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ABSTRACT
Goal recognition (GR) involves inferring an agent’s goals based on
observed actions. In addition to goals, however, in various cases it
may be useful to infer additional agent attributes, such as prefer-
ences, beliefs, and ability level, so as to gain deeper insights into
the agent’s decision-making process. Recent advances in GR have
incorporated Reinforcement Learning (RL), which provides greater
practicality and adaptability, especially in stochastic environments.
This adaptability creates the opportunity to extend RL-based frame-
works beyond goal recognition. In this work, we build upon a recent
RL-based GR framework to propose a generalised approach capable
of inferring a wider range of agent attributes. By integrating these
attributes within the problem formulation, we demonstrate how
off-the-shelf RL techniques can be applied to infer them effectively.
Our results show that this extended framework accurately distin-
guishes fine-grained differences in agent attributes across diverse
scenarios. Moreover, we show that recognising these additional
attributes can in turn improve goal recognition accuracy.
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1 INTRODUCTION
Goal Recognition (GR) refers to the task of a recogniser inferring the
goal of an agent, whether human or robotic, based on its observable
trajectory within a given environment [8, 15, 19, 23]. Earlier works
in GR have relied on the assumption of a complete domain model,
which is a specification of the environment and possible actions in
certain conditions [19, 21]. However, constructing accurate domain
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theories is often costly and impractical in real-world applications
that involve dynamic and uncertain environments, limiting the
effectiveness of model-based GR [3]. Recently, there has been a shift
towards data-driven or learning-based frameworks. In particular,
Reinforcement Learning (RL) has been used to approximate domain
theories through learnt policies, thereby alleviating the need to
construct an explicit domain specification [2]. RL’s flexibility in
learning from interactions with the environment makes it a more
scalable and adaptable framework. This work focuses on extending
RL-based frameworks beyond traditional GR to infer a broader set
of agent attributes, enabling a more comprehensive understanding
of agent behaviour in dynamic and uncertain environments.

While GR focuses primarily on goal inference, we argue that
RL-based frameworks have the potential to infer a wider variety
of attributes. In many domains, decision-making is influenced by
factors beyond goals, such as preferences, beliefs, knowledge of the
environment, and physical or cognitive abilities [1]. In some cases,
knowing the goal alone may not be sufficient to accurately pre-
dict an agent’s future behaviour. By inferring additional attributes,
a recogniser can gain deeper insights into the agent’s decision-
making process. A more holistic understanding of these attributes
can provide practical benefits across a range of applications.

For instance, a robotic assistant might perform tasks such as
fetching objects. While the robot’s goal is clear—to retrieve the
object—the path it chooses could be influenced by various factors.
These include the robot’s preferences, such as favouring smoother
surfaces over rough terrain to reduce wear and tear or conserve
energy. Its decision-making might also be shaped by its beliefs
about the environment; for example, if the robot has incomplete
knowledge due to partial observability of certain areas, it might
avoid them, believing they contain obstacles or hazards. Addition-
ally, its ability level, such as a low battery affecting its capacity
to lift heavier objects or move quickly, could lead the robot to
take a more energy-efficient route or postpone certain actions un-
til recharged. Inferring these attributes—preferences, beliefs, and
ability levels—can help improve understanding of its behaviours.

Recognising that goal inference alone does not fully capture an
agent’s attributes, we propose a generalised RL-based framework
that also infers preferences, beliefs, and ability levels. By incorpo-
rating these attributes, our framework allows for a more nuanced
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understanding of agents and their decision-making processes. More-
over, this approach leverages off-the-shelf RL techniques, making
it both scalable and adaptable to a wide range of domains.

The remainder of this paper is structured as follows. Section 2
provides a detailed overview of recent advances in RL-based GR
and formulates the GR problem as an RL problem. Section 3 intro-
duces our generalised framework and explains how various agent
attributes are modelled within the problem formulation. In Section
4, we describe our experimental setup and the diverse scenarios
used to evaluate the framework. In Section 5, we highlight related
work that shares similar aims of inferring agent attributes. Finally,
in Section 6, we conclude the paper and outline potential future
directions for extending this work.

2 PRELIMINARIES: GOAL RECOGNITION AS
REINFORCEMENT LEARNING

Goal recognition (GR) involves inferring an agent’s goal based
on its observed behaviour within an environment [8, 15, 19, 23].
Traditionally, GR relies on model-based approaches, where domain
models are explicitly defined [16]. However, creating such models
is often impractical in real-world scenarios due to the need for
domain expertise and the nature of the environment being dynamic
and uncertain. Recently, model-free GR methods have emerged,
leveraging machine learning or data-driven approaches to infer
goals directly from observed actions without requiring detailed
domain knowledge [3].

In this work, we focus onmodel-free GR approaches that leverage
RL techniques to acquire domain models. This RL-based approach
was first proposed by [2], where the domain model is formulated as
an RL task. Formally, the learning task of acquiring a domain model
is specified as a Markov Decision Process (MDP) in Definition 2.1.

