
Generalised BDI Planning
Felipe Meneguzzi

University of Aberdeen & PUCRS
Aberdeen, Scotland, UK

felipe.meneguzzi@abdn.ac.uk

Ramon Fraga Pereira
University of Manchester & UFRGS

Manchester, England, UK
ramon.fragapereira@manchester.ac.uk

Nir Oren
University of Aberdeen
Aberdeen, Scotland, UK
n.oren@abdn.ac.uk

ABSTRACT
Agent interpreters based on the Beliefs, Desires, and Intentions (BDI)
model traditionally perform means-ends reasoning using plan li-
braries composed of reactive planning rules. However, the design
of such rules often imposes a heavy knowledge engineering burden
on a designer, and trades off flexibility for runtime efficiency. This
use of planning rules originates from the limitations of planning
technology at the time of the first BDI implementations. While
these limitations have gradually been overcome by the integration
of various types of planning into existing BDI theories, the cor-
responding interpreters remain fundamentally plan-library based.
In this paper, we develop a novel BDI agent architecture driven
by generalised planning as means-ends reasoning, in a radical de-
parture from existing architectures. This architecture has two key
properties. First, it more closely resembles the foundations of BDI
logic and reasoning. Second, it offers substantial gains in efficiency
in comparison with an architecture driven by classical planning.

KEYWORDS
BDI, Automated Planning, Generalized Planning, AutonomousAgents
ACM Reference Format:
Felipe Meneguzzi, Ramon Fraga Pereira, and Nir Oren. 2025. Generalised
BDI Planning. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Agent architectures based on Beliefs,Desires, and Intentions (BDI) [3]
have inspired a long tradition of research on pragmatic models of
autonomous reasoning. The key insight of such architectures is
the separation of theoretical reasoning (i.e., epistemological rea-
soning, concerned with the truth), and practical reasoning (i.e.,
means-ends reasoning, concerned about goal-directed action) in
resource-bounded agents. This separation allows the agent to deal
with perception separately from planning its future-directed ac-
tions, and to direct their computational effort towards practical
reasoning [25]. A BDI agent limits the computational cost of practi-
cal reasoning at any given time by committing to specific goals and
courses of action that should be achievable, whilst allowing for such
commitments to be revised [4]. Generating such courses of actions,
i.e., by performing automated planning [17], is a costly process,
which led to practical implementations of BDI agents generally
avoiding using fully fledged planning algorithms. Instead, most

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

BDI agent implementations rely on a form of reactive planning
(via crafted plan libraries) that, while conceptually similar to hier-
archical planning [15], requires substantial engineering effort to
replicate the properties of BDI agents and logics [8]. While avoiding
potentially computationally expensive planning algorithms made
sense in the past, developments in automated planning now provide
a practical mechanism for means-ends reasoning [18].

Recent research has gradually introduced first principles plan-
ning capabilities via automated planning algorithms into BDI agents
[12, 38]. However, the resulting architectures inherit two key limi-
tations, previously highlighted by Pereira and Meneguzzi [33] and
Reed et al. [37]. First, these approaches remain fundamentally tied
to the reactive planning reasoning cycle of traditional BDI architec-
tures [24]. Second, the means-ends reasoning provided by single
instances of classical planning processes focuses on a single desire,
departing from the implicit capability of BDI reasoning to reason
globally over all of an agent’s desires.

We seek to address these limitations through the introduction
and development of GePetto, a BDI agent architecture completely
driven by Generalised Planning [22], which is a type of planning
that naturally represents multiple individual goals, thereby aligning
more closely to the means-ends reasoning required by BDI agents.
Our key contributions are threefold. First, we formalise a fully-
fledged BDI agent interpreter that relies on a generalised planner
to drive its means-ends reasoning process (Section 3). Second, we
show that this interpreter automatically complies with the key
properties of BDI logics [3, 8] in ways that reactive planning agents
do not (Section 4). Third, we empirically evaluate GePetto across
two different scenarios under specific conditions where generalised
planning enable GePetto’s means-ends reasoning to reduce the
number of planning calls (Section 5). This results in a more efficient
BDI reasoning process, both in terms of planning time and the
number of achieved desires (goals), compared to an agent that
relies on classical planning.

2 BACKGROUND AND NOTATION
In this section, we present a comprehensive overview of the foun-
dational concepts and essential notation in Classical Planning, Gen-
eralised Planning, and BDI Planning.

2.1 Planning
The environment in which our autonomous agents act towards
achieving their goals follows the formalism ofClassical Planning [17].
Here, a domain model representing the environment is assumed
to be fully observable, and discrete, and the actions’ outcomes (i.e.,
effects) are deterministic. In our experiments the environment is
not static, and may change independently of the agent’s actions.

A planning domain model Ξ is a tuple ⟨F ,A⟩ where F is a set
of fluents (i.e., environment properties) and A is a set of actions

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1483

https://orcid.org/0000-0003-3549-6168
https://orcid.org/0000-0002-3600-3348
https://orcid.org/0000-0002-4854-9014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

where every action 𝑎 ∈ A has a positive cost, denoted as 𝑐𝑜𝑠𝑡 (𝑎),
and is associated with its own set of preconditions, add and delete
lists: pre(𝑎), add (𝑎), del(𝑎). We define a state 𝑆 as a finite set of
positive fluents 𝑓 ∈ F that follows the closed world assumption so
that if 𝑓 ∈ 𝑆 , then 𝑓 holds, or is true, in 𝑆 . We also assume a simple
inference relation |= such that 𝑆 |= 𝑓 iff 𝑓 ∈ 𝑆 ; and 𝑆 |= 𝑓0 ∧ ... ∧ 𝑓𝑛
iff {𝑓0, ..., 𝑓𝑛} ⊆ 𝑆 . An action 𝑎 ∈ A is applicable to a state 𝑆 (written
applicable(𝑎, 𝑆)) iff 𝑆 |= pre(𝑎), and when executed generates a new
state 𝑆 ′ such that 𝑆 ′ ← (𝑆 ∪ add (𝑎))\del(𝑎). An action execution
function 𝛾 (𝑆, 𝑎) returns 𝑆 ′ if applicable(𝑎, 𝑆) and ⊥ otherwise.

A planning problem P is a tuple ⟨Ξ,O, 𝑠0, 𝑠𝑔⟩ where: Ξ is a plan-
ning domain as described above; O is a finite set of environment
objects; 𝑠0 ⊆ F is the initial state; and 𝑠𝑔 ⊆ F is a goal state. A
solution to the planning problem P is a plan 𝜋 = [𝑎1, ..., 𝑎𝑛] that
transforms 𝑠0 into a state 𝑆 |= 𝑠𝑔 after executing actions 𝑎1, . . . , 𝑎𝑛
sequentially, resulting in a state where goal 𝑠𝑔 holds. We define a
plan execution function 𝛾 (Ξ, 𝑆, 𝜋) that returns the state resulting
from the sequential execution of each action in a plan within a do-
main Ξ. The cost of a plan 𝜋 = [𝑎1, ..., 𝑎𝑛] is cost (𝜋) =

∑︁
𝑖

cost (𝑎𝑖).

