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ABSTRACT
Multi-agent Reinforcement Learning (MARL) has made signifi-
cant progress in addressing coordination problems, but two key
challenges persist in environments with partial observability: lim-
ited exploration and inaccurate evaluation of individual agents. To
address these challenges, we propose a novel MARL framework
that integrates Evolutionary Algorithms (EAs), episodic learning,
and curiosity-driven exploration to optimize the coordination of
joint policies using graph-based methods, named EECG. EAs are
employed for their global optimization capabilities, particularly
through population diversity and a gradient-free search mecha-
nism, to enhance policy exploration. Initially, multiple agent teams
explore and learn independently while sharing a common expe-
rience pool to enable data diversity. During the evolution phase,
new joint policies are generated through crossover, mutation, and
pareto-based selection. During the RL phase, diverse data is used
to model and update the relationships among agents via Graph
Neural Networks (GNNs), which help evaluate the effectiveness of
individual agents’ behaviors. GNNs treat agents as nodes and their
interactions as edges, capturing coordination relationships effec-
tively while dynamically assigning representations to nodes and
edges. Furthermore, curiosity-based exploration motivates teams
to discover new states, while a memory system stores high-reward
experiences. We evaluated EECG on several benchmarks, includ-
ing StarCraft II, SUMO autonomous driving, and the Multi-Agent
Particle Environment. Our empirical results show that EECG con-
sistently outperforms current baselines, with its components sig-
nificantly contributing to faster convergence, especially by im-
proving exploration and agent coordination. Our code is available:
https://github.com/MercyM/EECG.
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1 INTRODUCTION
Multi-agent Reinforcement Learning (MARL) [27] has emerged as a
key solution for tackling complex coordination tasks across various
domains, such as autonomous driving [33], smart grids [36], and
traffic signal control [34]. The widely adopted Centralized Train-
ing with Decentralized Execution (CTDE) framework [21] [35] [9]
has proven effective by allowing agents to learn cooperative poli-
cies with global information during training while maintaining
decentralized decision-making during execution.

Despite its strengths, CTDE-based MARL methods face two key
challenges in environments with limited observability: efficient
exploration [11] and accurate credit assignment [4], both of which
are crucial for improving agent performance in such environments.
Exploration in Reinforcement Learning (RL) is often constrained,
resulting in a lack of diverse experiences and suboptimal policy
convergence [14]. Furthermore, methods such as QMIX [24] and
FACMAC [22] address credit assignment through value decompo-
sition and centralized critics, but they often rely on a single opti-
mization objective. This limitation often leads to agents converging
prematurely on similar policies, yielding suboptimal outcomes.

To overcome the challenges of inefficient exploration, Evolution-
ary Algorithms (EAs) [13] provide a promising alternative. EAs
utilize population-based random search and diversity to excel at
global optimization by exploring a broader solution space than tra-
ditional local search algorithms like gradient descent. The ability of
EAs to optimize joint policies while balancing multiple objectives
prevents premature convergence and encourages the discovery of
novel policies [15]. Recent advancements, such as RACE [16], de-
compose populations into one MARL team and multiple EAs teams.
It uses Evolutionary Strategies (ES) to enhance team-level policy
improvements by evolving agents based on fitness (cumulative re-
wards) and evaluating agent policy networks using optimal state
representations.

Another significant challenge in CTDE-based MARL methods is
accurate credit assignment, especially in environments with par-
tial observability [25]. In such settings, agents often lack complete
information about the global state, making it difficult to correctly
attribute rewards to individual actions and evaluate their contri-
butions. To mitigate this, recent studies have introduced graph
structures [5][6][23], where agents are represented as nodes and
interactions as edges. Graph Neural Networks (GNNs) [20] to model
inter-agent dependencies, where agents are represented as nodes
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and their interactions as edges. GNNs improve credit assignment
by calculating node weights, effectively distributing rewards based
on inter-agent dependencies captured through local observations.
However, building comprehensive graphs requires the efficient use
of sequential experience data, which is essential for constructing
dynamic and accurate inter-agent relationships.

Innovations like the Episodic Multi-agent reinforcement learning
framework [37], which incorporates Curiosity-driven exploration
(EMC), have been combined with EAs to significantly enhance
exploration efficiency. In this framework, curiosity-driven explo-
ration encourages agents to seek new and potentially rewarding
states, while episodic memory captures these high-reward experi-
ences. These stored experiences directly influence the evolutionary
process, adjusting graph structures to better reflect the evolving
relationships between agents. By refining interactions and credit
assignment, graph structures enable EAs to more effectively evalu-
ate and optimize agent policies. The resulting feedback loop-where
curiosity-driven exploration fuels diverse experiences for evolu-
tionary optimization and graph adjustments—ensures that agents
discover optimal policies, continuously improving coordination
and decision-making in complex environments.