Definition 2.1 (Markov Decision Process). A Markov Decision
Process is a tuple M = ⟨𝑆,𝐴,𝑇 ,𝛾, 𝑅⟩ where 𝑆 is a set of states, 𝐴 is
a set of actions, 𝑇 (𝑠, 𝑎, 𝑠′) is a transition function, where it defines
the probability of transitioning to a new state 𝑠′ given the current
state 𝑠 and action 𝑎, 𝛾 is a discount factor, 𝑅(𝑠) is a reward function.

The RL problem involves learning a policy 𝜋 (𝑎 |𝑠) for an MDP,
which is a function that defines the probability of the agent tak-
ing action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 . An RL policy 𝜋 can be derived
from a Q-function, 𝑄 (𝑠, 𝑎) — the expected return for taking action
𝑎 in state 𝑠 then acting greedily in subsequent steps. These com-
ponents—policies and Q-functions—are essential in capturing an
agent’s behaviour within an environment. To formally represent
the agent’s interaction with its environment, we define a domain
model𝔇, which encapsulates either a set of Q-functions or policies
that govern the agent’s actions in different states.

Definition 2.2 (Domain Model). Domain model𝔇𝜌 is a tuple of
⟨𝑆,𝐴, 𝜌⟩ where 𝑆 is a set of states 𝑠 , 𝐴 is a set of actions 𝑎, and 𝜌

is either a set of Q-functions Q = {𝑄𝑔}𝑔∈G , or a set of policies
Π = {𝜋𝑔}𝑔∈G .

For each policy-based domain model𝔇𝜋 , a utility-based domain
model 𝔇Q can be derived using the softmax function for each
𝑔. The softmax function is commonly used to map Q-values to a
probabilistic policy, as shown in Equation 1,

𝜋 (𝑎 |𝑠) = 𝑄 (𝑠, 𝑎)∑
𝑎′∈𝐴𝑄 (𝑠, 𝑎′) . (1)

With the defined domain model, we can now define the GR
problem in the context of RL. Using the RL-based framework, we
model GR as the problem of recognising which policy or Q-function
best explains the observed behaviour, given the defined domain
model𝔇𝜌 . The RL-based GR problem can be structured as follows:

Definition 2.3 (Goal Recognition as Reinforcement Learning). A
Goal Recognition as Reinforcement Learning is a tuple𝐺𝑅 = ⟨𝔇𝜌 ,G,
𝑂, 𝑃𝑟𝑜𝑏⟩, where𝔇𝜌 is a domainmodel,G is a set of goals𝑔,𝑂 is a set
of observations ⟨𝑜1, 𝑜2, ..., 𝑜𝑛⟩, and 𝑃𝑟𝑜𝑏 a probability distribution
over G.

The RL-based framework consists of two main stages: offline
training and online inference. During offline training, the frame-
work approximates Q-functions using off-the-shelf RL techniques.
Before approximating the Q-functions, the reward function 𝑅(𝑠)
is defined as part of the MDP, where each goal 𝑔 produces a posi-
tive reward when achieved. Specifically, the reward function 𝑅(𝑠)
assigns a positive value when the agent achieves goal 𝑔, and zero
otherwise. In [2], a tabular Q-learning approach is applied for dis-
crete domains. More recently, extensions to continuous domains
have been made using Deep Reinforcement Learning (DRL) [12].
A detailed discussion of our framework’s adaptation for offline
training is provided in Section 3.2.

During online inference, distance measures are used to compare
the observed trajectory with the learnt Q-functions. Specifically,
the goal 𝑔 is evaluated by comparing the Q-functions for each
goal 𝑄𝑔 (𝑠, 𝑎) with the observed actions. The work in [2] uses the
Kullback-Leibler Divergence (DKL) measure. For DKL, two types
of policies are constructed:

First, a softmax policy for each specified goal, 𝜋𝑔 , is derived from
the learnt Q-functions 𝑄𝑔 using Equation 1. Second, a policy 𝜋𝑂
is constructed for the observed trajectory 𝑂 , where 𝜋𝑂 (𝑎 |𝑠𝑖 ) = 1
when 𝑎 = 𝑎𝑖 , and 𝜋𝑂 (𝑎 |𝑠𝑖 ) = 0 when 𝑎 ≠ 𝑎𝑖 .

Formally, DKL is described in Equation 2, which measures the
distance between the two probability distributions, 𝜋𝑔 and 𝜋𝑂 ,

𝐷𝐾𝐿 (𝜋𝑂 | |𝜋𝑔) =
∑︁
𝑖∈ |𝑂 |

𝜋𝑂 (𝑎𝑖 |𝑠𝑖 )𝑙𝑜𝑔
𝜋𝑂 (𝑎𝑖 |𝑠𝑖 )
𝜋𝑔 (𝑎𝑖 |𝑠𝑖 )

. (2)

The work in [2] also explores other commonly used RL distance
measures, such as MaxUtil and Divergence Point. We focus on
DKL because it generally performs better than these other mea-
sures based on [2]. A more detailed discussion of our framework’s
adaptation for online inference is provided in Section 3.3.

