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ABSTRACT
We study the problem of dividing homogeneous divisible goods

among agents with non-linear valuations. Specifically, the value

that an agent gains from a given good depends only on the amount

of the good they receive, and is not necessarily linear with re-

spect to the amount. For instance, under one-breakpoint piecewise-

constant valuations, each agent specifies a threshold for each good

such that this agent receives utility zero (resp., full utility of the

good) when getting an amount below (resp., at least) the threshold.

Given non-linear valuations that are additive across the goods, we

focus on designing fair allocation algorithms and consider two well-

known fairness properties: the maximin share (MMS) guarantee

and envy-freeness (EF). For MMS, we devise an algorithm which

always produces a
1

2𝑛−1 -MMS allocation for 𝑛 agents with arbitrary

non-decreasing valuations. It is worth noting that this algorithmic

result is almost tight as we give an impossibility of guaranteeing

more than 1/𝑛 approximation to MMS, even when agents have one-

breakpoint piecewise-constant valuations. For 𝑛 ≤ 3 agents, we

show the ratio 1/𝑛 is tight. For EF, we show it is NP-hard to check the

existence of an EF and Pareto optimal (PO) allocation for 𝑛 agents

and at least three goods, even when agents have one-breakpoint

piecewise-constant valuations. We complement the hardness result

by considering the case with a single divisible good, and devis-

ing a polynomial-time algorithm to check whether an EF and PO

allocation exists or not for agents with piecewise-linear valuations.
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1 INTRODUCTION
The allocation of scarce resources among multiple agents with dif-

ferent preferences is a fundamental issue that arises frequently in

our society, for example, when dividing cloud computing resources
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such as processing time, memory, and communication bandwidth,

or when handing out research grants. We often want to ensure that

the allocation is fair to the agents, and possibly ideal in terms of

other desiderata such as computation tractability, economic effi-

ciency, etc. When the resource to be allocated is divisible and het-

erogeneous, the problem is commonly known as cake cutting [36],

with the cake serving as a metaphor for heterogeneous divisible

resource, and has been extensively studied by mathematicians,

economists, political scientists, and more recently computer scien-

tists [15, 29, 33, 35, 38].

The rich literature of cake cutting provides several ways to cap-

ture fairness, with the two most prominent notions are proportion-

ality (a fair-share-based concept) and envy-freeness (a comparison-

based fairness concept). An allocation is said to be proportional if

each of the 𝑛 agents receives a utility of at least 1/𝑛 of her total

value for all resources [36], and envy-free (EF) if every agent values

her own bundle the most in the allocation [24]. Both notions can

always be satisfied [36, 37], admit discrete and bounded protocols in

the Robertson-Webb query model [5, 35], and have been examined

together with economic efficiency considerations such as being

Pareto optimal (PO) or maximizing social welfare [7, 12, 20, 34].

As is common in the cake cutting literature, agents are assumed

to have additive valuations across different pieces of the cake, yet

the valuation function within each piece can be highly compli-

cated. Despite being a versatile model for fair division of divisible

resources such as land, time, money, and computational resources,

it fails to capture the natural scenario where agents care only about

how much each divisible resource they receive rather than which

part, and potentially do not have linear valuations in proportion to

the amount they receive, as discussed in a few papers [9, 17, 18, 23].

More specifically, consider the following real-world applications.

• Computational resources. Given computational resources such

as CPU time, memory and communication bandwidth to be di-

vided between various users, each user requires at least a certain

amount of resources to achieve meaningful performance in their

computational tasks. Some user may have CPU-intensive tasks

and thus benefit more when receiving more CPU-time. Another

user may have a small file, so she gradually gets benefits in pro-

portion to the size of her file being included in the memory but

will stop getting more benefits once the file is fully included.

• Grant money. Agents’ utilities are typically assumed to be propor-

tional with respect to the amount of money they receive. How-

ever, this may not be the case if, for example, a funding agency

has specific guidelines on how much each budget category can
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(a) Piecewise-linear utility
function.

𝑝

𝑣 (𝑝)

(b) One-breakpoint piecewise-
constant utility function.

Figure 1: Examples of non-linear valuations, where 𝑣 (𝑝) spec-
ifies the value of a fraction 𝑝 of the respective good under 𝑣 .

be spent. While some research groups may require equipment

for experiments and be satisfied with receiving a large amount of

funding in the “Equipment” category, other theory groups may

find that most of the funding in this category is irrelevant.