Based on these considerations, we propose a MARL framework
that integrates Evolutionary algorithms, Episodic learning and
Curiosity-driven exploration to enhance Graph-based coordina-
tion of joint policies (EECG). In the initial phase, a single team
of agents is replicated into multiple teams, each with joint policy
parameters treated as individual entities within a population. Dur-
ing reinforcement learning, each team is trained independently.
EECG leverages a MARL approach inspired by EMC for joint pol-
icy learning, with QPLEX [30] as the core multi-agent 𝑄-learning
framework, though other value decomposition methods like QMIX
or QTRAN [26] can also be used. Curiosity-driven exploration is
encouraged by using the prediction error of individual 𝑄-values
as intrinsic rewards, promoting exploration of novel states. Experi-
ences from this exploration drive the evolutionary process in later
stages. Episodic memory regularizes the TD loss, helping retain
high-reward trajectories discovered through curiosity, which are
used to strengthen joint policies. GNNs model inter-agent depen-
dencies by integrating local features from individual agents with
global features from the entire system, aided by attention mecha-
nisms. This enables dynamic updates of joint policy 𝑄-values, with
the aggregated features being compared to real state values to guide
convergence learning, thereby allowing for effective assessment of
each agent’s performance. In the subsequent phase, EAs are applied,
treating joint policy parameters as individuals within a population.
Evolutionary operations, such as crossover, mutation, and evalua-
tion, use successful experiences as guidance. The selection process
utilizes pareto front optimization [12] which avoids the limitations
of single optimal solutions by considering the coordination of mul-
tiple objectives. This provides a more comprehensive perspective
for selecting high-quality offspring.

We extensively evaluate EECG across several benchmark envi-
ronments, including StarCraft II [29], Simulation of urban mobility
(SUMO) [18] and Multi-agent Particle Environment (MPE) [19]. In
StarCraft II, EECG outperforms advanced algorithms, including
graph-based, value-based, and evolutionary approaches, with sig-
nificant improvements in coordination and task performance. In

the SUMO environment, EECG effectively manages cooperative
tasks, demonstrating robustness in handling complex, dynamic ve-
hicle interactions. In the MPE environment, EECG shows strong,
consistent performance across various scenarios despite challenges
like dynamic abstraction and agent conflicts. An ablation study
highlights the contributions of curiosity-driven exploration, GNNs-
based coordination, and evolutionary algorithms in optimizing
multi-agent cooperation and learning efficiency. Moreover, inte-
grating EECG with the Graph module also enhances computational
speed by efficiently processing diverse data structures and dynami-
cally optimizing agent interactions.

We briefly summarize our contributions:
•We propose a novel MARL framework that integrates EAs to

optimize joint policy parameters. By treating joint policies of RL
agents as individuals within a population, our approach leverages
the global optimization capabilities of EAs. This allows for broader
exploration of the policy space and effectively balances multiple
objectives using pareto optimization, preventing premature conver-
gence.

•We introduce the use of GNNs within MARL to model inter-
agent dependencies, in combination with EMC. This synergy en-
hances exploration efficiency and coordination by dynamically ad-
justing graph structures based on high-reward experiences, thereby
improving agent collaboration and decision-making in partially
observable environments.

•We evaluate the effectiveness of EECG and conduct ablation
studies in three distinct environments: micro-management tasks in
StarCraft II, traffic simulation in SUMO, and dynamic interactions in
the MPE environment. Compared to various baselines, our method
consistently achieves superior results, demonstrating the effective-
ness of each module and highlighting their mutual reinforcement
in enhancing overall system performance.

2 BACKGROUND
2.1 Preliminaries
Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) [10] with networked multi-agent system can be
described as a tuple < S, 𝑁 ,O,Ω,A,T , 𝑟 , 𝛾, 𝜌0 >. Agents 𝑁 are
distributed across a dynamic communication network, represented
as an undirected graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ), where 𝑉𝑡 denotes the nodes
(agents) and 𝐸𝑡 the communication links at time 𝑡 . At each time step
𝑡 , the environment is in state 𝑠 ∈ S. Each agent 𝑛 ∈ 𝑁 observes
local information 𝑜𝑛 ∈ Ω via the observation function O(𝑠, 𝑛),
and selects an action 𝑎𝑛𝑡 ∈ A𝑛 according to its policy 𝜋𝑛

(
· | 𝑜𝑛𝑡

)
,

where A =
∏𝑁

𝑛=1 A𝑛 is the joint action space. Once the joint ac-
tion 𝒂𝑡 =

{
𝑎1𝑡 , . . . , 𝑎

𝑛
𝑡

}
is executed, the environment transitions to

the next state 𝑠𝑡+1 based on the transition function T (𝑠𝑡+1 | 𝑠, 𝒂),
which follows the rule T : S × A × S → [0, 1]. The agents’
policies form a joint policy 𝝅 (𝒂𝑡 | 𝑠𝑡 ) =

∏𝑁
𝑛=1 𝜋

𝑛
(
𝑎𝑛𝑡 | 𝑜𝑛𝑡

)
, guid-

ing their coordinated actions. After each step, all agents receive
a shared reward 𝑟 (𝑠𝑡 , 𝒂𝑡 ) : S × A → R. Each agent maintains an
action-observation history 𝜏𝑛 ∈ 𝚪 ≡ (Ω × A)∗, which is used to
optimize its policy and improve overall team performance. The joint
value function is defined as 𝑉 𝝅 (𝑠) = E

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝝅
]
. An-

other important concept is the joint action-value function, given by
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𝑄𝝅 (𝑠, 𝒂) = 𝑟 (𝑠, 𝒂) +𝛾E𝑠′ [𝑉 𝝅 (𝑠 ′)], where 𝛾 ∈ [0, 1) is the discount
factor.