3 EXTENDING GOAL RECOGNITION TO
INFER OTHER AGENT ATTRIBUTES

In this section, we introduce our recognition framework for infer-
ring other agent attributes. Specifically, we define this task as the
Attribute Recognition (AR) problem, where the goal is to infer a
specified attribute of an agent based on its observations. Formally,
the AR problem can be defined as follows:

Definition 3.1 (Attribute Recognition). Attribute Recognition is a
tuple 𝐴𝑅 = ⟨𝔇,A,𝑂, 𝑃𝑟𝑜𝑏⟩ which consists of:
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• 𝔇 is the domain model,
• A = A1×A2× ...×A𝑛 is the Cartesian product of sets of at-
tribute typesA1,A2, ...,A𝑛 . EachA𝑖 represents a type of at-
tribute, and an attribute 𝛼 ∈ A is an𝑛-tuple 𝛼 = (𝛼1, . . . , 𝛼𝑛)
where 𝛼𝑖 ∈ A𝑖 ,

• 𝑂 is a set of observations ⟨𝑜1, 𝑜2, ..., 𝑜𝑛⟩,
• 𝑃𝑟𝑜𝑏 as probability distribution over A.

Similar to RL-based GR approaches, we use a standard MDP to
formulate the domain model𝔇 from Definition 2.2 as the input to
the AR problem. For each attribute 𝛼 ∈ A, we generate a corre-
sponding set of Q-functions or policies. More specifically, RL-based
AR can be viewed as the task of inferring which Q-function𝑄𝛼 (𝑠, 𝑎)
best explains the observation𝑂 . When the attribute setA is defined
as goals 𝐺 , this problem becomes equivalent to the GR problem
in Definition 2.3. We present this problem definition as a general
abstraction into which various attribute types can be incorporated.

In the remainder of this section, we introduce our Attribute
Recognition (AR) framework, which consists of three main stages.
In Section 3.1, we describe how we construct the MDP to model the
agent’s attributes. Sections 3.2 and 3.3 cover the offline training and
online inference stages, respectively, which build upon previous
RL-based GR frameworks. In earlier RL-based GR frameworks, the
first stage (attribute modelling) was integrated into the second stage
(offline training) as highlighted in Section 2. However, we aim to
demonstrate that by separating these stages and explicitly defining
the attributes within the MDP, we can train policies tailored to each
attribute specification while still being able to infer them accurately.

3.1 Modelling Agent Attributes in Markov
Decision Process

We explore several attributes that are useful for coordination, as
highlighted in our motivation in Section 1, such as ability level,
preferences, and beliefs. In this section, we demonstrate how to
incorporate these attributes into our problem formulation within
an MDP from Definition 2.1.

3.1.1 Ability Level. We define ability level as an attribute that
reflects how capable an agent is of completing a given task. To
model this, we assign a probability that the agent will succeed in
the task. A common approach to measuring an agent’s performance
is the Elo rating system [10], which was originally developed for
chess and has since been widely adopted in various games.

We adapt the Elo rating system to capture an agent’s ability
to complete a task based on the difficulty of the task, rather than
comparing two agents. Mathematically, given an agent’s ability
rating 𝜆 and the task difficulty rating 𝛿 , the difference between these
ratings serves as a predictor of the agent’s likelihood of success. The
probability that the agent will solve the task is given by Equation 3.
In the standard Elo system, the scaling factor 𝑘 is set to 400.

𝐸 =
1

1 + 10(𝛿−𝜆)/𝑘
(3)

We introduce two new parameters—agent ability level 𝜆 and task
difficulty rating 𝛿—to extend the MDP defined in Definition 2.1.
Formally, we propose an Ability-Based Markov Decision Process
(MDPAB) as an extension to the standard MDP, defined as follows:

Definition 3.2 (Ability-basedMarkov Decision Process). AnAbility-
Based Markov Decision Process is a tuple M̂ = ⟨𝑆,𝐴,𝑇 ,𝛾, 𝑅, 𝜆, 𝛿⟩
that extends a base MDP, where 𝑆 is a set of states, 𝐴 is a set of
actions, 𝑇 (𝑠, 𝑎, 𝑠′) is a transition function, 𝛾 is a discount factor,
𝑅(𝑠) is a reward function, 𝜆 is the ability level of an agent, 𝛿 (𝑠, 𝑎)
is a difficulty rating function of state-action pairs.

In this formulation, we treat a state-action pair in MDPAB as
a task. The difficulty of the task is represented by 𝛿 (𝑠, 𝑎), which
indicates how challenging it is for an agent to perform action 𝑎

in state 𝑠 . A higher value of 𝜆 corresponds for agent with higher
ability, while a higher value of 𝛿 (𝑠, 𝑎) indicates a more difficult task.

The set of states 𝑆 is extended with the addition of a special
failure state, 𝑠fail, such that 𝑆 = 𝑆 ∪ 𝑠fail. Consequently, the reward
function 𝑅(𝑠) must also be extended to account for the reward
associated with reaching 𝑠fail.

