

6 CONCLUSION
We identify the cliff region issue, a previously overlooked model-

based offline reinforcement learning bottleneck. We analyze how

this issue limits existing methods through logical reasoning and il-

lustrative experiments. To address the cliff region issue, we propose

Score as a Penalty for Model-based Offline Reinforcement Learning

(ScorePen-MORL). This novel plug-and-play algorithm employs a

score-based diffusion model to penalize out-of-distribution (OOD)

Table 3: Normalized average returns on NeoRL tasks, aver-
aged over 5 random seeds, indicate that ScorePen-MORL out-
performs all baseline algorithms on 5 out of 9 datasets and
achieves the highest overall average performance across all
datasets.

Task Name CQL MOPO MOBILE Ours

HalfCheetah-L 38.2 40.1 54.7 49.6±1.2
Hopper-L 16.0 6.2 17.4 21.1±2.3
Walker2d-L 44.7 11.6 37.6 51.4±1.4
HalfCheetah-M 54.6 62.3 77.8 77.4±1.0
Hopper-M 64.5 1.0 51.1 90.9±1.3
Walker2d-M 57.3 39.9 62.2 65.8±1.6
HalfCheetah-H 77.4 65.9 83.0 81.4±1.0
Hopper-H 76.6 11.5 87.8 86.3±1.3
Walker2d-H 75.3 18.0 74.9 78.0±1.8
Average 56.1 28.5 60.7 67.0±1.4

synthetic state-action pairs using insights from the dataset’s gradi-

ent field, an area largely unexplored in previous research. We pro-

vide a detailed motivation and theoretical analysis for our approach.

Empirical results demonstrate that ScorePen-MORL achieves com-

parable or superior performance to recent strong baselines on its

own and enhances the performance of these baselines when inte-

grated. These findings underscore the importance of the cliff region

issue and the impact of ScorePen-MORL on advancing model-based

offline RL.

ACKNOWLEDGMENTS
This work was supported by the STI 2030-Major Projects under

Grant 2021ZD0201404. The authors also thank the anonymous

reviewers for valuable comments.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1396



REFERENCES
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. 2020. An opti-

mistic perspective on offline reinforcement learning. In International conference
on machine learning. PMLR, 104–114.

[2] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. 2021.

Uncertainty-based offline reinforcement learning with diversified q-ensemble.

Advances in neural information processing systems 34 (2021), 7436–7447.
[3] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng

Liu, and Zhaoran Wang. 2022. Pessimistic bootstrapping for uncertainty-driven

offline reinforcement learning. arXiv preprint arXiv:2202.11566 (2022).
[4] Scott Fujimoto and Shixiang Shane Gu. 2021. A minimalist approach to offline

reinforcement learning. Advances in neural information processing systems 34
(2021), 20132–20145.

[5] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-policy deep rein-

forcement learning without exploration. In International conference on machine
learning. PMLR, 2052–2062.

[6] Carles Gelada and Marc G Bellemare. 2019. Off-policy deep reinforcement learn-

ing by bootstrapping the covariate shift. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 3647–3655.

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In International conference on machine learning. PMLR, 1861–

1870.

[8] Chunming He, Chengyu Fang, Yulun Zhang, Tian Ye, Kai Li, Longxiang Tang,

Zhenhua Guo, Xiu Li, and Sina Farsiu. 2023. Reti-diff: Illumination degradation

image restoration with retinex-based latent diffusion model. arXiv preprint
arXiv:2311.11638 (2023).

[9] Chunming He, Kai Li, Yachao Zhang, Longxiang Tang, Yulun Zhang, Zhenhua

Guo, and Xiu Li. 2023. Camouflaged object detection with feature decomposition

and edge reconstruction. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 22046–22055.

[10] Chunming He, Yuqi Shen, Chengyu Fang, Fengyang Xiao, Longxiang Tang, Yulun

Zhang, Wangmeng Zuo, Zhenhua Guo, and Xiu Li. 2024. Diffusion Models in

Low-Level Vision: A Survey. arXiv preprint arXiv:2406.11138 (2024).
[11] Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. 2024. Dif-

fCPS: Diffusion Model based Constrained Policy Search for Offline Reinforcement

Learning. arXiv:2310.05333 [cs.LG] https://arxiv.org/abs/2310.05333

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.
[13] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. 2019. When to trust

your model: Model-based policy optimization. Advances in neural information
processing systems 32 (2019).

[14] Jihwan Jeong, Xiaoyu Wang, Michael Gimelfarb, Hyunwoo Kim, Baher Abdulhai,

and Scott Sanner. 2023. Conservative Bayesian Model-Based Value Expansion

for Offline Policy Optimization. arXiv:2210.03802 [cs.LG] https://arxiv.org/abs/

2210.03802

[15] Jun Jin, Daniel Graves, Cameron Haigh, Jun Luo, and Martin Jagersand. 2020.

Offline learning of counterfactual perception as prediction for real-world robotic

reinforcement learning. arXiv preprint arXiv:2011.05857 (2020).