Advantage-based Individual-Global-Max (IGM) as intro-
duced by QPLEX [30]:

argmax
𝒂∈A

𝐴𝑡𝑜𝑡 (𝝉 , 𝒂) =(
argmax
𝑎1∈A

𝐴1 (𝜏1, 𝑎1) , . . . , argmax
𝑎𝑛 ∈A

𝐴𝑛 (𝜏𝑛, 𝑎𝑛)
) (1)

The joint dueling state-action value function in QPLEX is defined
as 𝑄tot (𝝉 , 𝒂) = 𝑉tot (𝝉 )+𝐴tot (𝝉 , 𝒂) and𝑉tot (𝝉 ) = max𝒂′ 𝑄tot (𝝉 , 𝒂′),
and the individual dueling is defined as 𝑄𝑛 (𝜏𝑛, 𝑎𝑛) = 𝑉𝑛 (𝜏𝑛) +
𝐴𝑛 (𝜏𝑛, 𝑎𝑛) and 𝑉𝑛 (𝜏𝑛) = max𝑎′𝑛 𝑄𝑛

(
𝜏𝑛, 𝑎

′
𝑛

)
:

𝑄tot (𝝉 , 𝒂) = 𝑉tot (𝝉 ) +𝐴tot (𝝉 , 𝒂) =
𝑁∑︁
𝑛=1

𝑄𝑛 (𝝉 , 𝑎𝑛) +
𝑁∑︁
𝑛=1

(𝜆𝑛 (𝝉 , 𝒂) − 1)𝐴𝑛 (𝝉 , 𝑎𝑛)
(2)

Here, 𝜆𝑛 (𝝉 , 𝒂) is a mixing coefficient that adjusts the individual
agent contributions to ensure consistency between the global and
individual maximizations.

Evolutionary Algorithms (EAs) optimize population-based
policies using gradient-free methods, where the population is repre-
sented as P =

{
𝝅1, · · · , 𝝅𝑝

}
, with 𝑝 denoting the number of teams.

The fitness of each team
{
𝑓 (𝝅1) , · · · , 𝑓

(
𝝅𝑝

)}
are associated with

the cumulative rewards obtained during interaction with the envi-
ronment, calculated as: 𝑓

(
𝝅𝑝

)
= 1

𝑒

∑𝑒
𝑝=1

[∑𝑇
𝑡=0 𝑟𝑡 | 𝝅𝑝

]
, where 𝑒

is the number of episodes. EAs improve policy parameters through
fitness-based selection, followed by crossover and mutation to gen-
erate the next generation.

EpisodicMulti-agent reinforcement learningwithCuriosity-
driven exploration (EMC) proposed by Wang et al., [37] proved
that when the joint 𝑄-function 𝑄𝑡𝑜𝑡 is factorized into linear com-
bination of individual 𝑄-functions, then 𝑄

(𝑡+1)
𝑛 (𝜏𝑛, 𝑎𝑛) has the

following closed-form solution:

𝑄
(𝑡+1)
𝑛 (𝜏𝑛, 𝑎𝑛) =

E
(𝜏 ′−𝑛,𝑎′−𝑛)∼𝑝𝐷 ( · |𝜏𝑛)

[
𝑦 (𝑡 )

(
𝜏𝑛 ⊕ 𝜏 ′−𝑛, 𝑎𝑛 ⊕ 𝑎′−𝑛

) ]
︸                                                      ︷︷                                                      ︸

evaluation of the individual action 𝑎𝑛

− 𝑖 − 1
𝑖

E
𝜏′,𝒂′∼𝑝𝐷 ( · |Λ−1 (𝜏𝑛))

[
𝑦 (𝑡 )

(
𝝉 ′, 𝒂′

) ]
︸                                    ︷︷                                    ︸

counterfactual baseline

+𝑤𝑛 (𝜏𝑛)

(3)

Here, the expected one-step TD (Temporal Difference) target is
defined as 𝑦 (𝑡 ) (𝝉 , 𝒂) = 𝑟 +𝛾E𝝉 ′

[
max𝒂′ 𝑄

(𝑡 )
tot (𝝉 ′, 𝒂′)

]
. The notation

𝜏𝑛 ⊕ 𝜏 ′−𝑛 represents the joint trajectory of agent 𝑛 with the trajec-
tories of all other agents, and 𝑝𝐷 (· | 𝜏𝑛) indicates the conditional
empirical probability of agent 𝑛’s trajectory in the dataset. Λ−1 (𝜏𝑛)
represents a set of trajectory histories that might share the same
latent state as 𝜏𝑛 . The residue term𝒘 ≡ [𝑤𝑛]𝑖𝑛=1 enforces balance
in agent contributions, ensuring that their sum is zero.

