
Multi-objective Reinforcement Learning with Nonlinear
Preferences: Provable Approximation for Maximizing Expected

Scalarized Return
Nianli Peng

∗

Harvard University

Cambridge, MA, USA

nianli_peng@g.harvard.edu

Muhang Tian
∗

Duke University

Durham, NC, USA

muhang.tian@duke.edu

Brandon Fain

Duke University

Durham, NC, USA

btfain@cs.duke.edu

ABSTRACT
We study multi-objective reinforcement learning with nonlinear

preferences over trajectories. That is, we maximize the expected

value of a nonlinear function over accumulated rewards (expected

scalarized return or ESR) in a multi-objective Markov Decision Pro-

cess (MOMDP). We derive an extended form of Bellman optimality

for nonlinear optimization that explicitly considers time and cur-

rent accumulated reward. Using this formulation, we describe an

approximation algorithm for computing an approximately optimal

non-stationary policy in pseudopolynomial time for smooth scalar-

ization functions with a constant number of rewards. We prove the

approximation analytically and demonstrate the algorithm experi-

mentally, showing that there can be a substantial gap between the

optimal policy computed by our algorithm and alternative baselines.
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1 INTRODUCTION
Markov Decision Processes (MDPs) model goal-driven interaction

with a stochastic environment, typically aiming to maximize a

scalar-valued reward per time-step through a learned policy. Equiv-

alently, this formulation asks the agent to maximize the expected

value of a linear function of total reward. This problem can be

solved with provable approximation guarantees in polynomial time

with respect to the size of the MDP [2, 5, 6, 12, 20].

We extend this framework to optimize a nonlinear function of

vector-valued rewards in multi-objective MDPs (MOMDPs), aiming

to maximize expected welfare E[𝑊 (r)] where r is a total reward
vector for 𝑑 objectives. We note that this function is also called

the utility or the scalarization function within the multi-objective
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optimization literature [18]. Unlike the deep neural networks com-

monly used as function approximators for large state spaces, our

nonlinearity lies entirely in the objective function.

Motivation. Nonlinear welfare functions capture richer prefer-

ences for agents, such as fairness or risk attitudes. For example,

the Nash Social Welfare function

(
𝑊

Nash
(r) = (∏𝑖 𝑟𝑖 )1/𝑑

)
reflects

a desire for fairness or balance across objectives and diminishing

marginal returns [14]. Even single-objective decision theory uses

nonlinear utility functions to model risk preferences, like risk aver-

sion with the Von Neumann-Morgenstern utility function [34].

Consider a minimal example with an autonomous taxi robot,

Robbie, serving rides in neighborhoods 𝐴 and 𝐵, as diagrammed in

Figure 1. Each ride yields a reward in its respective dimension.

𝐴 𝐵

(1, 0) (0, 1)
(0, 0)

Figure 1: Taxi Optimization Example

Suppose Robbie starts in neighborhood𝐴 and has 𝑡 = 3 time inter-

vals remaining before recharging. With no discounting, the Pareto

Frontier of maximal (that is, undominated) policies can achieve

cumulative reward vectors of (3, 0), (1, 1), or (0, 2) by serving 𝐴

alone, 𝐴 and 𝐵, or 𝐵 alone respectively. If we want Robbie to prefer

the second more balanced or “fair” option of serving one ride in

each of the two neighborhoods then Robbie must have nonlinear

preferences. That is, for any choice of weights on the first and sec-

ond objective, the simple weighted average would prefer outcomes

(3, 0) or (0, 2). However, the second option would maximize the

Nash Social Welfare of cumulative reward, for example.

Nonlinear preferences complicate policy computation: Bellman

optimality fails, and stationary policies may be suboptimal. In-

tuitively, a learning agent with fairness-oriented preferences to

balance objectives should behave differently, even in the same state,

depending on which dimension of reward is “worse off.” In the Fig-

ure 1 example, one policy to achieve the balanced objective (1, 1)
is to complete a ride in 𝐴, then travel from 𝐴 to 𝐵, and finally to

complete a ride in 𝐵 – note that this is not stationary with respect

to the environment states.

Contributions. In this work, we ask whether it is possible to

describe an approximation algorithm (that is, with provable guar-

antees to approximate the welfare optimal policy) for MOMDPs

with nonlinear preferences that has polynomial dependence on the
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number of states and actions, as is the case for linear preferences or

scalar MDPs. To the best of our knowledge, ours is the first work to

give provable guarantees for this problem, compared to other work

that focuses on empirical evaluation of various neural network

architectures.

We show this is possible for smooth preferences and a constant

number of dimensions of reward. To accomplish this, we (i) de-

rive an extended form of Bellman optimality (which may be of

independent interest) that characterizes optimal policies for nonlin-

ear preferences over multiple objectives, (ii) describe an algorithm

for computing approximately optimal non-stationary policies, (iii)

prove the worst-case approximation properties of our algorithm,

and (iv) demonstrate empirically that our algorithm can be used

in large state spaces to find policies that significantly outperform

other baselines.

For additional proofs and experimental details, refer to the appen-

dix in the full version of this paper available at arXiv (https://arxiv.

org/abs/2311.02544) and our code is available on GitHub (https:

//github.com/MuhangTian/Reward-Aware-Value-Iteration).

2 RELATEDWORK
Most reinforcement learning algorithms focus on a single scalar-

valued objective and maximizing total expected reward [30]. Classic

results on provable approximation and runtime guarantees for re-

inforcement learning include the E3 algorithm [20]. This result

showed that general MDPs could be solved to near-optimality ef-

ficiently, meaning in time bounded by a polynomial in the size of

the MDP (number of states and actions) and the horizon time. Sub-

sequent results refined the achievable bounds [5, 6, 12]. We extend

these results to the multi-objective case with nonlinear preferences.

Multi-objective reinforcement learning optimizes multiple ob-

jectives at once. So-called single-policy methods use a scalarization

function to reduce the problem to scalar optimization for a sin-

gle policy, and we follow this line of research. The simplest form

is linear scalarization, applying a weighted sum to the Q vector

[1, 4, 22, 23, 35].