The transition function 𝑇 (𝑠, 𝑎, 𝑠′) defines the probability of tran-
sitioning from state 𝑠 to state 𝑠′, and it is influenced by the agent’s
ability 𝜆 and the task difficulty 𝛿 (𝑠, 𝑎). We define 𝑇 (𝑠, 𝑎, 𝑠′) as a
conditional function:

𝑇 (𝑠, 𝑎, 𝑠′) =
{

1
1+10(𝛿 (𝑠,𝑎)−𝜆)/𝑘 ∗𝑇 (𝑠, 𝑎, 𝑠′), if 𝑠′ ≠ 𝑠fail

1
1+10(𝜆−𝛿 (𝑠,𝑎) )/𝑘 , if 𝑠′ = 𝑠fail

(4)

The probabilities in𝑇 (𝑠, 𝑎, 𝑠′) depend on whether the agent tran-
sitions to the failure state 𝑠fail or to any other state. In both cases,
the transition probability is calculated using the agent’s ability 𝜆

and the task difficulty 𝛿 (𝑠, 𝑎), following the Elo rating formula in
Equation 3. The two possible cases are outlined as follows:

• If 𝑠′ ≠ 𝑠fail, we compute the probability of the agent success-
fully completing the task and multiply it by the transition
function 𝑇 (𝑠, 𝑎, 𝑠′) from the standard MDP (as defined in
Definition 2.1).

• If 𝑠′ = 𝑠fail, we compute the probability of the agent failing
the task.

An illustration of this extended transition function 𝑇 (𝑠, 𝑎, 𝑠′) is
provided in Figure 1, where it depicts the transitions from state 𝑠0
to possible subsequent states 𝑠1, 𝑠2, 𝑠3, or the failure state 𝑠fail after
executing action 𝑎1.

During training, the agent with a low ability level will learn
that attempting certain tasks has a lower probability of success
compared to agents with a high ability level. This results in different
policies for agents with high ability versus those with low ability.

3.1.2 Preferences. We define preferences as an attribute that de-
scribes how much an agent favours a particular outcome over an-
other. An outcome refers to a specific state that the agent can
achieve as a consequence of its actions within the environment. For
example, an outcome might be the collection of an item, reaching a
certain location, or completing a task.

Although preferences are similar to goals, they differ in impor-
tant ways. A goal implies a firm intention to achieve a specific
outcome, meaning the agent is focused on reaching that particular
result. In contrast, preferences describe the degree to which an
agent favours one outcome over others, allowing more flexibility.
An agent might prefer certain outcomes over others, but this does
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(a) Transition function of a standard MDP (b) Transition function of MDPAB

Figure 1: Transition function adaptation for ability level.

Figure 2: Reward weighting of Goal A (left) vs. Preference
over A: 0.7 and B: 0.3 (right).

not necessarily imply the agent is exclusively focused on a single
goal.

For this work, we use a simplified definition of preference to
illustrate how they can be integrated into the framework. We will
discuss potential extensions in Section 6.

To incorporate preferences into an MDP, we build on how RL-
basedGR approaches define goals. In RL-based approach, the reward
function 𝑅(𝑠) expresses an agent’s goal by assigning a positive
reward when achieved, as discussed in Section 2. For example,
assume an agent operates in a grid world with two items, A and
B in Figure 2. In the given domain, if the agent’s goal is collect
item A, 𝑅(𝑠) will assign a positive reward (e.g., +1) when the agent
successfully collects item A. However, 𝑅(𝑠) will assign 0 when the
agent collects item B. We view this as focusing on a single outcome
and assign a positive reward when the specific outcome is achieved.

When modelling preferences, we can extend this view of the
reward function to express agent’s preferences over possible out-
comes. Instead of focusing on a single outcome, we consider multi-
ple outcomes and use the reward function 𝑅(𝑠) to assign numerical
values that represent the strength of the agent’s preference for
each outcome. A higher reward indicates a stronger preference for
that outcome. For example, in Figure 2, if the agent has a stronger
preference for item A than for item B, this can be modelled by
reward function 𝑅(𝑆) assigning 0.9 for when collecting item A and
0.3 when collecting item B, proportional to the agent’s preference.

During training, the agent with stronger preferences will priori-
tise achieving the preferred outcomes, while agents with weaker
preferences will place less emphasis on these outcomes. This will
result in different policies for agents with strong preferences versus
those with weak preferences.

3.1.3 Belief. We define belief as an agent’s knowledge about the
state of a domain or environment. Agents may not always have

Figure 3: Fully observable state with distinct items (left) vs.
Partial observable state with indistinguishable items (right).

complete knowledge of the true state of the world and often operate
under partial observability. To address this, agents maintain a belief
about the state of the world, which serves as a probabilistic estimate
of the environment. This estimate informs the agent’s decision-
making process. As with preferences, we are using a simplified
definition of beliefs, with possible extensions (see Section 6).

To represent belief within an MDP, we update the state represen-
tation 𝑆 to account for partial observability. Specifically, we modify
certain states so that outcomes with different rewards may appear
indistinguishable to the agent.

To illustrate this, consider a grid world domain as shown in
Figure 3. An agent with full observability can distinguish between
all items A, B, and C. However, we modify the state representa-
tion for an agent with partial observability so that items B and C,
which have conflicting rewards (e.g., -1 for B and +1 for C), appear
indistinct to the agent. During training, the agent with partial ob-
servability will learn that collecting these indistinguishable items
carries a 50% probability of yielding a good outcome. This would
result in different policies for agents with full observability versus
those with partial observability.