2.2 Related Work
Centralized Training & Decentralized Execution (CTDE) has
emerged as a popular framework for coordinatingmulti-agent learn-
ing. It optimizes single-agent policies using a global state-action
value function. Since the environment typically provides unified
rewards, significant efforts have focused on improving the evalu-
ation of individual agent contributions to enhance coordination
and performance. Rashid et al. [24] introduced QMIX, which learns
distributed policies for agents through centralized information.
The framework enforces consistency between joint and individual
action-value functions using the Individual-Global-Max (IGM) con-
straint, ensuring monotonicity. QPLEX [30] builds on 𝑄-learning
by factorizing the joint action-value function with a dueling net-
work architecture, improving credit assignment and coordination
among agents in complex environments. Other approaches, such as
QTRAN [26], ROMA [31], and FACMAC [22], achieve joint value
function factorization under CTDE. We select QPLEX as represen-
tative algorithm for our evaluation.

Evolutionary Algorithms (EAs) and Reinforcement Learn-
ing (RL) are combined in the Proximal Distilled Evolutionary
Reinforcement Learning (PDERL) framework proposed by Bodnar
et al. [1], which hierarchically integrates evolution and learning
to address the scalability challenges of EAs in RL. Similarly, Multi-
Agent Evolutionary Reinforcement Learning (MERL) incorporates
EAs into multi-agent RL. Du et al. [7] introduced CEMARL, com-
bining the Cross-Entropy Method (CEM) with off-policy MARL to
improve reward acquisition. RACE [16] enhances knowledge shar-
ing by decomposing policies into a shared observation encoder and
separate policy representation. While EAs ensure representation
convergence, the dynamic changes they introduce can affect evalu-
ation performance. However, the diverse exploration that does not
model the multi-agent coordination relationships fails to facilitate
the most efficient joint policy learning.

Graph Neural Networks (GNNs) are utilized for coordina-
tion in current methods, allowing agents in multi-agent systems
to model their interactions and formulate policies based on the
actions of their peers. G2ANet [17] introduces a game abstraction
mechanism with a two-stage attention network that employs soft
and hard attention to capture agent interactions. GraphMix [28] en-
hances this by decomposing the team’s state-action value function
into individual observation-action values. Additionally, LTS-CG
[8] integrates predict-future and infer-present features, learning
sparse coordination graphs from agent trajectories for improved
decision-making. However, to ensure that graph modeling is more
robust, diverse continuous data is essential.

3 METHOD
Our method consists of two stages. In the first stage, we focus on
MARL within a CTDE framework. We prioritize efficient policy
exploration by using the prediction error of the individual 𝑄-value
function as an intrinsic reward, driving curiosity-driven interac-
tions among agents. Episodic memory stores high-reward trajec-
tories, which are then used for one-step TD targets to accelerate
multi-agent𝑄-learning. Following the IGM principle, joint policy𝑄-
values are aligned and processed through a Mixer network, where
Graph Neural Networks (GNNs) dynamically adjust node weights
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Figure 1: We initialize multiple agent teams for independent exploration and training, sharing a replay buffer. Depending on
the task, we decide whether to share the parameters of the agent controller and Mixer network, following the MARL update
process. Periodic evolutionary operations are then applied to iteratively update and refine the policy parameters individually.

to evaluate the joint 𝑄-function. In the second stage, we apply EAs
to iteratively optimize the joint policy parameters across teams,
which share a common experience pool, supporting task-specific
adaptations and convergence to optimal solutions. The overall pro-
cess is shown in Figure 1.

3.1 Stage 1: Multi-Agent Policy Learning
3.1.1 Curiosity-Driven Exploration by Predicting Individual𝑄-values.
In this stage, we apply the EMC framework [37] for curiosity-driven
exploration, where external rewards 𝑟𝑒𝑥𝑡 from the environment are
combined with individual 𝑄-values 𝑄ext

𝑛 following the IGM prin-
ciple. A predictor 𝑄𝑛 (𝜏𝑛), sharing the same network architecture
as Target 𝑄ext

𝑛 , is introduced to predict individual 𝑄-values. The
prediction error is used to generate an intrinsic reward, which en-
hances exploration efficiency. The sum of the individual 𝑄-values,
𝑄ext
tot =

∑𝑁
𝑛=1𝑄

ext
𝑛 , is used in the reward generation process. The pre-

dictor is trained by minimizing the Mean Squared Error (MSE) with
soft-update targets to ensure smooth outputs. The curiosity-driven
intrinsic reward is generated by the following equation:

𝑟 𝑖𝑛𝑡 =
1
𝑁

𝑁∑︁
𝑛=1




𝑄𝑛 (𝜏𝑛, ·) −𝑄𝑒𝑥𝑡
𝑛 (𝜏𝑛, ·)





2

(4)

This intrinsic reward, combined with the external reward, is used
to update the policy using the following loss function:

Lintrinsic (𝜽 ) = E𝝉 ,𝒂,𝒓,𝝉 ′∈𝐷
[
(𝑦 (𝝉 , 𝒂) −𝑄tot (𝝉 , 𝒂;𝜽 ))2

]
(5)

where 𝑦 (𝝉 , 𝒂) = 𝑟𝑒𝑥𝑡 + 𝛽𝑟 𝑖𝑛𝑡 + 𝛾 max𝒂′ 𝑄tot (𝝉 ′, 𝒂′;𝜽−) is the
one-step TD target, and 𝛽 is the weight for the intrinsic reward.