A more general problem is to optimize the expected value of a

potentially nonlinear function of the total reward, which may be

vector-valued in a multi-objective optimization context. We refer

to such a function as a welfare function [7, 16, 28], which is also

commonly referred to as a utility or scalarization function [3, 18].

Recent works have explored nonlinear objectives; however, to our

knowledge, ours is the first to provide an approximation algorithm

with provable guarantees (on the approximation factor), for the

expected welfare, leveraging a characterization of recursive opti-

mality in this setting. Several other studies focus on algorithms that

demonstrate desirable convergence properties and strong empiri-

cal performance by conditioning function approximators on accu-

mulated reward, but without offering approximation guarantees

[13, 16, 26, 28]. Complementary to our approach, [25] uses Pareto

Conditioned Networks to learn policies for Pareto-optimal solu-

tions by conditioning policies on a preference vector. [21] presents

an offline adaptation framework that employs demonstrations to

implicitly learn preferences and safety constraints, aligning poli-

cies with inferred preferences rather than providing theoretical

guarantees.

[3] describe another model-based algorithm that can compute

approximately optimal policies for a general class of monotone

and Lipschitz welfare functions, but rather than maximizing the

expected welfare, they maximize the welfare of expected rewards

(note the two are not equal for nonlinear welfare functions). Other

works have formulated fairness in different ways or settings. For ex-

ample, [19] defines an analogue of envy freeness and [15] studies a

per-time-step fairness guarantee. [7] studies welfare maximization

in multi-armed bandit problems. [27] explores the concept of distri-

butional multi-objective decision making for managing uncertainty

in multi-objective environments.

Risk-sensitive RL approaches address scalar objectives by in-

corporating risk measures to minimize regret or control reward

variance over accumulated rewards [9–11]. While these approaches

offer valuable tools for managing reward variability, their guar-

antees are primarily in terms of regret minimization or achieving

bounded variance. In contrast, our work provides stronger theo-

retical assurances in terms of the approximation ratio on the ex-

pected welfare for multi-objective optimization. This difference in

focus underscores the robustness of our method, which provides

guarantees that extend beyond the risk-sensitive regime to cover

complex, multi-dimensional utility functions [6, 12, 16]. Such prob-

lems remain computationally significant even in a deterministic

environment where the notion of risk may not apply.

Lastly, while our single-agent setup with multiple objectives

shares some aspects withmulti-agent reinforcement learning (MARL),

the objectives differ significantly. Much of the MARL literature

has focused on cooperative reward settings, often using value-

decomposition techniques like VDN and QMIX [24, 29] or actor-

critic frameworks to align agent objectives under a centralized

training and decentralized execution paradigm [17]. In contrast,

our work parallels the more general Markov game setting, where

each agent has a unique reward function and studies nonlinear ob-

jectives that require computational methods beyond linear welfare

functions often assumed inMARL.WhileMARL research frequently

uses linear summations of agent rewards, we demonstrate approxi-

mation guarantees for optimizing general, non-linear functions of

multiple reward vectors, a distinct contribution in a single-agent

setting [3, 19, 34].

3 PRELIMINARIES
A finite Multi-objective Markov Decision Process (MOMDP) con-

sists of a finite set S of states, a starting state 𝑠1 ∈ S,∗ a finite set
A of actions, and probabilities 𝑃𝑟 (𝑠′ |𝑠, 𝑎) ∈ [0, 1] that determine

the probability of transitioning to state 𝑠′ from state 𝑠 after taking

action 𝑎. Probabilities are normalized so that

∑
𝑠′ 𝑃𝑟 (𝑠′ |𝑠, 𝑎) = 1.

We have a finite vector-valued reward functionR(𝑠, 𝑎) : S×A →
[0, 1]𝑑 . Each of the 𝑑 dimensions of the reward vector corresponds

to one of the multiple objectives that are to be maximized. At each

time step 𝑡 , the agent observes state 𝑠𝑡 ∈ S, takes action 𝑎𝑡 ∈ A(𝑠𝑡 ),
and receives a reward vector R(𝑠𝑡 , 𝑎𝑡 ) ∈ [0, 1]𝑑 . The environment,

in turn, transitions to 𝑠𝑡+1 with probability 𝑃𝑟 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 ).
To make the optimization objective well-posed in MOMDPs with

vector-valued rewards, we must specify a scalarization function

∗
In general we may have a distribution over starting states; we assume a single starting

state for ease of exposition.
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[18] which we denote as𝑊 : R𝑑 → R. For fair multi-objective

reinforcement learning, we think of each of the 𝑑 dimensions of the

reward vector as corresponding to distinct users. The scalarization

function can thus be thought of as a welfare function over the users,

and the learning agent is a welfare maximizer. Even when 𝑑 = 1, a

nonlinear function𝑊 can be a Von Neumann-Morgenstern utility

function [34] that expresses the risk-attitudes of the learning agent,

with strictly concave functions expressing risk aversion.

Assumptions. Here we clarify some preliminary assumptions we

make about the reward function R(𝑠, 𝑎) : S × A → [0, 1]𝑑 and the

welfare function𝑊 : R𝑑 → R. The restriction to [0, 1] is simply a

normalization for ease of exposition; the substantial assumption

is that the rewards are finite and bounded. Note from the writing

we assume the reward function is deterministic: While it suffices

for linear optimization to simply learn the mean of random reward

distributions, this does not hold when optimizing the expected

value of a nonlinear function. Nevertheless, the environment itself

may still be stochastic, as the state transitions may still be random.

We also assume that𝑊 is smooth. For convenience of analysis,
we will assume𝑊 is uniformly continuous on the L1-norm (other

parameterizations such as the stronger Lipshitz continuity or using

the L2-norm are also possible). For all 𝜖 > 0, there exists 𝛿𝜖 such

that for all x, y ≥ 0,

|𝑊 (x) −𝑊 (y) | < 𝜖 if ∥x − y∥1 < 𝛿𝜖 .