A plan 𝜋∗ is optimal if there is no other plan 𝜋 ′ that is a solution
for P such that cost (𝜋 ′) < cost (𝜋∗). The purpose of a planning
algorithm is to find a plan 𝜋 which is a solution to a planning prob-
lem P. We call planner(Ξ, 𝑠0, 𝑠𝑔) an algorithm that solves P by
providing such a solution plan.

2.2 Generalised Planning
As defined by [7, 22, 43], a generalised planning problem GP is a
tuple {P0,P1, ...,P𝑁 } that represents the task of solving a set of𝑁 ≥
2 planning problems that share some common structure. A solution
to a generalised planning problem GP is a generalised plan Π that
solves a GP. We follow the formalism of Segovia-Aguas et al. [40]
and define generalised plans as planning programs. A generalised
plan Π (alternatively, planning program) has a control flow that
encompasses a compact representation that captures different ways
to solve a set of possibly distinct planning problems {P0,P1, ...,P𝑁 }.
More formally, a generalised plan Π is a planning program that
has a sequence of 𝑛 instructions Π = ⟨w0,w1, . . . ,w𝑛⟩, where each
instruction w𝑖 is associated with a program line 0 ≤ 𝑖 ≤ 𝑛, and/or a
pointer 𝑧. A pointer 𝑧 ∈ 𝑍 is a bounded variable with a finite domain
{0, . . . , |O|} that indexes an object within the set O. Individual
instructions for a planning problem take one of the following forms:

• A planning action w𝑖 ∈ A;
• A goto instruction w𝑖 = go(𝑗, 𝑦), where 𝑗 is a program line
and 𝑦 is a fluent value, representing a Boolean condition;
• A for instructionw𝑖 = for(𝑧𝑖𝑛𝑑𝑒𝑥++, 𝑗), which has an associ-
ated endfor instructionw𝑗 = endfor(𝑧𝑖𝑛𝑑𝑒𝑥++, 𝑖) (bounding
the loop), where 𝑧𝑖𝑛𝑑𝑒𝑥++ represents the increment of a spe-
cific pointer 𝑧𝑖𝑛𝑑𝑒𝑥 . Such a for loop repeatedly executes the
instructions between 𝑖 + 1 and 𝑗 − 1 (inclusive) and iterates
over all elements of the collection referred to by the pointer;
and
• A termination instruction w𝑖 = end. The last instruction of
a planning program Π is always a termination instruction
end, i.e., w𝑖 = end [40].

Along with the set of instructions above, planning programs
also include primitive pointer operations over pointers in 𝑍 , such
as inc(𝑧𝑖𝑛𝑑𝑒𝑥), which increments a given pointer by one (up to the
maximum index in the collection); dec(𝑧𝑖𝑛𝑑𝑒𝑥), which decrements
a given pointer by one (down to the first index in the collection);
clear(𝑧𝑖𝑛𝑑𝑒𝑥), which sets the given pointer to refer to the first
element of the collection; and set(𝑧𝑖𝑛𝑑𝑒𝑥 , 𝑧𝑖𝑛𝑑𝑒𝑥 ′), which sets the
value of a pointer 𝑧𝑖𝑛𝑑𝑒𝑥 ′ to the value of another pointer 𝑧𝑖𝑛𝑑𝑒𝑥 .

We define the execution of a generalised plan Π as exec(Π,P) =
⟨𝑎0, ..., 𝑎𝑛⟩, representing an analogy to a plan 𝜋 , which is a sequence
of actions that solves a planning problem P. Since the execution
of a generalised plan creates a linear classical plan, we will refer
to the result of this execution as a linearisation of a generalised
plan. As defined by Segovia-Aguas et al. [41, 43], the execution
context of a generalised plan Π is a program state (𝑠, 𝑖, 𝜁), where
𝑠 is a planning state 𝑠 ∈ 𝑆 , 𝑖 is the program counter indicating
the currently executing line, and 𝜁 is the set of all pointers with
their associated current index. Thus, given a planning state and
program counter pair (𝑠, 𝑖), if applicable(𝑠,w𝑖) then the execution
of the instruction w𝑖 results in a new execution state (𝑠′, 𝑖 + 1)
where 𝑠′ = w𝑖 (𝑠) is the successor state. If w𝑖 is not applicable, then
𝑠′ = 𝑠 . If w𝑖 = go(𝑗, 𝑦), the new execution state is (𝑠, 𝑗), if 𝑦 holds
in 𝑠 , and (𝑠, 𝑖 + 1) otherwise. The proposition value of 𝑦 can be the
result of an arbitrary expression on the state variables, e.g., a state
feature. If a for is encountered, then if the associated pointer points
to the last element of its collection, the instruction state is updated
to point to the next line after the associated endfor. Otherwise,
the instruction state points to the following line. When an endfor
is encountered, the index of the pointer is incremented. Finally, if
w𝑖 = end, execution terminates.

A generalised plan Π solves P iff the execution terminates in
a execution state (𝑠, 𝑖) that satisfies the goal condition 𝑠𝑔 defined
in P, i.e., w𝑖 = end and 𝑠𝑔 ⊆ 𝑠 , otherwise, the execution fails.
Thus, for every P𝑖 ∈ GP, 1 ≤ 𝑖 ≤ 𝑁 , exec(Π,P𝑖) solves P𝑖 . We
note that the two possible sources of failure of an execution of a
generalised plan Π are: (1) an incorrect program, i.e., a generalised
plan that terminates in an execution state that does not satisfy the
goal condition 𝑠𝑔; and (2) since a generalised plan Π is a program-
like plan with control flow commands, an unsound plan could lead
to an infinite loop that never reaches an end instruction. This latter
failure can be detected by checking duplicate program states. As
in Section 2.1, we call GPlanner(GP) an algorithm that solves
generalised planning problems.

Generalised Planning allows for the injection of domain knowl-
edge through the use of plan sketches. These are partially filled
general plans, and allow the designer (or some preprocessing step)
to specify some operations while leaving others for the planner to
discover. Plan sketches can significantly improve planning time, as
we discuss in the experiments of Section 5.

To evaluate the resulting architecture, and to illustrate its rea-
soning process throughout this paper, we adapt the Production Cell
scenario from Meneguzzi and Luck [27]. This scenario consists of
an abstraction of an automated factory, i.e., the production cell.
This cell comprises a number of processing units responsible for
performing specific manufacturing operations on blocks of raw
materials depending on the specific part that needs to be produced.
Every processing unit is responsible for performing a different kind

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1484

box0

Feed
Belt

Deposit
Belt

Processing
Unit 0

Processing
Unit 1

Processing
Unit 2

Processing
Unit 3

Feed
Belt

Deposit
Belt

Processing
Unit 0

Processing
Unit 1

Processing
Unit 2

Processing
Unit 3

box0

processed

box0

(a) Planning problem P0.

box0

Feed
Belt

Deposit
Belt

Processing
Unit 0

Processing
Unit 1

Processing
Unit 2

Processing
Unit 3

Feed
Belt

Deposit
Belt

Processing
Unit 0

Processing
Unit 1

Processing
Unit 2

Processing
Unit 3

box0

processed

box0

box1

box1

processed

box1

(b) Planning problem P1.

box0
box1

Feed
Belt

Deposit
Belt

Processing
Unit 0

Processing
Unit 1

Processing
Unit 2

Processing
Unit 3

Feed
Belt

Deposit
Belt

Processing
Unit 0

Processing
Unit 1

Processing
Unit 2

Processing
Unit 3

box0
box1

box1

processed

box0

processed

(c) Planning problem P2.