3.1.2 Capturing dynamic coordination by GNNs. We represent the
system as a graph G = (V, E), where each agent corresponds
to a node, and edges represent the dependencies or interactions
between agents. To fully leverage the agent action-observation

history 𝜏𝑛 , we feed this history into the Graph Neural Network
(GNNs), using an autoregressive model as the encoder. Recurrent
aggregation functions enable multiple message-passing iterations,
improving coordination over time. The Mixer network is integrated
with the graph for joint evaluation of the global 𝑄tot, as shown in
the "Graph Module" in Figure 1, without introducing additional loss
terms. Node features are initialized as 𝑥0𝑛 = (𝑠,𝑄𝑛 (𝜏𝑛, 𝑎𝑛)), where
𝑠 represents the state and 𝑄𝑛 (𝜏𝑛, 𝑎𝑛) is the agent’s action-value
function. At the 𝑘th layer, the features of each node 𝑛 are updated
based on neighboring nodes:

𝑥𝑘𝑛 = 𝑔𝑘combine,+

(
𝑥𝑘−1𝑛 ,

{
𝑥𝑘−1𝑚 , 𝛼𝑛𝑚

}
𝑚∈N\{𝑛}

)
(6)

Here, the function 𝑔𝑘combine,+ (·) aggregates the features from
neighboring nodes and updates the node embedding in a monotonic
manner. 𝛼𝑛𝑚 represents the attention coefficient between nodes 𝑛
and𝑚, which determines the strength of the interaction between
these nodes during the message-passing process in the GNNs. The
global state-action value function is then computed as:

𝑄tot (𝝉 , 𝒂) = readout
({
𝑥𝑘𝑛

}
𝑛∈𝑁

)
(7)

where readout is a function that synthesizes the node features
into a global value. The final node embedding 𝑥𝑘𝑛 ∈ R𝐹𝑘 is derived
after 𝑘 iterations, starting with an initial feature dimension of 𝐹0 =
1.

3.1.3 Episodic memory updating. We build upon the multi-agent
episodic memory mechanism from [37], which stores the highest
Monte Carlo reward encountered during an episode to regularize
the standard one-step TD target. The memory loss function is:

Lmemory (𝜽 ) = E𝝉 ,𝒂,𝒓,𝝉 ′∈𝐷
[
(𝐻 −𝑄tot (𝝉 , 𝒂;𝜽 ))2

]
(8)
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A memory table 𝑀 stores the maximum reward for each state.
States are projected into a low-dimensional space using a fixed
random matrix from a Gaussian distribution, and the vector 𝜙 (𝑠)
represents the state key. The function 𝐻 (𝜙 (𝑠𝑡 )) retrieves the cor-
responding maximum reward. When a new trajectory is explored,
the memory table is updated as follows:

𝐻 (𝜙 (𝑠𝑡 )) =
{ max {𝐻 (𝜙 (𝑠𝑡 )) , 𝑅𝑡 (𝑠𝑡 , 𝒂𝑡 ) } , if ∥𝜙 (𝑠𝑡 ) − 𝜙 (𝑠𝑡 ) ∥2 < 𝛿

𝑅𝑡 (𝑠𝑡 , 𝒂𝑡 ) , otherwise
(9)

where 𝑠𝑡 is the nearest state in the memory, and 𝛿 is a proximity
threshold. If the key 𝜙 (𝑠𝑡 ) is close to an existing key, the best-
memorized reward is retrieved; otherwise, the current reward is
recorded. This episodic memory mechanism improves learning by
using the maximum stored reward for target updates:

𝐻 (𝜙 (𝑠𝑡 ) , 𝒂𝑡 ) = 𝑟𝑡 (𝑠𝑡 , 𝒂𝑡 ) + 𝛾𝐻 (𝜙 (𝑠𝑡+1)) (10)

The total loss function combines both inference and memory
terms, with a balancing weight 𝜆:

Ltotal (𝜽 ) = Lintrinsic (𝜽 ) + 𝜆Lmemory (𝜽 )

= E𝝉 ,𝒂,𝒓,𝝉 ′∈𝐷

[
(𝑦 (𝝉 , 𝒂) −𝑄tot (𝝉 , 𝒂;𝜽 ))2

+ 𝜆 (𝐻 (𝜙 (𝑠𝑡 ) , 𝒂𝑡 ) −𝑄tot (𝝉 , 𝒂;𝜽 ))2
]

(11)

This method improves sample efficiency by guiding learning
with the maximum episodic reward, compensating for the slow
updates of the standard TD method.

3.2 Stage 2: Evolutionary Algorithms Update
Initialization and Crossover: We use EAs to optimize the joint
policy parameters 𝜃𝜋 for each team. Initially, a single agent team
is replicated into 𝑃 teams, forming the population. Each team’s
performance is evaluated, and the best-performing team is selected
as the elite parent. During the crossover process, two teams are
selected: the elite team pairs with another top-performing team to
produce offspring, while other teams are replaced by the offspring.