• Space. Lastly, consider the scenario where a hall is shared among

various community groups. One community group needs at least

half the hall to be able to organize a dinner event, and does not

gets any additional benefit until it gets to book the whole hall in

which case the full music system can also be played.

Given that agents have valuations depending on the amount of each

homogeneous divisible resource they receive and the valuations are

non-linear, how shall we fairly allocate the resources among agents?

1.1 Our Contributions
In this paper, we study the fair allocation of divisible resources and

consider a model deviating from the cake-cutting literature. In more

detail, there are 𝑚 homogeneous divisible goods to be allocated

among 𝑛 agents. Each agent has a non-decreasing utility function,

which specifies the value this agent receives from a given good: the

value depends only on the amount of the good she receives and is

not necessarily linear with respect to the amount. Agents’ utilities

are assumed to be additive across different goods. It is worth noting

that our model captures the setting of indivisible-goods allocation

with additive utilities, by letting each agent have any value only

if the agent gets a good in its entirety. The maximin share (MMS)

guarantee is a natural relaxation of proportionality when allocating

indivisible goods [16], and has been extensively studied in various

fair division settings [see, e.g., 2].

The majority of our results concern structured utility functions

such as being piecewise-linear (see Figure 1(a)) or piecewise-constant

with one breakpoint (see Figure 1(b)). The central fairness concepts

in this paper are MMS and envy-freeness. In Section 3, we focus on

MMS, which is satisfied if agents get bundles worth at least their

own maximin share—the largest value an agent can guarantee for

herself if she partitions the goods into 𝑛 parts and gets the worst

part. We present a polynomial-time approximation scheme (PTAS)

to compute approximate MMS values for a constant number of

agents with one-breakpoint piecewise-constant valuations.

When allocating indivisible goods to agents with additive utili-

ties, a constant multiplicative approximation to MMS can always

be achieved [28], with the state-of-the-art factor of

(
3

4
+ 3

3836

)
due

to [1] and an upper bound of
39

40
due to [22]. In our model, however,

it is impossible to guarantee more than 1/𝑛 approximation to MMS,

even for one-breakpoint piecewise-constant valuations. We com-

plement this negative result by devising an algorithm that always

produces a
1

2𝑛−1 -MMS allocation for agents with arbitrary non-

decreasing valuations, asymptotically matching the upper bound.

We then turn to special cases involving up to three agents with

one-breakpoint piecewise-constant valuations, where we show

the approximation ratio 1/𝑛 to MMS is tight. Indeed, our motivat-

ing examples demonstrate that one-breakpoint piecewise-constant

valuations naturally capture a wide range of real-world applica-

tions. Moreover, a good few fair division applications including

dividing resources between different faculties within an institu-

tion or assets between founding members of a company often in-

volves a small number of participants, and quite a few prominent

fair division works deal exclusively with up to four agents [e.g.,

3, 6, 11, 13, 14, 19, 26, 27].

In Section 4, we focus on envy-freeness, which can be satisfied

trivially and vacuously by dividing each good equally among the

agents. We thus also aim to achieve economic efficiency, which is

not guaranteed by dividing each good equally. We show it is NP-

hard to check the existence of an EF and Pareto optimal (PO) alloca-

tion, even for three goods and one-breakpoint piecewise-constant

valuations. For a single good and piecewise-linear valuations, we

devise a polynomial-time algorithm that (i) finds an allocation being

EF and PO among all EF allocations, and (ii) checks the existence

of an EF and PO allocation.

1.2 Related Work
Besides cake cutting, the fair allocation of indivisible goods has

received extensive attention [2, 31, 39]. More recently, the fair allo-

cation of resources of mixed nature has also been explored [30].

Perhaps the works most closely related to ours are the papers by

Caragiannis et al. [18] and Bei et al. [9]. Caragiannis et al. studied

the fair allocation of homogeneous divisible goods in which each

agent’s value depends only on the amount of each good they receive

and valuations are additive across different goods. They mainly fo-

cused on randomized algorithms that achieve ex-ante envy-freeness

and ex-ante approximate-PO among all envy-free lotteries; note

that each deterministic allocation in the support is only required

to be feasible. They also considered more general valuations, and

thus adopted a query model to elicit agents’ valuations and focused

on query complexity. In contrast, we take a deeper dive into more

structured valuations and focus on deterministic allocations which

has guaranteed fairness ex post. To this end, we also examine MMS

that has not been explored for this model.