[16] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims.

2020. Morel: Model-based offline reinforcement learning. Advances in neural
information processing systems 33 (2020), 21810–21823.

[17] Byeongchan Kim and Min hwan Oh. 2023. Model-based Offline Reinforcement

Learning with Count-based Conservatism. arXiv:2307.11352 [cs.LG] https:

//arxiv.org/abs/2307.11352

[18] Byeongchan Kim and Min-hwan Oh. 2023. Model-based offline reinforcement

learning with count-based conservatism. In International Conference on Machine
Learning. PMLR, 16728–16746.

[19] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab,

Senthil Yogamani, and Patrick Pérez. 2021. Deep reinforcement learning for

autonomous driving: A survey. IEEE Transactions on Intelligent Transportation
Systems 23, 6 (2021), 4909–4926.

[20] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2020.

Diffwave: A versatile diffusion model for audio synthesis. arXiv preprint
arXiv:2009.09761 (2020).

[21] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2021. Offline reinforcement

learning with implicit q-learning. arXiv preprint arXiv:2110.06169 (2021).
[22] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. 2019.

Stabilizing off-policy q-learning via bootstrapping error reduction. Advances in
neural information processing systems 32 (2019).

[23] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-

tive q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems 33 (2020), 1179–1191.

[24] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. 2019.

Off-policy policy gradient with state distribution correction. arXiv preprint
arXiv:1904.08473 (2019).

[25] Yao Liu, Adith Swaminathan, AlekhAgarwal, and Emma Brunskill. 2020. Provably

good batch off-policy reinforcement learning without great exploration. Advances
in neural information processing systems 33 (2020), 1264–1274.

[26] Zeyuan Liu, Kai Yang, and Xiu Li. 2024. CDSA: Conservative Denoising Score-

based Algorithm for Offline Reinforcement Learning. arXiv:2406.07541 [cs.LG]

https://arxiv.org/abs/2406.07541

[27] Cong Lu, Philip J Ball, Jack Parker-Holder, Michael A Osborne, and Stephen J

Roberts. 2021. Revisiting design choices in offline model-based reinforcement

learning. arXiv preprint arXiv:2110.04135 (2021).
[28] Jiafei Lyu, Xiu Li, and Zongqing Lu. 2022. Double Check Your State Before

Trusting It: Confidence-Aware Bidirectional Offline Model-Based Imagination. In

Advances in Neural Information Processing Systems, Alice H. Oh, Alekh Agarwal,

Danielle Belgrave, and Kyunghyun Cho (Eds.).

[29] Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. 2022. Mildly Conservative

Q-learning for Offline Reinforcement Learning. In Thirty-sixth Conference on
Neural Information Processing Systems.

[30] Rowan McAllister, Gregory Kahn, Jeff Clune, and Sergey Levine. 2019. Robust-

ness to out-of-distribution inputs via task-aware generative uncertainty. In 2019
International Conference on Robotics and Automation (ICRA). IEEE, 2083–2089.

[31] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and

Stefano Ermon. 2020. Permutation invariant graph generation via score-based

generative modeling. In International Conference on Artificial Intelligence and
Statistics. PMLR, 4474–4484.

[32] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. 2017. Count-

based exploration with neural density models. In International conference on
machine learning. PMLR, 2721–2730.

[33] Zhongjian Qiao, Jiafei Lyu, Kechen Jiao, Qi Liu, and Xiu Li. 2024. SUMO: Search-

Based Uncertainty Estimation for Model-Based Offline Reinforcement Learning.

CoRR abs/2408.12970 (2024).

[34] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. 2021. Offline

reinforcement learning from images with latent space models. In Learning for
dynamics and control. PMLR, 1154–1168.

[35] Charles Richter and Nicholas Roy. 2017. Safe visual navigation via deep learning

and novelty detection. (2017).

[36] Marc Rigter, Bruno Lacerda, and Nick Hawes. 2022. Rambo-rl: Robust adversarial

model-based offline reinforcement learning. Advances in neural information
processing systems 35 (2022), 16082–16097.

[37] Marc Rigter, Bruno Lacerda, and Nick Hawes. 2022. RAMBO-RL: Robust Adver-

sarial Model-Based Offline Reinforcement Learning. arXiv:2204.12581 [cs.LG]

https://arxiv.org/abs/2204.12581

[38] Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. 2022. Pessimistic q-

learning for offline reinforcement learning: Towards optimal sample complexity.

In International conference on machine learning. PMLR, 19967–20025.

[39] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki,

Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin

Riedmiller. 2020. Keep doing what worked: Behavioral modelling priors for

offline reinforcement learning. arXiv preprint arXiv:2002.08396 (2020).
[40] Anya Sims, Cong Lu, and Yee Whye Teh. [n.d.]. RAVL: Reach-Aware Value

Learning for the Edge-of-Reach Problem in Offline Model-Based Reinforcement

Learning. ([n. d.]).