Mutation: In the mutation phase, the joint policy parameters
𝜽𝝅 are modified as follows:

𝜽𝜋
′

𝑃
= 𝜽𝜋

𝑃
+ 𝜎𝑍 (12)

where 𝜎 controls the mutation intensity (usually between 0 and
1), and 𝑍 ∼ 𝑁 (0, 1) is a random sample from a standard normal
distribution. The mutation probability 𝑃mut is set high, encouraging
frequent mutations, which helps maintain diversity and exploration
within the population.

Selection: To avoid the limitations of a single optimal solution,
we use Pareto optimality for selection based on two criteria: non-
dominance and crowding distance. The nondominated set ndom(P)
includes individuals 𝑝 ∈ P for which no other individual 𝑝 ′ ∈ P
dominates it. Specifically, 𝑝 dominates 𝑝 ′ if 𝑝 is at least as good as

𝑝 ′ in all objectives, and strictly better in at least one [2]. Next, the
crowding distance 𝑐 (𝑝, 𝑝 ′) is computed as:

𝑐
(
𝑝, 𝑝 ′

)
=

𝐽∑︁
𝑗=1

𝑐 𝑗
(
𝑝, 𝑝 ′

)
/
(
𝑓 max
𝑗 − 𝑓 min

𝑗

)
(13)

where 𝑐 𝑗 (𝑝, 𝑝 ′) is the distance between two points in the 𝑗-th
objective, and 𝑓 max

𝑗
and 𝑓 min

𝑗
are the maximum and minimum

values for that objective across the population. Individuals with
larger crowding distances are preferred, helping to maintain a well-
distributed Pareto front. This process ensures the selection of di-
verse, optimal policies, continuously improving the fitness of the
population.

Algorithm 1 Algorithm flow of EECG
1: Initialize: Population P, number of teams 𝑃 , policy network parameters

𝜃𝜋 for each team, replay buffer D, episodic memory table𝑀 , mutation
probability 𝑃𝑚𝑢𝑡

2: for each generation do
3: Crossover and Mutation:
4: Operate crossover on selected teams to create offspring.
5: Mutate offspring using mutation probability 𝑃𝑚𝑢𝑡 .
6: Evaluate the performance of each team based on the current envi-

ronment.
7: Store the performance in the population P.
8: end for
9: for each episode do
10: Episodic Memory Update:
11: for each state 𝑠𝑡 in the episode do
12: Update memory table𝑀 with the maximum Monte-Carlo reward

𝐻 (𝜙 (𝑠𝑡 )) for each state 𝑠𝑡 .
13: end for
14: Policy Update:
15: Train the Mixer network to update the joint action-value function

𝑄tot using data from replay buffer D.
16: Compute loss Ltotal (𝜽 ) from Equation (11).
17: Optimize the policies 𝜽𝜋 using gradient descent.
18: Selection:
19: Rank individuals based on Pareto dominance (nondominance level)

and crowding distance.
20: Select top individuals based on their fitness for the next generation.
21: end for

4 EXPERIMENTS
4.1 Experimental Setups
In this section, we evaluate the effectiveness of EECG on cooper-
ative multi-agent benchmark tests, specifically Starcraft II, Multi-
agent Particle Environment (MPE) [19] and SUMO [18]. We com-
pare EECG with several state-of-the-art (SOTA) algorithms and
conduct multiple ablation studies to validate the necessity and func-
tionality of its components. The experimental results consistently
demonstrate that EECG outperforms the baseline algorithms.

We focus on three key questions: (1) Can EECG enhance the
performance ofMARL in complex cooperative tasks and outperform
existing baselines? (2) How do the components of EAs, episodic
learning, and the Graph module contribute to MARL outcomes?
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Table 1: Comparison Algorithms

Framework Features Details

Actor-Critic

FACMAC [22] The combination of Actor-Critic and value decomposition framework has wide applicability.
MAPPO [32] Adapts the PPO algorithm to multi-agent systems with minimal hyperparameter tuning.
MADDPG [19] Each agent has a network of Actor-Critic to evaluate other agents.
RACE [16] Combines evolutionary strategies with Actor-Critic.

Value-
Decomposition

QMIX [24] Proposes the decomposition of valued functions with hypernetwork on state value.
NQMIX [3] An extension of QMIX that incorporates non-monotonic value function factorization
QPLEX [30] Uses a duplex dueling network architecture to factorize the joint action-value function.
ROMA [31] Restricts the exploration space by pre-training classified agents represented as roles.
EMC [37] Uses episodic learning and curiosity exploration to leverage past experiences.

Graph-based G2ANet [17] Design hard and soft attention mechanisms to control communication.
LTSCG [8] Focuses on long-term strategy optimization and utilizes graph-based to capture coordination.

Table 2: Parameter setting

Parameter Value Parameter Value

Learning Rate 0.0005 Target Update Interval 200
Discount factor 0.9 Soft update factor 0.001

Optimizer Adam Memory length 50000
Sample size 32 Batch size 32

(3) What impact does Pareto-based decomposition have on system
efficiency and effectiveness? The comparison algorithms are listed
in Table 1. To ensure fairness, our EAs settings align with those
of RACE, with the only difference being that our population size
is set to 3 (RACE 5), resulting in a total of 4 individuals. All other
configurations remain consistent across all algorithms. Parameter
Settings are shown in Table 2.