The smoothness assumption seems necessary to give worst-case

approximation guarantees as otherwise arbitrarily small changes

in accumulated reward could have arbitrarily large differences in

welfare. However, we note that this is still significantlymore general

than linear scalarization which is implicitly smooth. Practically

speaking, our algorithms can be run regardless of the assumed level

of smoothness; a particular smoothness is necessary just for the

worst-case analysis.

4 MODELING OPTIMALITY
In this section, we expand the classic model of reinforcement learn-

ing to optimize the expected value of a nonlinear function of (pos-

sibly) multiple dimensions of reward. We begin with the notion of

a trajectory of state-action pairs.

Definition 1. Let𝑀 be an MOMDP. A length 𝑇 trajectory in 𝑀

is a tuple 𝜏 of 𝑇 state-action pairs

(𝑠1, 𝑎1), (𝑠2, 𝑎2), . . . , (𝑠𝑇 , 𝑎𝑇 ) .

For 1 ≤ 𝑘 ≤ 𝑘′ ≤ 𝑇 , let 𝜏𝑘 :𝑘 ′ be the sub-trajectory consisting of pairs

(𝑠𝑘 , 𝑎𝑘 ), . . . , (𝑠𝑘 ′ , 𝑎𝑘 ′ ). Let 𝜏0;0 denote the empty trajectory.

For a discount factor 𝛾 , we calculate the total discounted reward

of a trajectory. Note that this is a vector in general.

Definition 2. For length 𝑇 trajectory 𝜏 and discount factor 0 ≤
𝛾 ≤ 1, the total discounted reward along 𝜏 is the vector

R(𝜏,𝛾) =
𝑇∑︁
𝑡=1

𝛾𝑡−1R(𝑠𝑡 , 𝑎𝑡 ).

For ease of exposition we will frequently leave 𝛾 implicit from context

and simply write R(𝜏). †

A policy is a function 𝜋 (𝑎 | 𝜏, 𝑠) ∈ [0, 1] mapping past trajecto-

ries and current states to probability distributions over actions, that

is,

∑
𝑎 𝜋 (𝑎 | 𝜏, 𝑠) = 1 for all 𝜏 and 𝑠 . A stationary policy is the special

case of a policy that depends only on the current state: 𝜋 (𝑎 | 𝑠).

Definition 3. The probability that a 𝑇 -trajectory 𝜏 is traversed

in an MOMDP𝑀 upon starting in state 𝑠1 and executing policy 𝜋 is

𝑃𝑟𝜋 [𝜏] = 𝜋 (𝑎1 | 𝜏0:0, 𝑠1) ×
𝑇∏
𝑡=2

𝜋

(
𝑎𝑡

���� 𝜏1:𝑡−1, 𝑠𝑡 ) 𝑃𝑟 (𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1) .
Problem Formulation. Given a policy, a finite time-horizon 𝑇 ,

and a starting state 𝑠1 we can calculate the expected welfare of

total discounted reward along a trajectory as follows. Our goal is to

maximize this quantity. That is, we want to compute a policy that

maximizes the expected 𝑇 -step discounted welfare.

Definition 4. For a policy 𝜋 and a start state 𝑠 , the expected

𝑇 -step discounted welfare is

E𝜏∼𝜋
[
𝑊

(
R(𝜏)

) ]
=

∑︁
𝜏

𝑃𝑟𝜋 [𝜏]𝑊 (R(𝜏))

where the expectation is taken over all length𝑇 trajectories beginning

at 𝑠 .

Note that this objective is not equal to𝑊
(
E𝜏∼𝜋

[
R(𝜏)

] )
, which

others have studied [3, 28], for a nonlinear𝑊 . The former (our

objective) is also known as expected scalarized return (ESR) whereas

the latter is also known as scalarized expected return (SER) [18].

While SER makes sense for a repeated decision-making problem, it

does not optimize for expected welfare for any particular trajectory.

For concave𝑊 , ESR ≤ SER by Jensen’s inequality. However, an

algorithm for approximating SER does not provide any guarantee

for approximating ESR. For example, a policy can be optimal on

SER but achieve 0 ESR if it achieves high reward on one or the other

of two objectives but never both in the same episode.

Form of Optimal Policy and Value Functions. The optimal policy

for this finite time horizon setting is a function also of the number

of time steps remaining. We write such a policy as 𝜋 (𝑎 | 𝑠, 𝜏, 𝑡)
where 𝜏 is a trajectory (the history), 𝑠 is the current state, and 𝑡 is

the number of time steps remaining, 𝑖 .𝑒 . 𝑡 = 𝑇 − |𝜏 |.
We can similarly write the extended value function of a policy 𝜋 .

We write 𝜏 as the history or trajectory prior to some current state 𝑠

and 𝜏 ′ as the future, the remaining 𝑡 steps determined by the policy

𝜋 and the environmental transitions.

Definition 5. The value of a policy 𝜋 beginning at state 𝑠 after

history 𝜏 and with 𝑡 more actions is

𝑉 𝜋 (𝑠, 𝜏, 𝑡) = E𝜏 ′∼𝜋
[
𝑊 (R(𝜏) + 𝛾𝑇−𝑡R(𝜏 ′))

]
where the expectation is taken over all length 𝑡 trajectories 𝜏 ′ begin-
ning at 𝑠 . The optimal value function is

𝑉 ∗ (𝑠, 𝜏, 𝑡) = max

𝜋
𝑉 𝜋 (𝑠, 𝜏, 𝑡)

†𝛾 < 1 is necessary for the infinite horizon setting. In the experiments with a finite-

horizon task we use 𝛾 = 1 for simplicity.
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and the optimal policy is

𝜋∗ ∈ argmax

𝜋
𝑉 𝜋 (𝑠, 𝜏, 𝑡) .

Note that because𝑊 is nonlinear, the value function 𝑉 𝜋
cannot

be decomposed in the same way as in the traditional Bellman equa-

tions. Before proceeding we want to provide some intuition for this

point. The same reasoning helps to explain why stationary policies

are not generally optimal.