3.2 Offline Training: Learning Domain Model
The offline learning stage focuses on building the domain model by
learning Q-functions. For each known instance of an attribute 𝛼 =

(𝛼1, ..., 𝛼𝑛) ∈ A1× ...×A𝑛 , we formulate anMDP that models these
attributes, which is used to train the Q-functions𝑄𝛼 (𝑠, 𝑎). Learning
the Q-functions𝑄𝛼 (𝑠, 𝑎) can be accomplished using various off-the-
shelf RL techniques, which will be demonstrated in our experiments
in Section 4. As the number of attribute instances 𝛼 increases, the
number of Q-functions to be learnt also grows. We address this
scalability challenge in Section 4.3, where we discuss an extension
of the offline training process to manage a large set of attributes.
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Figure 4: Treasure Domain

3.3 Online Attribute Inference
After learning the Q-functions, we can begin inferring agent at-
tributes based on observations. During online execution, for each
step 𝑖 in the trajectory, the recogniser captures an observation of
a state-action pair 𝑜𝑖 = ⟨𝑠𝑖 , 𝑎𝑖 ⟩. The recogniser then compares the
learnt Q-functions for each attribute 𝑄𝛼 (𝑠𝑖 , 𝑎𝑖 ) with the observed
state-action pair 𝑜𝑖 using a distance measure.

Initially, we adopt the DKL measure, as shown in Equation 2,
following the approach from [2]. However, DKL only provides a
summation of scores at each step 𝑖 of the observation 𝑂 , without
yielding a probability distribution over the attributes.

To address this limitation, we propose using Bayesian Inference
(BI) as a distance measure. This method is adapted from [20], which
was extensively used for planning-based GR [16] and, to our knowl-
edge, this has not been explored in RL-based GR [3]. BI allows us
to calculate a probability distribution over the attributes directly
and incorporates prior knowledge about attribute probabilities. For-
mally, we define the BI method to compute the posterior probability
distribution over attributes 𝛼 given an observation 𝑜𝑖 ∈ 𝑂 , as shown
in Equation 5.

𝑃 (𝛼 |𝑜𝑖 ) =
𝑃 (𝑜𝑖 |𝛼)𝑃 (𝛼)

𝑃 (𝑜𝑖 )
. (5)

4 EXPERIMENTS
To evaluate our Attribute Recognition (AR) framework, we con-
ducted experiments in two deterministic domains: the Treasure
domain (Figure 4), which we created, and the Craft World domain
(Figure 5), adapted from [9]. Both domains require agents to collect
items but differ in complexity. The Treasure domain illustrates how
an agent’s behaviour is influenced by attributes beyond its goal,
while the more complex Craft World domain allows for a wider
range of attributes.

We assessed our AR framework’s performance in three key ar-
eas. In Section 4.1, we evaluated whether AR framework could
infer behaviour more effectively when considering multiple at-
tributes, compared to only inferring goals, which in turn enhance
GR performance. In Section 4.2, we tested AR framework’s ability
to infer a single attribute in isolation. In Section 4.3, we revisited
the scalability issue discussed in Section 3, to determine whether
AR framework could infer attributes using a single Q-function.1

4.1 Enhancing Goal Recognition Performance
In this section, we aim to evaluate whether our proposed AR frame-
work can enhance GR performance by inferring both goal and
1Code is available at https://github.com/sh-ryl/AAMAS25_AR

𝜆 AR 𝑔 = 0, 𝜆 = 100 𝑔 = 0, 𝜆 = 500 𝑔 = 1, 𝜆 = 100 𝑔 = 1, 𝜆 = 500

100 𝐴𝑅𝜆 110.288 114.798 113.905 113.538
𝐴𝑅𝜆low 110.288 n/a 113.905 n/a
𝐴𝑅𝜆high n/a 114.798 n/a 113.538

500 𝐴𝑅𝜆 87.053 82.202 85.203 82.865
𝐴𝑅𝜆low 87.053 n/a 85.203 n/a
𝐴𝑅𝜆high n/a 82.202 n/a 82.865

Table 1: Average DKL scores2 for (𝑔, 𝜆) predictions over 1000
trajectories. The bold values indicate AR inference’s most
confident estimates on (𝑔, 𝜆).

𝜆 AR 𝑔 = 0, 𝜆 = 100 𝑔 = 0, 𝜆 = 500 𝑔 = 1, 𝜆 = 100 𝑔 = 1, 𝜆 = 500

100 𝐴𝑅𝜆 0.786 0.026 0.096 0.093
𝐴𝑅𝜆low 0.895 n/a 0.105 n/a
𝐴𝑅𝜆high n/a 0.237 n/a 0.763

500 𝐴𝑅𝜆 0.106 0.392 0.273 0.229
𝐴𝑅𝜆low 0.296 n/a 0.704 n/a
𝐴𝑅𝜆high n/a 0.638 n/a 0.362

Table 2: Average BI Probabilities3 for (𝑔, 𝜆) predictions over
1000 trajectories. The bold values indicate AR inference’s
most confident estimates on (𝑔, 𝜆).

ability levels. We use the Treasure domain (Figure 4), in which the
green agent must collect either a red or yellow gem. There are two
paths to each gem: a riskier but faster one, and a safer, obstacle-
free one (with blue monsters as obstacles). The agent’s ability level
determines the probability of successfully passing these obstacles.