Figure 1: Generalised Planning problem example for the Production Cell scenario.

Figure 2: Generalised Plan for the Production Cell example.

of operation on a given block, and can process only one block at
any given moment. Blocks enter the production cell via a single
feed belt, and exit the production cell via one or more deposit belts,
which remove blocks from the production cell to finish a block.
Conveyor belts connect the various parts of the production cell, so
the controlling agent needs to move blocks between processing
units and the feed and deposit belts.

Figure 1 illustrates the general layout of an instance of the Pro-
duction Cell scenario with four processing units, two conveyor
belts, and one each of a feed belt and a deposit belt. It depicts a
generalised planning problem with three different planning prob-
lems ⟨P0,P1,P2⟩ for the Production Cell domain model, where a
robot agent has to move products around locations in the cell while
processing them. Figure 2 shows a generalised plan for solving
the generalised planning problem depicted in Figure 1, which is
composed of three different planning problems.

3 GENERALISED BDI PLANNING
This section formalises the key data structures of GePetto a BDI
agent driven by a Generalised Planning means-ends reasoner, and
specifies the key algorithms underpinning this agent architecture.
We follow the presentation style of the surveys on BDI agents from
Meneguzzi and de Silva [25] and de Silva et al. [12] while taking
inspiration from Pereira and Meneguzzi [33]. Indeed, one can see
this paper as providing a pragmatic instantiation of the abstract ar-
chitecture envisioned by the latter work. The resulting architecture
sheds the legacy of reactive planning from AgentSpeak(L)-style lan-
guages [35], and focuses on BDI architectures driven by declarative
goals [11]. The only assumption we make of the underlying envi-
ronment is that its dynamics follow a STRIPS-style [16] planning
formalism. Finally, we forgo the traditional presentation of BDI ar-
chitectures using Plotkin’s Operational Semantics [34] rules. We do
so to provide a more straightforward mapping towards implementa-
tion, rather than providing a mathematically elegant presentation.

3.1 BDI Planning
We formalise a BDI interpreter by adapting the formalism of Rao
and Georgeff [36]. Here, an agent 𝐴𝑔𝑡 is a tuple ⟨B,D,I⟩, where
B is a set of beliefs, D represents a set of desires, and I ⊆ D
is a set of adopted intentions. Desires are described in terms of
environment states the agent can choose to achieve, and intentions
as both the desires to which the agent is committed to achieving,
and the means by which these will be achieved. Desires are potential
goals the agent can (but not necessarily does) pursue at any given
time. Intentions in turn are those desires that the agent has chosen
to actively pursue. In BDI Planning [25], an agent reasons over
⟨B,D,I⟩, along with a set of plan rules (in a plan-library 𝑃𝑙𝑖𝑏) that
represents the behaviours available to the agent.

BDI interpreters can plan via declarative or procedural plan-
ners [25]. BDI planning with declarative planners alleviates the
need for a plan-library 𝑃𝑙𝑖𝑏 by using declarative goals, much like

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1485

Algorithm 1 Planning BDI Reasoning Cycle
Require: Filters DesireFilter, IntentionFilter

Require: Selectors IntentionSelection,

Require: Interfaces Sense, Act, BeliefUpdate,Next
1: procedure ReasoningCycle(B,D,I,Ξ)
2: loop
3: B ← BeliefUpdate(B, sense())
4: if I is not empty then
5: ⟨⟨𝜑, 𝐷⟩,Π𝑖⟩ ← IntentionSelection(B,I)
6: result ← act(Next(B,Π𝑖))
7: if Π𝑖 is empty and B |= 𝐷 and result ≠ ⊥ then
8: ⊲ Intention achieved ⊳

9: I ← I − ⟨⟨𝜑, 𝐷⟩,Π𝑖⟩
10: else if result = ⊥ and ¬Retry(B, ⟨⟨𝜑, 𝐷⟩,Π𝑖⟩)

then
11: ⊲ Intention Failed ⊳

12: I ← I − ⟨⟨𝜑, 𝐷⟩,Π𝑖⟩
13: else
14: D𝑒 ← DesireFilter(B,D,I,Ξ)
15: I ← IntentionFilter(B,D,I)

classical planning, as introduced by the languages GOAL [19], CAN
[45], 3APL [10], and 2APL [9].

3.2 Agent Architecture
At its most basic level GePetto comprises a tuple ⟨B,D,I⟩. Since
we model our environment via STRIPS, we encode beliefs as a
database of ground logical fluents F . The agent’s sensing func-
tion updates B at each reasoning cycle, which allows the agent
to use these beliefs as the initial state for planning, and to keep
track of the success (or otherwise) of its actions. Following [33],
desires are sets of tuples ⟨𝜑𝑖 , 𝐷𝑖 , 𝜎𝑖⟩, such that potential goals (𝐷𝑖)
are conjunctive formulas, possibly conditioned by a context for-
mula (𝜑𝑖) that restricts when these goals are relevant. Finally, we
use an optional preference value 𝜎 to allow a designer to indicate
an agent’s priorities, but omit it (writing ⟨𝜑𝑖 , 𝐷𝑖⟩ instead) as ap-
propriate. During the reasoning cycle, the agent chooses desires
that satisfy certain criteria, which the agent then stores as part
of its intentions I. Intentions focus the agent’s reasoning process
by narrowing the scope of the often costly process of means-ends
reasoning (planning). Thus, an intention is a tuple ⟨⟨𝜑 𝑗 , 𝐷 𝑗 ⟩, 𝜋 𝑗 ⟩
containing a desire and a plan to achieve such desire. In what fol-
lows, we develop the algorithms that drive the BDI reasoning cycle,
and define the relationship between these data structures.

3.3 Reasoning Cycle
Algorithm 1 provides a high-level view of the BDI reasoning cycle
used by an agent which incorporates a planning algorithm as its
means-end reasoner (c.f., [3]). In this section we decompose this
high-level algorithm into its component parts to implement the
reasoning methodology described in Pereira and Meneguzzi [33],
including how we use the generalised planning component within
the lower-level algorithms.