Suppose we are optimizing the product of the reward between

two objectives (i.e., the welfare function is the product or geometric

mean), and at some state 𝑠 with some prior history 𝜏 we can choose

between two policies 𝜋1 or 𝜋2. Suppose that the future discounted

reward vector under 𝜋1 is (1, 1), whereas it is (10, 0) under 𝜋2. So 𝜋1
has greater expected future welfare and traditional Bellman optimal-

ity would suggest we should choose 𝜋1. However, if R(𝜏) = (0, 10),
we would actually be better off in terms of total welfare choosing

𝜋2. In other words, both past and future reward are relevant when

optimizing for the expected value of a nonlinear welfare function.

We develop an extended form of Bellman optimality capturing

this intuition by showing that the optimal value function can be

written as a function of current state 𝑠 , accumulated discounted

reward R(𝜏), and number of timesteps remaining in the task 𝑡 . The

proof is included in the appendix. At a high level as a sketch, the

argument proceeds inductively on 𝑡 where the base case follows

by definition and the inductive step hinges on showing that the

the expectation over future trajectories can be decomposed into

an expectation over successor states and subsequent trajectories

despite the nonlinear𝑊 .

Lemma 1. LetV(𝑠,R(𝜏), 0) =𝑊 (R(𝜏)) for all states 𝑠 and trajec-
tories 𝜏 . For every state 𝑠 , history 𝜏 , and 𝑡 > 0 time steps remaining,

let

V(𝑠,R(𝜏), 𝑡) = max

𝑎
E𝑠′

[
V(𝑠′,R(𝜏) + 𝛾𝑇−𝑡R(𝑠, 𝑎), 𝑡 − 1)

]
.

Then 𝑉 ∗ (𝑠, 𝜏, 𝑡) = V(𝑠,R(𝜏), 𝑡).

By Lemma 1, we can parameterize the optimal value function

by the current state 𝑠 , accumulated reward Racc ∈ R𝑑 , and number

of timesteps remaining 𝑡 . We will use this formulation of 𝑉 ∗ in the

remainder of the paper.

Definition 6 (Recursive Formulation of𝑉 ∗). Let Racc = R(𝜏)
be the vector of accumulated reward along a history prior to some

state 𝑠 . Let 𝑉 ∗ (𝑠,Racc, 0) =𝑊 (Racc) for all 𝑠 and Racc. For 𝑡 > 0,

𝑉 ∗ (𝑠,R𝑎𝑐𝑐 , 𝑡) = max

𝑎

∑︁
𝑠′

𝑃𝑟 (𝑠′ |𝑠, 𝑎) ·𝑉 ∗ (𝑠′,R𝑎𝑐𝑐 +𝛾𝑇−𝑡R(𝑠, 𝑎), 𝑡−1) .

Horizon Time. Note that an approximation algorithm for this

discounted finite time horizon problem can also be used as an

approximation algorithm for the discounted infinite time horizon

problem. Informally, discounting by 𝛾 with bounded maximum

reward implies that the first 𝑇 ≈ 1/(1 − 𝛾) steps dominate overall

returns. We defer the precise formulation of the lower bound on

the horizon time and its proof in the appendix (Lemma ??).

Necessity of Conditioning on Remaining Timesteps 𝑡 . We illustrate

the necessity of conditioning the optimal value function on the

remaining timesteps 𝑡 using a counterexample in the appendix.

5 COMPUTING OPTIMAL POLICIES
Our overall algorithm is Reward-Aware Explore or Exploit

(or RAEE for short) to compute an approximately optimal policy,

inspired by the classical E3 algorithm [20]. At a high level, the

algorithm explores to learn amodel of the environment, periodically

pausing to recompute an approximately optimal policy on subset

of the environment that has been thoroughly explored. We call

this optimization subroutine Reward-Aware Value Iteration (or

RAVI for short). In both cases, reward-aware refers to the fact that

the algorithms compute non-stationary policies in the sense that

optimal behavior depends on currently accumulated vector-valued

reward, in addition to the current state.

Of the two, the model-based optimization subroutine RAVI is the

more significant. The integrated model-learning algorithm RAEE

largely follows from prior work, given access to theRAVI subroutine.

For this reason, we focus in this section on RAVI, and defer a more

complete discussion and analysis of RAEE to Section 7 and the

appendix.

A naive algorithm for computing a non-stationary policy would

need to consider all possible prior trajectories for each decision

point, leading to a runtime complexity containing the term |S|𝑇 ,
exponential in the size of the state space and time horizon. Instead,

for a smooth welfare function on a constant number of objectives,

our algorithm will avoid any exponential dependence on |S|.
The algorithm is derived from the recursive definition of the

optimal multi-objective value function 𝑉 ∗ in Definition 6, justified

by Lemma 1, parameterized by the accumulated discounted reward

vector Racc instead of the prior history. Note that even if the re-

wards were integers, Racc might not be due to discounting. We must

therefore introduce a discretization that maps accumulated reward

vectors to points on a lattice, parameterized by some 𝛼 ∈ (0, 1)
where a smaller 𝛼 leads to a finer discretization but increases the

runtime.

Definition 7. For a given discretization precision parameter 𝛼 ∈
R+, define 𝑓𝛼 : R𝑑 → (𝛼Z)𝑑 by

𝑓𝛼 (R) =
(⌊
𝑅1

𝛼

⌋
· 𝛼,

⌊
𝑅2

𝛼

⌋
· 𝛼, · · · ,

⌊
𝑅𝑑

𝛼

⌋
· 𝛼

)
.

In other words, 𝑓𝛼 maps any 𝑑-dimensional vector to the largest

vector in (𝛼Z)𝑑 that is less than or equal to the input vector, ef-

fectively rounding each component down to the nearest multiple

of 𝛼 . We now describe the algorithm, which at a high level com-

putes the dynamic program of approximately welfare-optimal value

functions conditioned on discretized accumulated reward vectors.