Bei et al. [9] studied a fair division model with subjective divisi-

bility, in which each good is either completely indivisible to some

agents or completely divisible to other agents (i.e., the agents’ valu-

ation functions are linear with respect to the fraction of each good).

They showed an impossibility of guaranteeing more than
2

3
-MMS,

and this is tight for 2 and 3 agents. A
1

2
-MMS allocation always ex-

ists for any number of agents. They also adapted an envy-freeness

relaxation called “EFM” [8] and investigated its compatibility with

economic efficiency concepts. Our model generalizes theirs as we

allow a broader class of valuations. Nevertheless, we still manage to

give (asymptotically) tight approximation to MMS in various cases.
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There have been works examining the division of a single homo-

geneous divisible good with non-linear valuations [17, 23]. Feige

and Tennenholtz [23] presented a randomized allocation mecha-

nism that gives each agent at least 1/2 of her fair share (i.e., the
expected utility that she would get if she could choose the allocation

rule that maximizes her expected utility). Buermann et al. [17] as-

sumed that the available amount of the single divisible good is given

by a probability distribution, and studied the trade-off between so-

cial welfare and envy-freeness as well as showed computational

intractability of optimizing ex-ante social welfare subject to ex-ante

EF (where randomness comes from the amount of the good).

When allocating resources of different types (e.g., computing re-

sources) to agents with heterogeneous demands for each resource, a

typical and classic assumption is that agents demand the resources

in fixed proportions, known as Leontief preferences [25, 32] in the

economics literature. This assumption requires that the resources

are divisible and agents receive utilities in proportion to the re-

sources allocated to them. Parkes et al. [32] made a more practical

assumption by requiring a minimum, indivisible bundle of resources

for the agents to receive utilities, and they conceptualized it as a step

function. Their negative results (on the incompatibility between

PO, strategyproofness and fairness) hold with a single resource,

meaning that these continue to hold in our setting. The notable

difference between their and our settings is that we assume ad-

ditive utilities between the resources, instead of having the fixed

proportion relations between the resources.

2 PRELIMINARIES
For any positive integer 𝑡 , let [𝑡] := {1, . . . , 𝑡}. Our model includes a

set of𝑛 agents𝑁 = [𝑛] towhomwe allocate a set of𝑚 homogeneous

divisible goods𝑀 = {𝑔1, 𝑔2, . . . , 𝑔𝑚}. We assume in our work that

each agent’s value derived from each good depends on the fraction

of the good allocated to the agent and that this derived value is not

necessarily in proportion to the fraction allocated. Precisely, each

agent 𝑖 ∈ 𝑁 has a utility function 𝑣𝑖 : 𝑀 × [0, 1] → R≥0 such that

𝑣𝑖 (𝑔, 𝑝) specifies the value of a fraction 𝑝 of item 𝑔 ∈ 𝑀 allocated to

agent 𝑖 . Throughout the paper, we assume normalization, meaning

that 𝑣𝑖 (𝑔, 0) = 0 for all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 , and monotonicity (a.k.a.,

“free disposal”), meaning that for all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 , 𝑣𝑖 (𝑔, 𝑝) ≤
𝑣𝑖 (𝑔, 𝑝′) if 𝑝 ≤ 𝑝′. For simplicity, we will write 𝑣𝑖 (𝑔) = 𝑣𝑖 (𝑔, 1).

A bundle of goods𝑀 is represented by an𝑚-dimensional vector

x = (𝑥1, 𝑥2, . . . , 𝑥𝑚), where each coordinate 𝑥 𝑗 ∈ [0, 1] denotes the
fraction of good 𝑔 𝑗 in bundle x. For ease of expression, we will use
“𝑥 𝑗 · 𝑔 𝑗 ” to denote the part of good 𝑔 𝑗 allocated to a bundle. The

bundle x is said to be integral if all goods in the bundle are included

entirely, i.e., 𝑥 𝑗 ∈ {0, 1} for all 𝑗 ∈ [𝑚]. In what follows, we will

make it explicitly clear if we refer to an integral bundle.