In our AR framework, the MDP is extended to handle ability
level using MDPAB (Definition 3.2). For each action, we apply the
transition function 𝑇 (𝑠, 𝑎, 𝑠′) with probabilities from Equation 4.
Cells near obstacles are assigned a difficulty of 𝛿 (𝑠, 𝑎) = 100. We
define two ability levels using Elo ratings: 𝜆low = 100 (low) and
𝜆high = 500 (high). For successful transitions (𝑠′ ≠ 𝑠fail), the transi-
tion probability is the agent’s Elo rating multiplied by 1. For agents
near obstacles about to attempt passing the obstacle, those with
low ability have a transition probability𝑇 (𝑠, 𝑎, 𝑠′) = 0.5, while high-
ability agents have 𝑇 (𝑠, 𝑎, 𝑠′) = 0.9. The difficulty rating 𝛿 (𝑠, 𝑎) for
adjacent obstacle pathways is uniform, and other state-action pairs
have 𝛿 (𝑠, 𝑎) = −∞, giving a pass-through probability of 1. 𝑠fail is
defined as a terminal state when the agent fails to pass the monster.

We implemented three recognisers: 𝐴𝑅𝜆 (inferring both goal
𝐺 and ability level Λ), and baselines 𝐴𝑅𝜆low and 𝐴𝑅𝜆high , which
only infer goals. These baselines represent the assumption in GR
approaches that do not account for other attributes (in this case,
varying ability levels). Each recogniser must infer 2 goals (𝑔 = 0,
𝑔 = 1) and 2 ability levels (𝜆 = 100, 𝜆 = 500). We selected two
evaluation points (marked with green borders in Figure 5) to assess
predictions using distance measures, where the agent’s trajectory
provides the most information for inference.

For this simple domain, we use Q-value iteration [22] with 100
iterations for training these recognisers. For𝐴𝑅𝜆 , four policies were
generated for each goal and ability level (𝑔, 𝜆) combination. For
𝐴𝑅𝜆low and 𝐴𝑅𝜆high , two policies were generated for each 𝑔 based
on the corresponding 𝜆.

2Lower DKL scores indicate greater confidence.
3Higher BI probabilities indicate greater confidence.
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Figure 5: Craft World Domain

Item Ingredients Craft Location

Axe Iron, stick Toolshed
Bed Grass, plank Workbench

Bridge Iron, wood Factory
Cloth Grass Factory
Plank Wood Toolshed
Rope Grass Toolshed
Stick Wood Workbench

Table 3: Item recipes in Craft World domain.

4.1.1 Results. All results are averaged over 1000 trajectories on
the evaluation point. For brevity, we only present the performance
of our AR framework of recognising agent’s with 𝑔 = 0 as ground
truth, as the results of recognising 𝑔 = 1 are symmetrical.

Our recognisers’ prediction results based on the distance mea-
sure, DKL scores are shown in Table 1, and BI probabilities in
Table 2, which show the performance of the attribute recognis-
ers (𝐴𝑅𝜆 , 𝐴𝑅𝜆low , and 𝐴𝑅𝜆high ) in predicting the agent’s attributes
{𝑔, 𝜆}. Lower scores for DKL and higher probabilities for BI means
that the recogniser is more confident with the prediction of at-
tributes {𝑔, 𝜆}. For agent with low ability level 𝜆 = 100, both 𝐴𝑅𝜆
and 𝐴𝑅𝜆low achieved highest confidence and correctly infers goal
0, while 𝐴𝑅𝜆high incorrectly infers goal 1. Similarly, for agent with
high ability level 𝜆 = 500, both 𝐴𝑅𝜆 and 𝐴𝑅𝜆high achieved highest
confidence and correctly infers goal 1, while 𝐴𝑅𝜆low incorrectly
infers goal 0.

In summary, we can see that 𝐴𝑅𝜆low and 𝐴𝑅𝜆high perform well
when the agent possesses an ability level that it expected but suffers
when the agent possesses an ability level that it does not have
a basis of. Our main approach, 𝐴𝑅𝜆 , performs generally well on
inferring both low and high ability levels. These results establish
that modelling other attributes can enhance GR performance.

4.2 Individual Attribute Inference
In this section, we evaluate the AR framework’s ability to infer indi-
vidual agent attributes—ability levels, preferences, and beliefs —in-
dependently. We use a single-agent version of Craft World adapted
from [9], where agents move, craft, and collect items based on
recipes (Table 3). Raw materials (grass, wood, iron) are collected
from the environment, and episodes terminate after 100 timesteps.

For each attribute, we create specific scenarios following the
MDP modifications in Section 3.1. We trained two sets of policies
using DQN [17]: one for the AR recognisers and one for the agents.
Results, shown in Figures 6, 7, and 8, display the BI probabilities
averaged over 1000 episodes. Each column represents an agent

Figure 6: BI probabilities3 for ability level. Each column repre-
sents an agent’s policy trained w.r.t. a ground truth attribute.
The bold line represents the AR inference on the ground
truth attribute.

executing a specific policy, with the BI probabilities indicating the
framework’s confidence in a particular policy that reflects a specific
attribute value. Higher probabilities mean that our framework is
more confident of a specific policy which represent an attribute. The
bolded line represents AR inference on the ground truth attribute.
The DKL sum results are omitted as they align with the BI findings.