Remark. Since we model the per-step reward as normalized to

at most 1, we describe 𝛼 as lying within (0, 1). However, the algo-
rithm itself is well-defined for larger values of alpha (coarser than

the per-step reward) and during implementation and experiments,

we consider such larger 𝛼 , beyond what might give worst-case

guarantees but still observing strong empirical performance.

The asymptotic runtime complexity is𝑂

(
|S|2 |A|(𝑇 /𝛼)𝑑

)
. How-

ever, observe that the resulting algorithm is extremely parallelizable:

Given solutions to subproblems at 𝑡 − 1, all subproblems for 𝑡 can

in principle be computed in parallel. A parallel implementation

of RAVI can leverage GPU compute to handle the extensive cal-

culations involved in multi-objective value iteration. Each thread
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Algorithm 1 Reward-Aware Value Iteration (RAVI)

1: Parameters: Discretization precision 𝛼 ∈ (0, 1), Discount fac-
tor 𝛾 ∈ [0, 1), Reward dimension 𝑑 , finite time horizon 𝑇 , wel-

fare function𝑊 , discretization function 𝑓𝛼 .

2: Require: Normalize R(𝑠, 𝑎) ∈ [0, 1]𝑑 for all 𝑠 ∈ S, 𝑎 ∈ A.

3: Initialize: 𝑉 (𝑠,Racc, 0) = 𝑊 (Racc) for all Racc ∈
{0, 𝛼, 2𝛼, . . . , ⌈𝑇 /𝛼⌉ · 𝛼}𝑑 , 𝑠 ∈ S.

4: for t = 1 to 𝑇 do
5: for Racc ∈ {0, 𝛼, 2𝛼, . . . , ⌈(𝑇 − 𝑡)/𝛼⌉ · 𝛼}𝑑 do
6: for all 𝑠 ∈ S do
7:

𝑉 (𝑠,Racc, 𝑡) ← max

𝑎

∑︁
𝑠′

𝑃𝑟
(
𝑠′ |𝑠, 𝑎

)
𝑉

(
𝑠′, 𝜑 (𝑠,R𝑎𝑐𝑐 , 𝑎), 𝑡 − 1

)
8:

𝜋 (𝑠,Racc, 𝑡) ← argmax

𝑎

∑︁
𝑠′

𝑃𝑟
(
𝑠′ |𝑠, 𝑎

)
𝑉

(
𝑠′, 𝜑 (𝑠,R𝑎𝑐𝑐 , 𝑎), 𝑡 − 1

)
9: where 𝜑 (𝑠,R𝑎𝑐𝑐 , 𝑎) := 𝑓𝛼

(
R𝑎𝑐𝑐 + 𝛾𝑇−𝑡R(𝑠, 𝑎)

)
computes the value updates and policy decisions for a specific state

and accumulated reward combination, which allows for massive

parallelism. In practice, we observed an empirical speedup of ap-

proximately 560 times on a single NVIDIA A100 compared to the

CPU implementation on an AMD Ryzen 9 7950x 16-core processor

for our experimental settings. This drastic improvement in runtime

efficiency makes it feasible to run RAVI on larger and more complex

environments, where the computational demands would otherwise

be prohibitive.

It remains to see how small 𝛼 needs to be, which will dictate the

final runtime complexity. We first analyze the correctness of the

algorithm and then return to the setting of 𝛼 for a given smoothness

of𝑊 to conclude the runtime analysis.

We begin analyzing the approximation of RAVI by showing an

important structural property: the optimal value function will be

smooth as long as the welfare function is smooth. The proof is

included in the appendix.

Lemma 2 (Uniform continuity of multi-objective value

function). Let the welfare function𝑊 : R𝑑 → R be uniformly

continuous. Fix 𝑠 ∈ S and 𝑡 ∈ {0, 1, . . . ,𝑇 }, then for all 𝜖 > 0, there

exists 𝛿𝜖 > 0 such that����𝑉 ∗ (𝑠,R1, 𝑡) −𝑉 ∗ (𝑠,R2, 𝑡)���� < 𝜖 if ∥R1 − R2∥ < 𝛿𝜖 .

We now present the approximation guarantee of RAVI, that it

achieves an additive error that scales with the smoothness of𝑊

and the number of remaining time steps. The proof of this lemma

is deferred to the appendix.

Lemma 3 (Approximation Error of RAVI). For uniformly con-

tinuous welfare function𝑊 , for all 𝜖 > 0, there exists 𝛼𝜖 such that

𝑉 (𝑠,Racc, 𝑡) ≥ 𝑉 ∗ (𝑠,Racc, 𝑡) − 𝑡𝜖
∀𝑠 ∈ S,Racc ∈ R𝑑 , 𝑡 ∈ {0, 1, . . . ,𝑇 }, where 𝑉 (𝑠,Racc, 𝑡) is com-

puted by Algorithm 1 using 𝛼𝜖 .

While we can use any setting of 𝛼 empirically, this shows that

for an approximation guarantee we should set the discretization

parameter to 𝛼 = 𝛿𝑇𝜖/𝑑 where 𝛿𝑇𝜖 from the smoothness of the

welfare function is sufficient to drive its bound to 𝜖 , that is, it

should be 𝛼 =
𝛿𝜖
𝑇 ·𝑑 .

We thus arrive at the ultimate statement of the approximation

and runtime of RAVI. The proof follows directly from Lemma 3 and

the setting of 𝛼 .

Theorem 1 (Optimality Guarantee of RAVI). For a given 𝜖

and welfare function𝑊 that is 𝛿𝜖 uniformly continuous, RAVI with

𝛼 =
𝛿𝜖
𝑇 ·𝑑 computes a policy 𝜋 , such that 𝑉 𝜋 (𝑠, 0,𝑇 ) ≥ 𝑉 ∗ (𝑠, 0,𝑇 ) − 𝜖

in 𝑂

(
|S|2 |A|(𝑑 ·𝑇 2/𝛿𝜖 )𝑑

)
time.