Similar to earlier work, an agent updates its beliefs at every cy-
cle (Line 3) and decides whether to continue advancing intentions
(if it has any) or reconsider its desires (Lines 4–15). Updating an
agent’s beliefs comprise a large area of BDI research [1], and we
assume a suitable implementation of belief-revision for procedure
UpdateBeliefs. This process relies on specific operations on gen-
eralised plans, as follows. First, recall from Section 2.2 that the
execution (or linearisation) of each generalised plan (exec(Π,P))
yields a classical plan ⟨𝑎0, ..., 𝑎𝑛⟩. Here, in an abuse of notation,
we denote the plan Π𝑖 associated to each intention to be either a
non-linearised generalised plan, or the steps of a linearisation of
the generalised plan for this intention. Thus, function Next(B,Π𝑖)
carries out the following bookkeeping that comprises an impor-
tant part of the reasoning cycle. First, it keeps track of previously
attempted linearised plans, and, if the generalised plan within an
intention does not have a linearised plan, this function tries to gen-
erate a new one using as a problem the current state of the belief
base and the desire associated with the intention. That is, it tries
to find exec(Π𝑖 , ⟨Ξ,O,B, 𝐷𝑖⟩), recalling that a planning problem
P = ⟨Ξ,O, 𝑠0, 𝑠𝑔⟩. If there are no new linearisations for the current
state of the world, then Next(B,Π𝑖) returns a failure, otherwise,
the intention now keeps track of the linearised plan, and returns the
first action of the linearised plan. If the intention already keeps track
of a linearised plan, Next(B,Π𝑖) returns the next step of this lin-
earised plan. The agent follows the plan of an intention until either
the plan ends its execution successfully, achieving the underlying
desire (Line 7), or the agent decides whether to retry the intention
(Line 10). Here, Retry(B, ⟨⟨𝜑, 𝐷⟩,Π𝑖⟩) implements the decision cri-
teria for retrying an intention while performing bookkeeping with
the associated intention. While there are multiple possible imple-
mentations of this decision, our current approach consists of trying
to generate a new linearisation for the generalised plan associated
with the recently failed intention. If exec(Π𝑖 , ⟨Ξ,O,B, 𝐷𝑖⟩) finds
no such linearisation for the current belief state, then the agent
does not retry the intention. This effectively implements a single-
minded commitment, such that the agent only aborts an intention
if it can prove that the intention is no longer possible given its be-
liefs about it. Note that if another generalised plan exists (different
from the one associated with the intention during desire filtering),
then in the next reasoning cycle, the desire should become eligible
again and allow the generalised planner to generate a plan. This
effectively makes the agent prioritise intentions for which it has
already spent computational resources planning, as linearisation is
a cheap operation. We call this approach to managing intentions
late linearisation, since we defer creating the linear plan to the last
moment. The agent then removes successful intentions from its
set of intentions (Line 9), leaving the agent free to pursue new
intentions. If the agent has achieved all its intentions, it needs to
reconsider its active intentions by filtering a set of eligible desires
(Line 14), for which the agent can generate a new set of consistent
intentions (Line 15).

The reasoning cycle in Algorithm 1 relies on a number of sub-
functions that create, filter, and manipulate the various components
of the BDI architecture. The first important function, shown in line
1 of Algorithm 2, filters those desires that the agent can commit to
achieving from the set of all possible desires. This filtering operates
in two steps. First the agent selects desires relevant to the agent’s

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1486

Algorithm 2 Functions to manage desires and intentions.

1: function DesireFilter(B,D,I,Ξ)
2: ⊲ Relevant Desires ⊳

3: D𝑟 ← {⟨𝜑, 𝐷⟩ | ⟨𝜑, 𝐷⟩ ∈ D,B |= 𝜑 ∧ ¬𝐷}
4: ⊲ Eligible desires ⊳

5: D𝑒 ← {⟨𝜑, 𝐷⟩ | ⟨𝜑, 𝐷⟩ ∈ D𝑟 , ∃𝜋𝐷 s.t. 𝛾 (Ξ,B, 𝜋𝐷) |= 𝐷}
6: return D𝑒

7: function IntentionFilter(B,D𝑒 ,I)
8: Find {⟨𝜑1, 𝐷1⟩ . . . ⟨𝜑𝑛, 𝐷𝑛⟩} ∈ P+ (D𝑒)

s.t. ∃Π, Π = GPlanner({⟨Ξ,B, 𝐷1⟩ . . . ⟨Ξ,B, 𝐷𝑛⟩})
9: I ← {⟨⟨𝜑1, 𝐷1⟩,Π⟩, . . . ⟨⟨𝜑𝑛, 𝐷𝑛⟩,Π⟩}
10: return I
11: function IntentionSelection(B,D,I)
12: ⊲ Filter out intentions whose desires are true ⊳

13: I ← {𝐼 | 𝐼 = ⟨⟨𝜑, 𝐷⟩,Π𝑖⟩ ∈ I, B |= 𝜑 ∧ ¬𝐷}
14: ⊲ Check if a linearisation of Π𝑖 plan is executable ⊳

15: I′ ← {𝐼 | 𝐼 = ⟨⟨𝜑, 𝐷⟩,Π𝑖⟩ ∈ I, B |= pre(Next(B,Π𝑖))}
16: return Pick any intention from I′

current situation (Line 3). These are desires for which the context
condition holds in the agent’s belief base, and that are not yet sat-
isfied. The agent filters these relevant desires further into eligible
desires, i.e., those that the agent can rationally pursue. We say a de-
sire is eligible if there is a plan of actions that can achieve this desire
(Line 5). How an implementation checks for the existence of such a
plan can vary. The strongest form of eligibility checking involves
running an implementation of a planner to determine whether a
desire can be pursued, i.e., find 𝜋𝐷 = Planner(B, 𝐷,Ξ). However,
practical implementations should use any safe heuristic [32] to rule
out unachievable desires. That is, use a heuristic estimate ℎ of the
plan cost and rule out desires such that ℎ(B, 𝐷) = ∞, which, for
admissible heuristics means 𝐷 is unachievable.

Once the agent has filtered a set of eligible desires D𝑒 , it needs
to find all desires which are internally consistent and which can
be achieved with a single plan (Line 7). This step is the key differ-
ence between GePetto and previous BDI interpreters, including
those which utilise automated planning. Specifically, our intention
filtering process tries to find a generalised plan for at least one
non-empty subset of the power set of eligible desires (Line 8). If
one such generalised plan exists, then the agent can use it to drive
the achievement of an individual intention attached to each desire
(Line 9). Note that an agent’s intentions will only be with respect
to all those desires for which a single generalised plan exists. As
detailed in Section 5, there are multiple choices on how to use
such generalised plans to drive an agent’s behaviour. Finally, once
the agent has active intentions, it picks one intention at a time
to advance its plan and filters out failed intentions. The intention
selection function (Line 11) does so by dropping intentions whose
associated desire has already been satisfied, and whose current
action is executable (Line 16).

4 THEORETICAL PROPERTIES
In this section, we review the key properties of BDI agents first
postulated by Bratman [3], and then logically formalised by Cohen
and Levesque [8], as seven key properties of intentions 𝑝𝑖 .