4.2 StarCraft II and Test Performance
To ensure fair comparison with baselines, we tested EECG in Star-
Craft II (SMAC), which features diverse maps and tasks that involve
challenges like heterogeneity, complex policy spaces, asymmetry,
and varying agent roles. This setup helps us analyze EECG’s stabil-
ity and effectiveness. We ran the experiments with 5 random seeds
and performed 5 independent runs, averaging the final performance
with 95% confidence intervals. Following SMAC’s reward settings,
we used the variables Δenemy, Δdeaths, and Δally as multi-objective
fitness criteria for Pareto optimization. These variables capture
key aspects of the environment’s feedback, allowing a balanced
optimization of the multi-agent system.

To make the comparison more intuitive, we selected representa-
tive environments from SMAC: "1c3s5z" (easy), "5m_vs_6m"(hard)
"MMM2"(super hard) from SMACv1, and "protoss_5_vs_5", "zerg_10
_vs_10" and "terran_10_vs_11" from SMACv2 for training curve
displays. Addressing the first question, we observe from the learn-
ing curves in Figure 2 to Figure 3 that EECG demonstrates superior
convergence compared to the baselines. Notably, as task difficulty
increases, the performance gap between EECG and the other base-
lines widens progressively.

Figure 2(a) illustrates the win rates on the "1c3s5z" map, where
the objective is to control a small team of 9 units: 1 Colossus, 3 Stalk-
ers, and 5 Zealots. All baseline algorithms converge to reasonable
win rates after a limited number of episodes, but EECG demon-
strates much faster learning efficiency, achieving a win rate of 0.9
after about 0.2 million steps. Graph-based methods like G2ANet
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Figure 2: Starcraft II Average win-rate convergence curves
from SMACv1.

and LTSCG perform well by effectively capturing cooperative rela-
tionships among units. In contrast, MADDPG performs the worst,
likely due to its lack of a centralized mixer, which hinders its ability
to model opponents. All ablation experiments were conducted to
address the second question, including QPLEX and EMC as ablation
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Figure 3: Starcraft II Average win-rate convergence curves
from SMACv2.

baselines due to the improvements our algorithm draws from them.
EMC contributes to stable learning and good convergence, while
QPLEX outperforms most other IGM algorithms included in the
study. As observed in Figure 2(b), while there are no inherently con-
flicting objectives in this environment, Pareto optimization slightly
enhances EECG’s performance. The "onlyGraph" results highlight
that EECG performs exceptionally well with the Graph module,
thanks to episodic learning’s role in stabilizing graph-based meth-
ods. Additionally, the "onlyEvo" results show that incorporating
EAs improves the stability and learning efficiency of EECG.

As observed in Figure 2(c), the increased difficulty of scenarios
like "5m_vs_6m", where 5 Marines face 6 enemyMarines, slows con-
vergence for all algorithms. Among them, FACMAC performs well,
ranking just behind EECG, due to its architecture combining Actor-
Critic methods with a central mixer network, which is effective
for complex tasks. Figure 2(d) further shows that both the Graph
module and EAs enhance the stability and convergence efficiency
of EECG. In contrast, simpler methods like MADDPG and QMIX
struggle to converge in these challenging environments. G2ANet’s

convergence is slower before 1 million steps, likely due to its hard
attention mechanism, which hinders gradient backpropagation. In-
terestingly, removing the Pareto optimization from EECG slightly
improves its stability. We hypothesize that, in more complex en-
vironments, maintaining the original reward structure may better
align agent goals, leading to more effective convergence. In super-
hard maps like MMM2 (1 Medivac, 2 Marauders, 7 Marines vs 1
Medivac, 3 Marauders, 8 Marines) in Figure 2(e), all algorithms show
slower learning and performance. However, EECGmaintains robust
convergence efficiency, though it initially lags behind LTSCG. This
is likely due to EECG’s broader exploration strategy, which, while
slower early on, eventually leads to better long-term performance
by balancing exploration and exploitation.

Computational Efficiency Evaluation. We also evaluated the
computational time of EECG on the "5m_vs_6m" map by comparing
the average time per 400,000 steps. QMIX required the least training
time, at 3,159 seconds, while EECG took 9,045 seconds. Interest-
ingly, EECG ran slower without the Graph module, taking 10,011
seconds. This trend holds across most experiments. We attribute
this to the Graph module’s role in improving global relationship
modeling, which facilitates more efficient convergence. By enhanc-
ing coordination, the Graph module helps EECG reduce redundant
computations, ultimately speeding up learning when included.