A concrete example of a particular welfare function, the setting of

relevant parameters, and a derivation of a simplified runtime state-

ment may help to clarify Theorem 1. Consider the smoothed pro-

portional fairness objective:𝑊SPF (x) =
∑𝑑
𝑖=1 ln(𝑥𝑖 + 1), a smoothed

log-transform of the Nash Social Welfare (or geometric mean) with

better numerical stability.

By taking the gradient, we can see that𝑊SPF (x) is 𝑑-Lipschitz
on x ≥ 0, so we may pick 𝛿𝜖 = 𝜖/𝑑 to satisfy the uniform continuity

requirement in Theorem 1.
‡

Plugging 𝛿𝜖 into the runtime and recalling that 𝛼𝑇𝜖 =
𝛿𝑇𝜖

𝑑
and

𝛿𝑇𝜖 = 𝛿𝜖/𝑇 up to constant factors, we get

𝑂

(
|S|2 |A|(𝑇 /𝛼𝑇𝜖 )𝑑

)
= 𝑂

(
|S|2 |A|

(
𝑇 2 · 𝑑2

𝜖

)𝑑 )
.

To further simplify, if one takes the number of actions |A|, discount
factor 𝛾 , and dimension 𝑑 to be constants, then the asymptotic

dependence of the runtime (in our running example) is

𝑂

(
|S|2

(
1

𝜖
log

2 (1/𝜖)
)𝑑 )

.

This dependence is significantly better than a naive brute-force

approach, which scales at least as 𝑂
(
|S|𝑇

)
.

Intuitively, the key savings arise from discretizing the reward

space (with granularity 𝛿𝜖 ) rather than enumerating all possible

trajectories. This discretization is guided by the smoothness as-

sumption on𝑊SPF.

6 EXPERIMENTS
We test RAVI on two distinct interpretations of multi-objective

reinforcement learning: (1) the fairness interpretation, where the

agent tries to maximize rewards across all dimensions. (2) the ob-

jective interpretation, where the agent tries to maximize one while

minimizing the other. In both scenarios, we show that RAVI can

discover more optimal policies than other baselines for nonlinear

multi-objective optimization. This holds even for coarser settings of

𝛼 in the algorithm than would be necessary for strong theoretical

worst-case approximation guarantees.

6.1 Simulation Environments
Taxi: We use the taxi multi-objective simulation environment con-

sidered in [16] for testing nonlinear ESR maximization. In this

‡
Uniform continuity is a weaker modeling assumption than 𝐿-Lipshitz continuity for

constant 𝐿. Note that for an 𝐿-Lipshitz function, the correct value of 𝛿𝜖 is just 𝜖/𝐿,
where 𝜖 is the desired approximation factor of the algorithm.
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Scavenger Taxi, 𝑑 = 5

Figure 2: Visualization of the Taxi and Scavenger environ-
ments.

grid-world environment, the agent is a taxi driver whose goal is

to deliver passengers. There are multiple queues of passengers,

each having a given pickup and drop-off location. Each queue has

a different objective or dimension of the reward. The taxi can only

take one passenger at a time and wants to balance trips for passen-

gers in the different queues. This environment models the fairness

interpretation.

Scavenger: Inspired by the Resource Gathering environment [8],

the scavenger hunt environment is a grid-world simulation where

the agent must collect resources while avoiding enemies scattered

across the grid. The state representation includes the agent’s posi-

tion and the status of the resources (collected or not). The reward

function is vector-valued, where the first component indicates the

number of resources collected, and the second component indicates

the damage taken by encountering enemies. This environment is

the objective interpretation.

6.2 Baseline Algorithms
Linearly Scalarized Policy (LinScal) [33]: A relatively straight-

forward technique for multi-objective RL optimization is to ap-

ply the linear combination on the Q-values for each objective.

Given weights w ∈ R𝑑 ,
∑𝑑
𝑖 𝑤𝑖 = 1, the scalarized objective is

𝑆𝑄 (𝑠, 𝑎) = w⊤Q(𝑠, 𝑎), where 𝑄 (𝑠, 𝑎)𝑖 is the Q-value for the 𝑖th

objective. 𝜖-greedy policy is used on 𝑆𝑄 (𝑠, 𝑎) during action selec-

tion, and regular Q-learning updates are applied on each reward

dimension.

Mixture Policy (Mixture) [32]: this baseline works by com-

bining multiple Pareto optimal base policies into a single policy.

Q-learning is used to optimize for each reward dimension separately

(which is approximately Pareto optimal), and the close-to-optimal

policy for each dimension is used for 𝐼 steps before switching to

the next.

Welfare Q-learning (WelfareQ) [16]: this baseline extends Q-

learning in tabular setting to approximately solve the nonlinear

objective function by considering past accumulated rewards to

perform non-stationary action selection.

Model-Based Mixture Policy (Mixture-M): Instead of using

Q-learning to find an approximately Pareto optimal policy for each

objective, value iteration [31] is used to calculate the optimal policy,

and each dimension uses the corresponding optimal policy for 𝐼

steps before switching to the next.

6.3 Nonlinear Functions
Taxi: We use the following three functions on Taxi for fairness

considerations: (1) Nash social welfare: 𝑊
Nash
(r) = (∏𝑖 𝑟𝑖 )1/𝑑 .

(2) Egalitarian welfare:𝑊
Egalitarian

(r) = min{𝑟𝑖 }𝑖 . (3) 𝑝-welfare§:
𝑊𝑝 (r) = ( 1𝑑

∑
𝑖 𝑟

𝑝

𝑖
)1/𝑝 .

Scavenger: We use these two functions to reflect the conflicting

nature of the objectives:

(1) Resource-Damage Threshold Scalarization: 𝑅𝐷
threshold

(𝑅, 𝐷) =
𝑅 −max(0, (𝐷 − threshold)3), where 𝑅 is number of resources

collected and 𝐷 is damage taken from enemies. The threshold

parameter represents a budget after which the penalty from

the damage starts to apply.

(2) Cobb-Douglas Scalarization:𝐶𝐷𝜌 (𝑅, 𝐷) = 𝑅𝜌 (1/(𝐷 + 1)) (1−𝜌 ) .
This function is inspired by economic theory and balances

trade-offs between 𝑅 and 𝐷 .