(1) Intentions normally pose problems for the agent; the agent
needs to determine a way to achieve them.

(2) Intentions provide a “screen of admissibility” for adopting
other intentions.

(3) Agents “track” the success of their attempts to achieve their
intentions.

(4) The agent believes 𝑝𝑖 is possible.
(5) The agent does not believe it will not bring about 𝑝𝑖 .
(6) Under certain conditions, the agent believes it will bring

about 𝑝𝑖 .
(7) Agents need not intend all the expected side-effects of their

intentions.

In what follows, we argue that intentions in GePetto naturally
enforce these properties in ways that architectures in the style of
AgentSpeak(L) do not. GePetto implements Property (1) by con-
struction in IntentionFilter, since each filtered desire becomes
the goal condition of a planning problem. Indeed, by extending the
definition of planning problem into procedural planning, AgentS-
peak(L) architectures adopt tasks as problems in their intention
structure, though not declaratively.

The key difference between GePetto and procedural reasoning
architectures regarding Property (2) is that there is no natural way
to screen parallel intentions for admissibility in the same way as
finding a generalised plan for sets of desires/intentions. While work
on conflicts for goal-plan trees in BDI agents [44] can detect cer-
tain interactions, AgentSpeak(L) style architectures rely on explicit
programming of the planning rules to implement similar behaviour.

Tracking the success of an agent’s attempts to achieve an in-
tention from Property (3) happens at the level of the main inter-
preter loop in Algorithm 1. In each reasoning cycle, the agent tracks
whether an intention successfully achieves its corresponding desire,
dropping an intention that achieves it, or reconsidering the inten-
tion in case of failure. In contrast, AgentSpeak(L) style architectures
track such progress indirectly, detecting failures if they occur dur-
ing plan-rule execution. However, such architectures cannot detect
— ahead of time — situations where early achievement is potentially
achievable, as well as cases where a failure is guaranteed to occur.

Properties (4) to (6) are interrelated, and implemented directly
by the filters in DesireFilter and IntentionFilter. Specifically,
IntentionFilter generates a proof that a desired property 𝑝𝑖 is
possible for Property (4) by creating a generalised plan that achieves
it under the currently believed conditions c.f., Property (6). Con-
versely, DesireFilter enforces Property (5) by ruling out desires
for which it can find a proof of impossibility (either through a plan-
ner, or a safe heuristic). Most AgentSpeak(L)-style architectures
lack these key properties without explicit additional programming.

One can argue that the context conditions of AgentSpeak(L)-
style approaches enforce Properties (4—6), however, only a few
later refinements of this style of architecture actually provide a
proof for Property (4) as part of their reasoning process [13]. Fi-
nally, planning algorithms naturally satisfy Property (7), as goal
conditions in classical planning specify goal formulas, ignoring
anything but the explicitly specified goal.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1487

5 EXPERIMENTS AND EVALUATION
5.1 Implementation and Setup
To evaluate GePetto’s effectiveness we developed an implementa-
tion of this architecture (https://www.meneguzzi.eu/felipe/gepetto).
We also developed a variation of the interpreter from Algorithm 1
whose means-ends reasoning process driven by classical planning
to use as fair baseline for comparison. We consider this as a fair
baseline because the designer specified part of the agent, that is
the set of desires with their corresponding preconditions, as well
as the environmental description, is exactly the same between the
two agents. The key difference between these two agent implemen-
tations is that, whereas GePetto IntentionFilter function tries
to find a generalised plan for any subset of the desires, the baseline
creates a single classical plan for each individual intention, and
creates a single intention per desire. Indeed, both interpreters share
the same overall infrastructure in terms of agent interface, logic
reasoning libraries, and most filters, except for the implementation
of the reasoning cycle loop and for the intention filter.

We developed the resulting software packages using Python 3.11.
We use BFGP++ from Segovia-Aguas et al. [41] as the generalised
planner in GePetto, and rely on a bespoke Python library to gener-
ate PDDL files corresponding to the generalised planning problems,
as well as the converter from BFGP++ to create generalised plan-
ning problems in BFGP++’s formalism. The classical planner in the
baseline is a bespoke implementation of a Heuristic Search-based
planning [2] algorithm using the Fast Forward heuristic [20]. We
ran all experiments in a single core of an Apple Silicon M1 Max
CPU with 10 cores and 32GB of RAM.

5.2 Packaging Production Line Scenario
Our first set of experiments is for a series of generalised planning
problems for the Packaging Production Line scenario. We develop
this scenario to model a warehouse environment that consists of
multiple distinct standing units (locations), some of which store
packages and boxes. The task involves an agent that needs to col-
lect packages in accordance with their respective quantities and
organising them for packaging in boxes. Once packed, they have to
be placed at designated locations for dispatch, where they will be
prepared for delivery to their corresponding buyers. This scenario
captures the complexities of logistical coordination and resource
management required in real-world production line and delivery
systems, capturing a dynamic environment in which boxes and
packages continuously move in and out of the warehouse, creating
a fluctuating landscape of resources. Planning becomes particularly
challenging as the agent must navigate the task of moving, col-
lecting, and organising these items across multiple standing units
(locations). The complexity of this problem is compounded by the
need to efficiently coordinate movements and actions to manage
inventory at each standing unit, ensuring that packages and boxes
are properly organised and prepared for dispatch. The agent’s abil-
ity to plan effectively in such a dynamic environment is crucial, as
it must account for the constant changes and possible uncertainties
in the environment. GePetto allows the agent to plan once and
use the generalised plan produced (in case one exists) to reason
and act in order to navigate through different standing units for
collecting boxes and packages to be packed and delivered.

Figure 3 depicts an example of two standing units or locations in
a warehouse with packages and boxes that need to be collected and
prepared for delivery in specific locations. These are represented
through generalised planning problems P0 and P1.

We tested GePetto using 15 standing units (locations), varying
the number of boxes and packages from 10 to 50. Our simulation
generates five sets of generalised planning problems, each defined
by different desires (goals) and initial states. The number of prob-
lems in each set scales progressively: the first set contains 5 prob-
lems with 5 desires, the second 10 problems with 10 desires, and so
on, up to 25 problems with 25 desires.

In this scenario, the agent’s desires D take the following form:

⟨𝑝𝑎𝑐𝑘𝑒𝑑 (𝑃𝑖) ∧ 𝑎𝑡 (𝑃𝑖 , 𝐿𝑖)⟩
where 𝑝𝑎𝑐𝑘𝑒𝑑 is predicate that represents that a package 𝑃𝑖 is
packed, and 𝑎𝑡 is a predicate that represents that a package 𝑃𝑖 is at
location 𝐿𝑖 . We ran a simulation of this scenario in a benign setting
with no action failures. Thus, the key challenge for the agents is
prioritising intentions and generating plans from scratch. In our
simulation, we compare the baseline classical planning agent with
GePetto, and, given the individual complexity of each problem,
set a five-minute time limit for each planner.