Each attribute’s MDP modifications and AR framework perfor-
mance are discussed below.

Ability Level. For this scenario, the agent collects an axe or a bridge.
The axe is harder to make, requiring two crafting actions, while the
bridge only requires one. The reward function assigns +1 for the
axe and +0.7 for the bridge, with an additional +0.2 incentive for
collecting the necessary materials. The aim is to produce policies
that prioritise the axe when agents have higher-ability, while lower-
ability agents focus on the bridge.

We set the crafting difficulty for all items set at 𝛿 (𝑠, 𝑎) = 100,
and 𝑇 (𝑠, 𝑎, 𝑠′) = 1 for move and collect actions. Ability levels are
set to Λ = {100, 500}, and 𝑠fail represents a failed crafting attempt,
scattering materials.

Figure 6 shows that for the lower ability agent (100), our frame-
work would first infer the agent as high-ability agent within the first
20 timesteps, and infers the agent as low-ability agent afterwards
with the probability stabilising around 0.7 by the end of the episode.
Meanwhile, for the higher ability agent (500), our framework infers
it accurately and the probability reaches nearly 1.0 within the first
30 timesteps. These results are likely due to the fact that, in the
early timesteps, agents with both ability levels perform similar ac-
tions, such as collecting wood, which does not immediately reveal
their skill level. However, as the episode progresses and the low
ability agent attempts tasks such as crafting a bridge, the frame-
work gathers more distinguishing information, allowing it to more
accurately infer the agent’s ability level. These results show that
the AR framework effectively distinguishes between ability levels.

Preference. In this scenario, the agent collects cloth and stick, with
five different reward weightings: (0.1,0.9), (0.3,0.7), (0.5,0.5), (0.7,0.3)
and (0.9,0.1), summing to 1 to allow easy comparison of the agent’s
relative preferences between the two items. These combinations
represent varying levels of preference, from strong (0.9,0.1) and
(0.1,0.9) to balanced (0.5,0.5) and weaker preferences (0.3,0.7) and
(0.7,0.3). A separate Q-function was trained for each weighting.

Figure 7 shows that agent with strong preferences (first and
fifth columns), our framework infers it correctly, and converges to
high confidence within the first 30 timesteps. Similarly for agent
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Figure 7: BI probabilities3 for preferences. Each column represents an agent’s policy trained w.r.t. a ground truth attribute. The
bold line represents the AR inference on the ground truth attribute.

Figure 8: BI probabilities3 for beliefs. Each column represents an agent’s policy trained w.r.t. a ground truth attribute. The bold
line represents the AR inference on the ground truth attribute.

with balanced preferences (third column), our framework infers
it correctly, indicating the framework is capable of recognising
the agent’s neutrality. The agent with weaker preferences (second
and fourth columns) takes longer to infer, as the agent prioritises
the item with the slightly higher reward first. This is shown by
the first 30 steps where our framework infers that the agent might
have a strong preference. As timesteps progress, the agent gradually
reveals its slight preference, and our framework adjusts its inference
to agent having weaker preferences around timestep 50.

Overall, the AR framework effectively infers preferences: quicker,
confident predictions for strong or balanced preferences; and slightly
delayed but accurate predictions for weaker preferences.

Belief. In this scenario, the reward weighting is set to 0.7 for iron
and either 1 or -1 for wood and grass. We designed two types of
agents: onewith full observability and onewith partial observability,
where wood and grass are indistinguishable. The goal is to train
policies that account for these differences in perception.

Figure 8 shows that for fully observable agents, our framework’s
inference converges quicklywith high confidence, as it can correctly
identifywood and grass within the first 20 timesteps. This behaviour
is similar to the strong preference scenarios, where the framework
confidently infers actions due to the clarity of the observations.

In the case of partially observable agents, the results indicate
that our framework is able to infer the agent’s inability to distin-
guish between wood and grass. This is reflected in the rapid decline
in probabilities for fully observable policies. However, the confi-
dence in partially observable policies does not necessarily indicate
framework’s accuracy in identifying whether wood or grass is good.
Instead, the results stem from slight differences in trained policies
for partial observability. These policies behave differently when
wood is good versus when grass is good, even though the items are
indistinguishable to the agent. Theoretically, the BI probabilities
for the red and green lines should hover around 0.5, as the agent’s
actions should reflect the uncertainty between the two items. The
divergence in probabilities is a result of these minor variations in
the trained policies rather than the uncertainty of the environment.

Overall, the results show the AR framework’s ability to adapt its
inference process based on the agent’s level of observability.

4.3 Enabling Scalability
We revisit the scalability issue highlighted in Section 3.2. Train-
ing a separate neural network for each possible instance of an
attribute is not scalable. For example, in our preference experiment
in Section 4.2, we trained five different policies for five different
weight combinations. However, these combinations do not cover
every possible preference, and training additional policies would be
time-consuming. This challenge becomes even more difficult when
dealing with multiple attribute types. Therefore, in this experiment,
we aim to determine whether our AR framework can scale to handle
fine-grained instances of attributes.