6.4 Experiment Settings and Hyperparameters
We run all the algorithms using 10 random initializations with a

fixed seed each. We set w = (1/𝑑) × 1 (uniform weight) for LinScal,

𝐼 = 𝑇 /𝑑 for Mixture and Mixture-M, 𝛼 = 1 for RAVI, and learning

rate of 0.1 for WelfareQ. Three of our baselines (Mixture, LinScal,

and WelfareQ) are online algorithms. Thus, to ensure a fair com-

parison, we tuned their hyperparameters using grid-search and

evaluated their performances after they reached convergence. For

model-based approaches (RAVI and Mixture-M), we run the algo-

rithms and evaluate them after completion. We set the convergence

threshold to Δ = 10
−7

for Mixture-M. Some environment-specific

settings are discussed below.

Taxi: To ensure numerical stability of𝑊
Nash

, we optimize its

smoothed log-transform𝑊SPF (r, 𝜆) =
∑𝑑
𝑖=1 ln(𝑟𝑖 + 𝜆), but during

evaluations we still use𝑊
Nash

. We set 𝜆 = 10
−8
, 𝑇 = 100. 𝛾 = 1,

size of the grid world to be 15 × 15 with 𝑑 ∈ {2, 3, 4, 5} reward
dimensions.

Scavenger: We set threshold for 𝑅𝐷
threshold

to 2 and 𝜌 = 0.4

for 𝐶𝐷𝜌 . The size of the grid world is 15 × 15 with six resources

scattered randomly and 1/3 of the cells randomly populated with

enemies. We use 𝑇 = 20 and 𝛾 = 1.

6.5 Results
As shown in Table 1, we found that RAVI is able to generally out-

perform all baselines across all settings in both Taxi and Scavenger

environments in terms of optimizing our nonlinear functions of

interest.

On the Taxi environment, we observe that LinScal is unable to

achieve any performance except for𝑊𝑝=0.9. This is an expected

behavior due to the use of a linearly scalarized policy and the fact

that 𝑝-welfare converges to utilitarian welfare when 𝑝 → 1. Among

the baseline algorithms, we observe that WelfareQ performs the

best on 𝑑 = 5, whereas Mixture and Mixture-M fail due to the use

of a fixed interval length for each optimal policy. Furthermore, the

advantage of RAVI becomes more obvious as 𝑑 increases.

§𝑝-welfare is equivalent to generalized mean. If 𝑝 → 0, 𝑝-welfare converges to Nash

welfare; if 𝑝 → −∞, 𝑝-welfare converges to egalitarian welfare; and 𝑝-welfare is the

utilitarian welfare when 𝑝 = 1.
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Table 1: Comparison with baselines in terms of ESR.

Environment Dimension Function RAVI Mixture LinScal WelfareQ Mixture-M

Taxi 𝑑 = 2 𝑊
Nash

7.555±0.502 5.136±0.547 0.000±0.000 5.343±0.964 6.406±0.628
𝑊

Egalitarian
3.000±0.000 3.483±0.894 0.000±0.000 0.387±0.475 4.065±0.773

𝑊𝑝=−10 5.279±0.000 3.623±0.522 0.000±0.000 2.441±1.518 4.356±0.829
𝑊𝑝=0.001 7.404±0.448 5.363±0.844 0.000±0.000 4.977±1.514 6.406±0.628
𝑊𝑝=0.9 9.628±0.349 5.947±0.488 7.833±0.908 7.999±0.822 7.052±0.412

𝑑 = 3 𝑊
Nash

4.996±0.297 3.250±0.584 0.000±0.000 2.798±1.462 3.461±0.459
𝑊

Egalitarian
2.000±0.000 2.030±0.981 0.000±0.000 0.094±0.281 1.660±0.663

𝑊𝑝=−10 3.115±0.000 2.129±0.878 0.000±0.000 2.558±0.812 1.849±0.733
𝑊𝑝=0.001 3.307±0.000 3.118±0.536 0.000±0.000 3.306±1.181 3.462±0.458
𝑊𝑝=0.9 6.250±0.322 3.883±0.329 5.191±0.464 4.834±0.797 4.081±0.266

𝑑 = 4 𝑊
Nash

2.191±0.147 0.579±0.713 0.000±0.000 1.601±0.189 1.122±0.781
𝑊

Egalitarian
1.700±0.483 0.545±0.445 0.000±0.000 0.000±0.000 0.634±0.437

𝑊𝑝=−10 1.029±0.000 0.490±0.490 0.000±0.000 0.689±0.451 0.688±0.475
𝑊𝑝=0.001 2.145±0.129 0.961±0.628 0.000±0.000 1.440±0.511 1.126±0.774
𝑊𝑝=0.9 3.369±0.173 1.230±0.264 2.546±0.174 2.521±0.211 1.689±0.320

𝑑 = 5 𝑊
Nash

2.308±0.185 0.000±0.000 0.000±0.000 1.181±0.613 0.000±0.000
𝑊

Egalitarian
1.700±0.483 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

𝑊𝑝=−10 1.023±0.000 0.000±0.000 0.000±0.000 0.407±0.501 0.000±0.000
𝑊𝑝=0.001 2.000±0.102 0.018±0.020 0.000±0.000 1.309±0.490 0.025±0.025
𝑊𝑝=0.9 3.289±0.147 1.220±0.141 2.844±0.250 2.879±0.263 1.761±0.148

Scavenger 𝑑 = 2 𝐶𝐷𝜌=0.4 1.336±0.240 0.655±0.558 0.874±0.605 0.713±0.645 0.729±0.296
𝑅𝐷

threshold=2 3.400±0.843 0.900±0.943 1.200±0.872 1.444±1.423 0.845±2.938

Taxi,𝑊Nash, 𝑑 = 5 Taxi,𝑊𝑝=0.9, 𝑑 = 4 Scavenger,𝐶𝐷𝜌=0.4 Scavenger, 𝑅𝐷threshold

Taxi,𝑊Nash, 𝑑 = 2 Taxi,𝑊𝑝=0.9, 𝑑 = 3 Taxi,𝑊𝑝=0.001, 𝑑 = 4 Taxi,𝑊𝑝=−10, 𝑑 = 5

Figure 3: Comparisons with baselines, with learning curves included.