We compare two key performance indicators: the number of calls
to the planner, and the total runtime efficiency. Both agents generate
plans from scratch with no guidance from the designer (i.e., there
are no plan sketches to speed up reasoning). Figure 4 summarises
these results. First, regarding planner calls, given the lack of errors
in the execution, GePetto needs to call the planner a single time
once all the packages are in the production line, which Figure 4a
highlights. This is so because, in the absence of errors or unsolvable
situations, the generalised planner can generate a single generalised
plan for all desires at once. Contrast this benign setting with the
scenario from Section 5.3. This plan can then be linearised for each
intention, resulting in substantial performance gains. In contrast,
the classical planning agent needs to generate a linear plan for each
relevant desire, at the cost of one planner call per desire. Figure 4b
shows this substantial discrepancy in planning time between the
two techniques, highlighting the benefits of generalised planning
and the GePetto architecture.

5.3 Production Cell Scenario
Our second set of experiments comprises a series of problems con-
tinuously generated within a Production Cell scenario containing
ten processing units. These problems consist of production runs
of an increasingly large number of blocks, each of which requires
processing by three random processing units before being finished.
Blocks enter sequentially from the feed belt, and a new block enters
the production cell whenever the controlling agent removes the
previous block from the feed belt. Thus, at any given time, the agent
may have multiple blocks within the cell. The production cell is
also subject to random outages of processing units, which remain
offline for a set amount of time until they come back online. An
agent typically detects these errors when it tries to move a block
into a processing unit, which requires it to replan, thus creating
a more challenging setting for the individual agents. Indeed, this
scenario is so complex (for a generalised planning problem) that
the runtime cost of generating a generalised plan from scratch is

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1488

https://www.meneguzzi.eu/felipe/gepetto

Figure 3: Generalised Planning problem example for the Packaging Production Line scenario.

10 20 30 40 50
Packages and Boxes

0

5

10

15

20

25

Pl
an

ne
r
C
al
ls

Cumulative Planner Calls Comparison

Classical
GenPlanLL

(a) Contrasting Planner calls.

10 20 30 40 50
Packages and Boxes

0

200

400

600

800

1000

1200

R
ea
so
ni
ng

Ti
m
e
(s
)

Cumulative Reasoning Time Comparison

Classical
GenPlanLL

(b) Total Reasoning time.

Figure 4: Empirical results for Packaging Production Line.

orders of magnitude worse than generating classical plans piece-
meal. This illustrates how plan sketches provide a pragmatic BDI
architecture even when generalised planning from scratch is not
efficient, allowing domain knowledge to be introduced as needed.

In this scenario, the agent’s desires D are of the form:

⟨𝑜𝑣𝑒𝑟 (𝐵, 𝐹) ∧
𝑘∧
𝑖=1

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 (𝐵, 𝑃𝑢𝑖),

𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 (𝐵) ∧
𝑘∧
𝑖=1

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝐵, 𝑃𝑢𝑖)⟩

Thus, when a block (𝐵) enters the production cell through feedbelt
𝐹 with a set of requirements for processing, the agent should create
a desire to have this block processed by the required processing
units (𝑃𝑢𝑖) and finished. We conducted experiments with a range of
10 to 50 blocks introduced into the production cell, an error rate of
0.2, and errors lasting for six time steps. This means that, at every
turn, there is a 20% chance of a random processing unit having a
fault, and this unit only becomes available again after 6 time steps.
Only one processing unit can be faulty at a time. Thus, if any block
currently in the production cell depends on a faulty processing unit,
this presents the agent with two possible challenges. Either the plan
to satisfy this desire will fail (if the agent had already created a plan
to finish the block), or the means-ends reasoner should conclude
that this desire is not currently achievable.

Figure 5 illustrates the qualitative results for this experiment.
Figure 5a contrasts the cumulative number of times each agent
architecture calls the planner throughout the simulation. One side
effect of potential errors throughout the simulation is that, as errors
occur that prevent blocks from being processed, the number of
relevant desires increases as more blocks remain unfinished in the
production cell. This shows that as unfinished blocks occasionally
accumulate and the means ends reasoner needs to find plans to
finish multiple desires in a single reasoning cycle, using a gener-
alised planner allows the agent to make fewer calls to the planner,
since each call can deal with multiple desires at the same time. For
example, if there are three unfinished blocks in the production cell,
and there exists a single generalised plan that can finish all three
blocks, this will result in a single planner call, whereas the classical
planner would need at least three separate calls. The overall ef-
fect, for this scenario, is that the generalised planning-driven agent
always requires fewer planner calls.

The second notable improvement of a generalised planning-
driven agent that uses plan sketches, is that the overall reasoning
time is substantially lower. Figure 5b illustrates the runtime effi-
ciency gained by using a cached generalised plan sketch. In this case,
we ran BFGP++ offline to generate a generalised plan sketch, and
always try to plan using BFGP++’s option to repair a plan sketch.
This yields dramatic improvements in runtime performance over
the classical planner, effectively bridging the performance gap be-
tween the reasoning based on plan-rules from earlier architectures,
and the flexibility of classical planning.

Finally, we look at the evolution of the number of active in-
tentions over time in Figure 5c. This shows that, as the classical
planner needs to deal with failures one at a time, when unfinished
blocks accumulate, the number of intentions the agent needs to
clear remains consistently high throughout the simulation.

6 RELATEDWORK
We now contrast our contributions with recent work on automated
Planning for BDI-style agents. First, we discuss BDI-based architec-
tures that rely on a planning algorithm to generate sequential plans
without plan rules. Second, we discuss BDI-style architectures that
use a planner as a look-ahead mechanism for intention selection

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1489

10 20 30 40 50
blocks

10

20

30

40

50

60
Pl
an

ne
r
C
al
ls

Cumulative Planner Calls Comparison

Classical

GenPlanLL

(a) Contrasting Planner calls.

10 20 30 40 50
blocks

0

20

40

60

80

R
ea
so
ni
ng

Ti
m
e
(s
)

Cumulative Reasoning Time Comparison

Classical

GenPlanLL

(b) Total Reasoning time.

10 20 30 40 50
blocks

−0.2

0.0

0.2

0.4

0.6

0.8

In
te
nt
io
ns

Mean Intentions Comparison

Classical

GenPlanLL

(c) Intentions backlog over time.

Figure 5: Empirical results for the Production Cell scenario.

even when the agent ultimately generates plans using reactive plan-
ning rules. Finally, we describe other recent agent architectures
that carry out planning and acting backed by a planning algorithm.

Regarding classical Planning in BDI agents, while there is a
long tradition of incorporating various forms of such planning into
the reasoning cycle of BDI-style agents [6, 25], we compare to a
few classical architectures. Most related to this architecture is the
work of Meneguzzi et al. [29], which describes a logic-based BDI
agent architecture that creates intentions using a classical planner.
A related effort [26] introduces an explicit planning action into
AgentSpeak(L) that allows a designer to add plan-rules that convert
reactive planning events into calls to an external classical planner.
More recently, Zanetti et al. [47] extends the ROS2-BDI framework
with a classical planner to continually generate plans of action for
the agent in a robotic simulation. This architecture is roughly equiv-
alent to the baseline we use in the experiments. Finally, Xu et al.
[46] develop a more advanced, and formally grounded, extension to
AgentSpeak(L) planning operator from Meneguzzi and Luck [26].