To address this issue, we propose a training stage that can learn a
single Q-function capable of generalising across different instances
of the attribute 𝛼 . Instead of only taking state and action as inputs,
we modify the Q-function to also take 𝛼 as an additional parameter.
The modified Q-function can be defined as 𝑄̂ (𝑠, 𝑎, 𝛼), representing
the expected rewards for future steps when taking action 𝑎 in state
𝑠 , given attribute 𝛼 . This modification allows the Q-function to
generalise across different attributes 𝛼 .

For the experiment, we use the same domain as Section 4.2,
focusing on inferring the preference attribute between cloth and
stick. We use DQN [17] to approximate the Q-functions and set
randomised reward weightings (e.g. 0.35 for cloth and 0.65 for stick)
that sum to 1 for each training episode.

During online inference, we use the following reward weighting
combinations for the recogniser: (0.1, 0.9), (0.2, 0.8), (0.3, 0.7), (0.4,
0.6), (0.5, 0.5), (0.6, 0.4), (0.7, 0.3), (0.8, 0.2), (0.9, 0.1). We test two
types of agents: one using the modified Q-function 𝑄̂ (𝑠, 𝑎, 𝛼), one
using the standard Q-function 𝑄𝛼 (𝑠, 𝑎). Both agent executes in the
environment using this Q-functions reflecting the following weight
combinations: (0.1, 0.9), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3), (0.9, 0.1).
4.3.1 Results. Figures 9 and 10 show that our framework, when
using the updated 𝑄̂ (𝑠, 𝑎, 𝛼), performs well in inferring agent pref-
erences. When compared to agents trained with the modified Q-
function 𝑄̂ (𝑠, 𝑎, 𝛼), the framework accurately distinguishes all pref-
erences. For agents using the standard Q-function 𝑄 (𝑠, 𝑎), perfor-
mance is slightly worse, particularly for weak preferences, though
the correct preference weights still rank in the top three inferences.
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Figure 9: BI probabilities3 for preferences with AR framework trained using the modified Q-function. Each column represents
an agent’s policy trained with modified Q-function w.r.t. a ground truth attribute.

Figure 10: BI probabilities3 for preferences with AR framework trained using the modified Q-function. Each column represents
an agent’s policy trained with standard Q-function w.r.t. a ground truth attribute.

Overall, these results demonstrate that the AR framework with
the modified Q-function 𝑄̂ (𝑠, 𝑎, 𝛼) offers promising improvements
in the efficiency of the offline training stage and shows strong
potential for scalability as problem complexity increases.

5 RELATEDWORK
Beyond GR, the concept of inferring agent attributes has been ex-
plored and applied across various fields. Agent modelling, a broader
research area, encompasses a range of approaches aimed at under-
standing agent behaviour in different contexts [1].While GR primar-
ily focuses on inferring goals from observed behaviour, other agent
modelling approaches often seek to uncover deeper behavioural
attributes, such as preferences, beliefs, and intentions [6, 18].

Additionally, a significant body of research in agent modelling
has focused on inference in competitive settings, such as Opponent
Modelling [13, 27] and Multi-Agent RL [7]. However, our work is
distinct in that we model an agent’s decision-making based solely
on observation, without requiring direct interaction with the agent.

Recent advancements in agent modelling have been inspired by
Theory of Mind (ToM) [4], a human cognitive ability to infer an-
other’s mental state, including beliefs, desires, and intentions. ToM
allows individuals to adopt another’s perspective. This concept has
motivated research in AI, where efforts have beenmade to develop a
"machine mind", a model structured on the human ToM framework
[23]. Many studies have employed techniques like Bayesian inverse
planning [5, 6, 11] and inverse reinforcement learning [14, 26] to
infer an agent’s beliefs and desires by quantifying these attributes.

More recently, approaches have emerged that focus on learning
an agent’s latent mental state representation from its observable be-
haviour. This shift reduces the need to explicitly quantify attributes
like beliefs and instead enables the model to infer a higher-level
understanding of the agent’s mental state. Notable contributions
include the ToM neural network, which explores the concept of
"learning how to learn" through meta-learning techniques [18].

These works possess similar questions and motivations in mind:
how can we model an agent in observation and make a robust

inference of their “mind” from their actions. Our approach is similar
to [5, 6] in a way that we quantify an attribute to help with inference.

6 CONCLUSION AND FUTURE DIRECTIONS
In this work, we introduced a framework for Attribute Recognition
(AR), which extends traditional Goal Recognition (GR) to infer other
agent attributes such as ability, preferences, and beliefs. Through
our RL-based approach, we demonstrated how these attributes can
be inferred from observed agent behaviour through modifying the
learning task for the RL problem, enabling a more comprehensive
understanding of agents behaviour. Our framework was tested in
two deterministic environments, the Treasure domain and the Craft
World domain, to illustrate its effectiveness in handling both simple
and complex behaviours. Our experiments show that inferring these
attributes improves the accuracy of GR and highlights the broader
potential of our framework in various settings.

Future work could explore different methods for modeling agent
attributes in complex multi-agent environments. For example, pref-
erence based RL reduces the need for numeric rewards through
pairwise comparisons [24, 25]. Overall, the potential for extending
this framework to a variety of agent attributes is vast, and further
research will be crucial to explore the full range of possibilities.
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