SMACv2 is an updated benchmark for cooperative multi-
agent reinforcement learning that addresses the limitations of SMACv1.
It introduces procedural content generation, requiring agents to gen-
eralize to new scenarios and enhancing the necessity for closed-loop
policies. Additionally, SMACv2 adds an Extended Partial Observabil-
ity (EPO) challenge to ensure more meaningful partial observability,
making it a more complex and diverse environment. In the SMACv2
environment, Figures 3(a)(c)(e) demonstrate that EECG outperforms
all baseline algorithms. G2ANet performs well in symmetric coop-
erative tasks such as "protoss_5_vs_5" and "zerg_10_vs_10," where
there is an imbalance in unit distribution, presenting a more com-
plex challenge. In contrast, FACMAC excels in these asymmetric
environments due to its composite training architecture. We ex-
cluded MADDPG from the baselines in this analysis because its
separate networks struggle to adapt to increasingly complex envi-
ronments, resulting in slow learning efficiency. Conversely, RACE
effectively adapts to the current environment through its shared
representation and EAs. As illustrated in Figures 3(b)(d)(f), Pareto
optimization does not significantly enhance the algorithm’s perfor-
mance in uncertain and complex tasks. However, the results from
"onlyGraph" indicate that the Graph module substantially improves
EECG’s convergence. Furthermore, the "onlyEvo" results show that
EAs play a crucial role in ensuring the stability of EECG’s learning
process.

4.3 SUMO Autonomous driving
SUMO (Simulation of Urban Mobility) [18] is a traffic simulation
tool that allows customization of road structures, traffic signals,
vehicle priorities, and other parameters such as the number and
speed of vehicles. Each episode in SUMO consists of 500 steps,
supporting long-term training. This setup enables us to explore
the synergy between curiosity-driven exploration and the Graph
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Figure 4: Learning curves of SUMO Autonomous.

Table 3: Compared with test flag

Methods Average Probabilities

EECG (0.90±0.017)
onlyEvo (0.78±0.023)

onlyGraph (0.83±0.069)
EMC [37] (0.62±0.029)
QPLEX [30] (0.61±0.015)
QMIX [24] (0.72±0.044)
NQMIX [3] (0.57±0.056)
Random (0.1±0.001)

module, evaluating how their combination improves learning ef-
ficiency. The reward is based on the smooth passage of vehicles
through intersections, increasing with higher flow and decreasing
with collisions. The action space for each vehicle includes acceler-
ation (left-right) and speed control, while the state observations
consist of each vehicle’s current speed and position.

We tested the stability of EAs for exploring agent policies by
deploying autonomous vehicles in SUMO’s dynamic environment,
where vehicles navigate obstacles, turn, and enter roads. The setup
involves a single intersection with two tasks, each randomly ini-
tializing 8-20 vehicles per episode. We ran five independent trials
using different random seeds and reported the average performance
along with 95% confidence intervals. As shown in Figure 4(a), EECG
achieves the best overall learning performance. The version of
EECG with only periodic evolution (onlyEvo) shows slightly lower
efficiency compared to the full EECG, while the version with only
the Graph module (onlyGraph) initially learns more slowly but im-
proves around 110,000 iterations. EMC outperforms QPLEX, likely
due to its ability to retain episodic experience, which helps con-
vergence in cyclical tasks. NQMIX [3], a variant of QMIX with
Actor-Critic updates, struggles in long-term learning tasks like
those in SUMO, possibly due to its limited ability to assign utili-
ties to individual agents. Table 3 shows the average success rate
of all vehicles reaching their destination after convergence. EECG
achieves the highest success rate. From the two ablation studies,
we conclude that the evolutionary process aids in selecting optimal
parameters for final convergence, while the Graph module facili-
tates effective task allocation among agents, ultimately resulting in
superior coupled performance.

4.4 Multi-agent Particle Environment
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Figure 5: The learning curve of simple_tag

In the Multi-agent Particle Environment (MPE) environment, the
"simple_tag" scenario represents a predator-prey scenario where
prey agents (good agents) attempt to avoid being tagged by preda-
tors. While prey agents are faster, they incur a negative reward
when tagged, whereas predators receive rewards for successfully
tagging them. The environment also includes obstacles that agents
must navigate. When testing EECG’s performance in these dy-
namic, short-term environments, we observe the following: As il-
lustrated in Figures 5(a)(b), in the "simple_tag," a mixed cooperative-
competition environment, the duplex dueling network architecture
of QPLEX and the monotonic update of MAPPO enhance their
learning efficiency. However, EECG demonstrates superior learn-
ing efficiency, likely due to its graph structure, which effectively
captures global relationships, and its EAs that promote diverse
exploration, ensuring convergence.

4.5 Conclusion
To address the challenges of limited exploration and agent credit
assignment in multi-agent collaboration, we propose EECG, a hy-
brid framework that integrates Evolutionary Algorithms (EAs) for
enhanced exploration and gradient-free optimization. A key inno-
vation is the use of Pareto optimization in the selection phase, en-
abling more diverse policy choices. EECG also incorporates episodic
learning for efficient sampling and curiosity-driven exploration
to gather high-quality long-trajectory data, improving the Graph
module’s ability to address credit assignment and facilitate better
coordination. The diversity introduced by EAs enriches the graph
structure, leading to more effective policy optimization. We validate
EECG across three environments: StarCraft II micromanagement,
the Multi-Agent Particle Environment, and SUMO autonomous
driving. Our results show that combining EAs, the Graph module,
and episodic learning significantly improves multi-agent coordina-
tion, with each component complementing the others. Limitations
and Future Work: While EECG demonstrates strong performance, it
may face challenges in highly dynamic or extremely heterogeneous
environments, where exploration efficiency could be impacted. Fur-
ther work will explore strategies to address these challenges.
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