Besides generating new plans from scratch, various AgentSpeak(L)-
like BDI architectures have used the analogous nature of HTN and
BDI planning to perform lookahead on potential rollouts of rules.
Researchers [13, 39] formalised extensions to the JACK [21] pro-
gramming language that uses an HTN planner [23] to simulate
the progress of its planning rules. Similarly, [38] formalise the be-
haviour of an AgentSpeak(L) style agent reasoning cycle using a
plan function to simulate the possible outcomes of planning rules.

Outside the BDI tradition, the planning community developed
various planning and action approaches. While not exactly a single
agent architecture like BDI, MAPL [5] provides both a programming
language and an execution framework for distributed multiagent
planning. Most recently, Patra et al. [31] developed a planning and
acting [30] architecture that is closely related to BDI-style agent ar-
chitectures that try to perform lookahead when deciding its courses
of action. However, instead of using an HTN planner to find the
most promising decomposition like the efforts in BDI architec-
tures [13, 38, 39], their architecture uses Monte Carlo simulations
to account for potential errors in the environment.

7 DISCUSSION AND CONCLUSIONS
This paper instantiates the conceptual architecture of our Blue
Sky paper [33] by introducing GePetto, the first concrete BDI ar-
chitecture whose means-ends reasoning process relies entirely on

generalised Planning. Besides the ability to automatically generate
plans at runtime as previous planning [6, 25, 46, 47] BDI architec-
tures have done in the past, the resulting architecture provides
key advantages both theoretical and practical. On the theoretical
side, GePetto automatically enforces the seven key properties of
intentions as postulated by the foundational paper from Cohen
and Levesque [8]. On the practical side, we empirically show in
two separate scenarios that a BDI architecture driven by gener-
alised planning, under certain conditions, is more efficient in terms
of planner calls and of reasoning time. Indeed, this is thanks to
recent advances in generalised Planning algorithms [42] that un-
derpinmany of the empirical advantagesGePetto shows. These are
scaled-up heuristic search, and the possibility to bootstrap search
with plan sketches. This latter capability allows a designer to use a
generalised planner offline, or manually design, plan sketches that
may substantially reduce the runtime cost of running the planner.
Given the fast pace at which research on generalised planning has
progressed, we expect that even in problems that necessitate of-
fline plan-sketch generation, we may see improvements soon. Thus,
GePetto combines strong theoretical guarantees with a convenient
trade-off between the computational efficiency of traditional BDI
architectures and the flexibility of purely planning-driven ones.

GePetto is the first of what is an entirely new family of BDI gen-
eralised planning architectures. As such, it implements a relatively
simple agent reasoning cycle. For example, its strategy for failure
recovery consists of re-linearising a generalised plan, or eventu-
ally retrying planning from scratch. It also does not incorporate
reasoning about social aspects of a multiagent system, including
norms [14], communication and commitment protocols [28]. This
remains as future work. Besides the algorithmic aspects of this
family of agent architecture, future work will investigate designing
and deploying GePetto in practical multiagent systems.

This paper bridges the gap between two historically separate but
pragmatically interrelated areas, namely autonomous agents and
automated planning. GePetto, thus provides a platform for both
areas to experiment, expand, and integrate associated insights.

ACKNOWLEDGMENTS
We thank Javier Segovia-Aguas for help on Generalised Planning
and BFGP++. This study was part funded by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) –
Finance Code 001.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1490

REFERENCES
[1] Natasha Alechina, Mark Jago, and Brian Logan. 2005. Resource-Bounded Belief

Revision and Contraction. In Declarative Agent Languages and Technologies III,
3rd International Workshop (Lecture Notes in Computer Science, Vol. 3904), Matteo
Baldoni, Ulle Endriss, Andrea Omicini, and Paolo Torroni (Eds.). Springer, 141–
154.

[2] Blai Bonet and Héctor Geffner. 2001. Planning as heuristic search. Artificial
Intelligence 129, 1 (2001), 5–33.

[3] Michael E Bratman. 1984. Two Faces of Intention. Philosophical Review 93 (1984),
375–405.

[4] Michael E Bratman, David J Israel, and Martha E Pollack. 1988. Plans and
Resource-Bounded Practical Reasoning. Computational Intelligence 4, 4 (1988),
349–355.

[5] Michael Brenner and Bernhard Nebel. 2009. Continual planning and acting in
dynamic multiagent environments. Auton. Agents Multi Agent Syst. 19, 3 (2009),
297–331.

[6] Rafael C. Cardoso, Angelo Ferrando, and Fabio Papacchini. 2021. Automated
Planning and BDI Agents: A Case Study. In Advances in Practical Applications of
Agents, Multi-Agent Systems (PAAMS), Vol. 12946. 52–63.

[7] Sergio Jiménez Celorrio, Javier Segovia-Aguas, and Anders Jonsson. 2019. A
Review of Generalized Planning. Knowledge Engineering Review 34 (2019), e5.

[8] Phillip R Cohen and Hector J Levesque. 1990. Intention is choice with commit-
ment. Artificial Intelligence 42, 2-3 (1990), 213–261.

[9] Mehdi Dastani. 2008. 2APL: a practical agent programming language. Autonomous
Agents and Multi-Agent Systems 16, 3 (2008), 214–248.

[10] Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, and John-Jules Ch. Meyer.
2003. A Programming Language for Cognitive Agents Goal Directed 3APL.
In Programming Multi-Agent Systems, First International Workshop (PROMAS).
111–130.

[11] Mehdi Dastani, M Birna van Riemsdijk, and Michael Winikoff. 2011. Rich goal
types in agent programming. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 405–412.

[12] Lavindra de Silva, Felipe Meneguzzi, and Brian Logan. 2020. BDI Agent Architec-
tures: A Survey. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20. International Joint Conferences on Artificial
Intelligence Organization, 4914–4921.

[13] Lavindra de Silva, Sebastian Sardina, and Lin Padgham. 2009. First principles
planning in BDI systems. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems. 1105–1112.

[14] Davide Dell’Anna, Natasha Alechina, Fabiano Dalpiaz, Mehdi Dastani, Maarten
Löffler, and Brian Logan. 2022. The Complexity of Norm Synthesis and Revision.
In Coordination, Organizations, Institutions, Norms, and Ethics for Governance of
Multi-Agent Systems (Lecture Notes in Computer Science, Vol. 13549), Nirav Ajmeri,
Andreasa Morris-Martin, and Bastin Tony Roy Savarimuthu (Eds.). Springer,
38–53.

[15] Kutluhan Erol, James Hendler, and Dana S Nau. 1994. HTN Planning: Complexity
and Expressivity. In Proceedings of the Twelfth National Conference on Artificial
Intelligence. 1123–1128.