[41] Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey

Levine. 2020. Cog: Connecting new skills to past experience with offline rein-

forcement learning. arXiv preprint arXiv:2010.14500 (2020).
[42] Samarth Sinha, Ajay Mandlekar, and Animesh Garg. 2022. S4rl: Surprisingly sim-

ple self-supervision for offline reinforcement learning in robotics. In Conference
on Robot Learning. PMLR, 907–917.

[43] Yang Song and Stefano Ermon. 2019. Generativemodeling by estimating gradients

of the data distribution. Advances in Neural Information Processing Systems 32
(2019).

[44] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano

Ermon, and Ben Poole. 2020. Score-based generative modeling through stochastic

differential equations. arXiv preprint arXiv:2011.13456 (2020).
[45] Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu. 2023.

Model-Bellman inconsistency for model-based offline reinforcement learning. In

International Conference on Machine Learning. PMLR, 33177–33194.

[46] Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu.

2023. Model-Bellman Inconsistency for Model-based Offline Reinforcement

Learning. In Proceedings of the 40th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 202), Andreas Krause, Emma

Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan

Scarlett (Eds.). PMLR, 33177–33194. https://proceedings.mlr.press/v202/sun23q.

html

[47] Richard S Sutton, A Rupam Mahmood, and Martha White. 2016. An emphatic

approach to the problem of off-policy temporal-difference learning. The Journal
of Machine Learning Research 17, 1 (2016), 2603–2631.

[48] Arash Vahdat, Karsten Kreis, and Jan Kautz. 2021. Score-based generative model-

ing in latent space. Advances in Neural Information Processing Systems 34 (2021),
11287–11302.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1397

https://arxiv.org/abs/2310.05333
https://arxiv.org/abs/2310.05333
https://arxiv.org/abs/2210.03802
https://arxiv.org/abs/2210.03802
https://arxiv.org/abs/2210.03802
https://arxiv.org/abs/2307.11352
https://arxiv.org/abs/2307.11352
https://arxiv.org/abs/2307.11352
https://arxiv.org/abs/2406.07541
https://arxiv.org/abs/2406.07541
https://arxiv.org/abs/2204.12581
https://arxiv.org/abs/2204.12581
https://proceedings.mlr.press/v202/sun23q.html
https://proceedings.mlr.press/v202/sun23q.html


[49] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. 2022. Diffusion policies

as an expressive policy class for offline reinforcement learning. arXiv preprint
arXiv:2208.06193 (2022).

[50] Max Welling and Yee W Teh. 2011. Bayesian learning via stochastic gradient

Langevin dynamics. In Proceedings of the 28th international conference on machine
learning (ICML-11). 681–688.

[51] MingdongWu, Fangwei Zhong, Yulong Xia, and Hao Dong. 2022. Targf: Learning

target gradient field for object rearrangement. arXiv preprint arXiv:2209.00853
(2022).

[52] Yifan Wu, George Tucker, and Ofir Nachum. 2019. Behavior regularized offline

reinforcement learning. arXiv preprint arXiv:1911.11361 (2019).
[53] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan

Salakhutdinov, and Hanlin Goh. 2021. Uncertainty weighted actor-critic for

offline reinforcement learning. arXiv preprint arXiv:2105.08140 (2021).
[54] Kai Yang, Jian Tao, Jiafei Lyu, and Xiu Li. 2024. Exploration and Anti-Exploration

with Distributional Random Network Distillation. arXiv preprint arXiv:2401.09750

(2024).

[55] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and

Chelsea Finn. 2021. Combo: Conservative offlinemodel-based policy optimization.

Advances in neural information processing systems 34 (2021), 28954–28967.
[56] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine,

and Chelsea Finn. 2022. COMBO: Conservative Offline Model-Based Policy

Optimization. arXiv:2102.08363 [cs.LG] https://arxiv.org/abs/2102.08363

[57] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey

Levine, Chelsea Finn, and Tengyu Ma. 2020. Mopo: Model-based offline policy

optimization. Advances in Neural Information Processing Systems 33 (2020), 14129–
14142.

[58] Junjie Zhang, Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, Jun Yang, Le Wan, and

Xiu Li. 2023. Uncertainty-driven Trajectory Truncation for Model-based Offline

Reinforcement Learning. CoRR abs/2304.04660 (2023).

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1398

https://arxiv.org/abs/2102.08363
https://arxiv.org/abs/2102.08363

	Abstract
	1 Introduction
	2 Related works
	2.1 Offline RL
	2.2 Model-based Offline RL
	2.3 Score-based Model

	3 Preliminaries
	3.1 Markov Decision Process
	3.2 RL and Offline RL
	3.3 Model-based Offline RL

	4 Method
	4.1 Training Score-based Diffusion Model to Learn Offline Dataset Gradient Field
	4.2 Motivation and Theoretical Analysis of Using Score as Penalty in Model-based Offline RL
	4.3 Employing Penalties in Training Process

	5 Experiments
	5.1 Analysis with a Simple Environment
	5.2 Evaluation on the D4RL Benchmark
	5.3 NEORL

	6 Conclusion
	Acknowledgments
	References