On the Scavenger environment, due to 𝑑 = 2 and having a dense

reward signal, all algorithms are able to achieve reasonable values

for the welfare functions. We also observe that RAVI significantly

outperforms all baselines.

Given that Mixture, LinScal, and WelfareQ are online algorithms,

for the sake of completeness, we provide the visualizations of the

learning curves of the baseline algorithms comparedwith RAVIwith

different 𝛼 values in Figure 3, where the model-base approaches
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are shown as horizontal dotted lines. In general, we found that

the online algorithms tend to converge early, and we observe a

degradation in performance as 𝛼 increases. The full set of results

can be found at ??.

6.6 Ablation Study on Discretization Factor
To further evaluate the effect of 𝛼 on RAVI, we also run two sets of

experiments:

(1) we test RAVI performance on settings with 𝛾 < 1 and adopt 𝛼

values that are substantially greater than those necessary for

worst-case theoretical guarantees from the previous analysis.

This set of results can be found at ??. Note that the empirical

performance of RAVI is substantially better than is guaranteed

by the previous theoretical analysis.

(2) With 𝛾 = 1, we evaluate RAVI using larger alpha values and

investigate how much performance degradation occurs. This

set of experiments can be found in ??.

7 REMOVING KNOWLEDGE OF THE MODEL
We have shown that RAVI can efficiently find an approximately

optimal policy given access to a model of the environment. In

this section we observe that the model can be jointly learned by

extending the classical E3 algorithm [20] to the nonlinear multi-

objective case by lifting the exploration algorithm to the multi-

objective setting and using RAVI for the exploitation subroutine.

We call the resulting combined algorithm Reward-Aware-Explore

or Exploit (or RAEE for short). We briefly explain the high level

ideas and state the main result here and defer further discussion to

the appendix due to space constraints.

The algorithm consists of two stages, exploration and exploita-

tion. The algorithm alternates between two stages: exploration and

exploitation. Each stage is outlined here at a high level, with more

detailed steps provided in the appendix.

• Explore. At a given state, choose the least experienced action

and record the reward and transition. Continue in this fashion

until reaching a known state, where we say a state is known if it

has been visited sufficiently many times for us to have precise

local statistics about the reward and transition functions in that

state.

• Exploit. Run RAVI from the current known state 𝑠 in the induced

model comprising the known states and with a single absorbing

state representing all unknown states. If the welfare obtained by

this policy is within the desired error bound of 𝑉 ∗ (𝑠, 0,𝑇 ), then
we are done. Otherwise, compute a policy to reach an unknown

state as quickly as possible and resume exploring.

Theorem 2 (RAEE). Let 𝑉 ∗ (𝑠, 0,𝑇 ) denote the value function of

the policy with the optimal expected welfare in the MOMDP 𝑀 start-

ing at state 𝑠 , with 0 ∈ R𝑑 accumulated reward and 𝑇 timesteps

remaining. Then for a uniformly continuous welfare function 𝑊 ,

there exists an algorithm 𝐴, taking inputs 𝜖 , 𝛽 , S,A, and𝑉 ∗ (𝑠, 0,𝑇 ),
such that the total number of actions and computation time taken by

𝐴 is polynomial in 1/𝜖 , 1/𝛽 , |S|, |A|, the horizon time𝑇 = 1/(1−𝛾)
and exponential in the number of objectives 𝑑 , and with probability

at least 1− 𝛽 , 𝐴 will halt in a state 𝑠 , and output a policy 𝜋 , such that

𝑉 𝜋
𝑀
(𝑠, 0,𝑇 ) ≥ 𝑉 ∗ (𝑠, 0,𝑇 ) − 𝜖 .

We provide additional details comparing our analysis with that

of [20] in the appendix.

As we do not regard the learning of the Multi-Objective Markov

Decision Process (MOMDP) as our primary contribution, we choose

to focus the empirical evaluation on the nonlinear optimization

subroutine, which is the most crucial modification from the learning

problem with a single objective. The environments we used for

testing the optimality of RAVI are very interesting for optimizing a

nonlinear function of the rewards, but are deterministic in terms of

transitions and rewards, making the learning of these environments

less interesting empirically.

8 CONCLUSION AND FUTUREWORK
Nonlinear preferences in reinforcement learning are important, as

they can encode fairness as the nonlinear balancing of priorities

across multiple objectives or risk attitudes with respect to even a

single objective. Stationary policies are not necessarily optimal for

such objectives. We derived an extended form of Bellman optimality

to characterize the structure of optimal policies conditional on

accumulated reward. We introduced the RAVI and RAEE algorithms

to efficiently compute an approximately optimal policy.

Our work is certainly not the first to study MORL including with

nonlinear preferences. However, to the best of our knowledge, our

work is among the first to provide worst-case approximation guar-

antees for optimizing ESR in MORL with nonlinear scalarization

functions.

While our experiments demonstrate the utility of RAVI in spe-

cific settings, there are many possible areas of further empirical

evaluation including stochastic environments and model learning

alongside the use of RAVI as an exploitation subprocedure as de-

scribed in theory in Section 7 with RAEE. Further details on the

limitations of our experiments are discussed in ??.
Our results introduce several natural directions for future work.

On the technical side, one could try to handle the case of stochastic

reward functions or a large number of objectives. Another direction

would involve incorporating function approximation with deep

neural networks into the algorithms to enable scaling to even larger

state spaces and generalizing between experiences. Our theory

suggests that it may be possible to greatly enrich the space of

possible policies that can be efficiently achieved in these settings

by conditioning function approximators on accumulated reward

rather than necessarily considering sequence models over arbitrary

past trajectories; we see this as the most exciting next step for

applications.

between
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