[16] Richard Fikes and Nils Nilsson. 1971. STRIPS: A NewApproach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence 2, 3-4 (1971), 189–
208.

[17] Hector Geffner and Blai Bonet. 2013. A Concise Introduction to Models andMethods
for Automated Planning. Morgan & Claypool Publishers.

[18] Malte Helmert. 2006. The Fast Downward Planning System. Journal of Artificial
Intelligence Research 26 (2006), 191–246. https://www.fast-downward.org

[19] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.
Meyer. 2001. Agent Programming with Declarative Goals. In Proceedings of the
7th International Workshop on Intelligent Agents, Agent Theories Architectures and
Languages. Springer-Verlag, 228–243.

[20] Jörg Hoffmann and Bernhard Nebel. 2001. The FF Planning System: Fast Plan
Generation Through Heuristic Search. Journal of Artificial Intelligence Research
14 (2001), 253–302.

[21] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. 2001.
JACK Intelligent Agents: Summary of an Agent Infrastructure. In Proceedings of
the 5th International Conference on Autonomous Agents.

[22] Yuxiao Hu and Giuseppe De Giacomo. 2011. Generalized Planning: Synthesizing
Plans that Work for Multiple Environments. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). 918–923.

[23] Okhtay Ilghami and Dana S Nau. 2003. A General Approach to Synthesize Problem-
Specific Planners. Technical Report.

[24] François Félix Ingrand and Vianney Coutance. 2001. Real-Time Reasoning Using
Procedural Reasoning. Technical Report 93104. LAAS/CNRS. Technical Report.

[25] Felipe Meneguzzi and Lavindra de Silva. 2015. Planning in BDI agents: a sur-
vey of the integration of planning algorithms and agent reasoning. Knowledge
Engineering Review 30, 1 (2015), 1–44.

[26] Felipe Meneguzzi and Michael Luck. 2008. Leveraging new plans in AgentS-
peak(PL). In Proceedings of the Sixth Workshop on Declarative Agent Languages.

63–78.
[27] Felipe Meneguzzi and Michael Luck. 2013. Declarative planning in procedural

agent architectures. Expert Systems with Applications 40, 16 (2013), 6508 – 6520.
[28] Felipe Meneguzzi, Pankaj R. Telang, and Munindar P. Singh. 2013. A First-Order

Formalization of Commitments and Goals for Planning. In AAAI Conference on
Artificial Intelligence, Marie desJardins and Michael L. Littman (Eds.). 697–703.

[29] Felipe Meneguzzi, Avelino F Zorzo, and Michael C Mora. 2004. Mapping Mental
States into Propositional Planning. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems. 1514–1515.

[30] Sunandita Patra, James Mason, Malik Ghallab, Dana Nau, and Paolo Traverso.
2021. Deliberative acting, planning and learning with hierarchical operational
models. Artificial Intelligence 299 (2021), 103523.

[31] Sunandita Patra, James Mason, Amit Kumar, Malik Ghallab, Paolo Traverso, and
Dana Nau. 2021. Integrating Acting, Planning, and Learning in Hierarchical
Operational Models. Artificial Intelligence 30 (2021), 478–487.

[32] Judea Pearl. 1984. Heuristics - intelligent search strategies for computer problem
solving. Addison-Wesley.

[33] Ramon F. Pereira and Felipe Meneguzzi. 2024. Empowering BDI Agents with
Generalised Decision-Making. In Proceedings of the 23rd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 2679–2683.

[34] Gordon D Plotkin. 1981. A Structural Approach to Operational Semantics. Techni-
cal Report. University of Arhus.

[35] Anand S Rao. 1996. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Proceedings of the 7th European workshop on Modelling autonomous
agents in a multi-agent world, Vol. 1038. Springer-Verlag, 42–55.

[36] Anand S. Rao and Michael P. Georgeff. 1995. BDI Agents: From Theory to
Practice. In Proceedings of the First International Conference on Multiagent Systems.
312–319.

[37] Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexan-
der Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost To-
bias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas
Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de
Freitas. 2022. A Generalist Agent. Transactions on Machine Learning Research
2022 (2022).

[38] Sebastian Sardina and Lin Padgham. 2011. A BDI agent programming language
with failure handling, declarative goals, and planning. Autonomous Agents and
Multi-Agent Systems 23, 1 (2011), 18–70.

[39] Sebastian Sardiña, Lavindra de Silva, and Lin Padgham. 2006. Hierarchical Plan-
ning in BDI Agent Programming Languages: A Formal Approach. In Proceedings
of the 5th International Joint Conference on Autonomous Agents and Multiagent
Systems. 1001–1008.

[40] Javier Segovia-Aguas, Sergio Jiménez Celorrio, and Anders Jonsson. 2019. Com-
puting Programs for Generalized Planning using a Classical Planner. Artificial
Intelligence 272 (2019), 52–85.

[41] Javier Segovia-Aguas, Sergio Jiménez Celorrio, and Anders Jonsson. 2022. Com-
puting Programs for Generalized Planning as Heuristic Search. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI). 5334–5338.

[42] Javier Segovia-Aguas, Sergio Jiménez Celorrio, Laura Sebastiá, and Anders Jons-
son. 2022. Scaling-Up Generalized Planning as Heuristic Search with Landmarks.
In Proceedings of the International Symposium on Combinatorial Search (SOCS).
171–179.

[43] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. 2021. Generalized
Planning as Heuristic Search. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS). 569–577.

[44] John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Avoiding Interference Between Goals in Intelligent Agents.. In Proceedings of the
International Joint Conference on Artificial Intelligence. 721–726.

[45] Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. 2002.
Declarative & Procedural Goals in Intelligent Agent Systems. In Proceedings of
the Eight International Conference on Principles and Knowledge Representation and
Reasoning (KR). 470–481.

[46] Mengwei Xu, Tom Lumley, Ramon Fraga Pereira, and Felipe Meneguzzi. 2024.
[PDF] from meneguzzi.eu A Practical Operational Semantics for Classical Plan-
ning in BDI Agents. In Proceedings of the 27th European Conference on Artificial
Intelligence (ECAI).

[47] Alex Zanetti, Devis Dal Moro, Redi Vreto, Marco Robol, Marco Roveri, and Paolo
Giorgini. 2023. Implementing BDI Continual Temporal Planning for Robotic
Agents. In IEEE International Conference on Web Intelligence and Intelligent Agent
Technology. 378–382.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1491

https://www.fast-downward.org

	Abstract
	1 Introduction
	2 Background and Notation
	2.1 Planning
	2.2 Generalised Planning

	3 Generalised BDI Planning
	3.1 BDI Planning
	3.2 Agent Architecture
	3.3 Reasoning Cycle

	4 Theoretical Properties
	5 Experiments and Evaluation
	5.1 Implementation and Setup
	5.2 Packaging Production Line Scenario
	5.3 Production Cell Scenario

	6 Related Work
	7 Discussion and Conclusions
	Acknowledgments
	References