We assume that agents’ valuations across different goods are ad-

ditive, i.e., given a bundle x, for all 𝑖 ∈ 𝑁 , 𝑣𝑖 (x) :=
∑

𝑗∈[𝑚] 𝑣𝑖 (𝑔 𝑗 , 𝑥 𝑗 ).
Denote by 𝐴 = (𝐴𝑖,𝑔)𝑖∈𝑁,𝑔∈𝑀 the allocation of goods𝑀 among the

agents, where 𝐴𝑖,𝑔 specifies the fraction of item 𝑔 allocated to 𝑖 ,∑
𝑖∈𝑁 𝐴𝑖,𝑔 = 1 for each 𝑔 ∈ 𝑀 is the feasibility constraint, and

𝐴𝑖 = (𝐴𝑖,𝑔)𝑔∈𝑀 denotes agent 𝑖’s bundle. Each agent 𝑖 derives a

utility of 𝑣𝑖 (𝐴𝑖 ) :=
∑
𝑔∈𝑀 𝑣𝑖 (𝑔,𝐴𝑖,𝑔) under allocation 𝐴.

Under this setting, we consider a few interesting sub-classes of

general utility functions for the agents, namely piecewise-linear,

piecewise-constant, and one-breakpoint piecewise-constant func-

tions. Note that each of the latter is a proper sub-class of the former

classes. A utility function 𝑣 supported on [0, 1] is said to be

• piecewise-linear if, for any 𝑔 ∈ 𝑀 , 𝑣 (𝑔, ·) can be written as a

collection of linear functions; see Figure 1(a) for an illustration.

More formally, for some positive integer 𝑑 :

𝑣 (𝑔, 𝑝) =


𝑎1 · 𝑝 + 𝑏1 if 𝑝 ∈ [𝑐0, 𝑐1)
𝑎2 · 𝑝 + 𝑏2 if 𝑝 ∈ [𝑐1, 𝑐2)
. . .

𝑎𝑑 · 𝑝 + 𝑏𝑑 if 𝑝 ∈ [𝑐𝑑−1, 𝑐𝑑 ],
where, 𝑐0 = 0, 𝑐𝑑 = 1, and for each 𝑗 ∈ [𝑑], 𝑎 𝑗 , 𝑏 𝑗 ∈ R are

the coefficients of the corresponding linear function in segment

[𝑐 𝑗−1, 𝑐 𝑗 ]. We say 𝑐1, 𝑐2, . . . , 𝑐𝑑−1 are the breakpoints of the utility
function. Due to the normalization assumption, we have 𝑏1 =

0. Moreover, since all utility functions are assumed to be non-

decreasing, wemust have 𝑎 𝑗 ≥ 0 for each 𝑗 ∈ [𝑑] and 𝑎 𝑗 ·𝑐 𝑗 +𝑏 𝑗 ≤
𝑎 𝑗+1 · 𝑐 𝑗 + 𝑏 𝑗+1 for each 𝑗 ∈ [𝑑 − 1].
• piecewise-constant if, for any 𝑔 ∈ 𝑀 , 𝑣 is piecewise-linear, and

moreover, 𝑎 𝑗 = 0 for all 𝑗 ∈ [𝑑].
• one-breakpoint piecewise-constant if, for any𝑔 ∈ 𝑀 , 𝑣 is piecewise-

constant, and furthermore, 𝑑 = 2; see, e.g., Figure 1(b).

We will refer to one-breakpoint piecewise-constant valuations

frequently later. To avoid ambiguity, we give an alternative form

(that we will use more extensively): for each 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 ,

𝑣𝑖 (𝑔, 𝑝) =
{
𝑣𝑖 (𝑔) if 𝑝 ≥ 𝑐𝑖,𝑔

0 otherwise,

where 𝑐𝑖,𝑔 ∈ (0, 1] denotes the threshold of agent 𝑖 for good 𝑔 such

that she starts getting positive utility. The valuation can be suc-

cinctly represented by “𝑣𝑖 (𝑔) ·1{𝑝≥𝑐𝑖,𝑔}”, where1{ ·} is the indicator
function that is 1 when agent 𝑖 receives a fraction of good 𝑔 at least

the threshold 𝑐𝑖,𝑔 and 0 otherwise. It is worth noting that when

𝑐𝑖,𝑔 = 1 for all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 , our setting becomes exactly the

indivisible-goods allocation in which agents have additive utilities.

3 MAXIMIN SHARE GUARANTEE
In this section, we investigate the well-known share-based fairness

notion—the maximin share (MMS) guarantee, which was first pro-

posed for indivisible goods [16], and has also been investigated in

settings with a mix of both divisible and indivisible goods [9, 10].

Definition 3.1 (𝛼-MMS). Let Π𝑛 (𝑀) be the set of all 𝑛-partitions
of𝑀 . The maximin share (MMS) of 𝑖 ∈ 𝑁 is

MMS𝑖 (𝑛,𝑀) := max

(𝑃1,...,𝑃𝑛 ) ∈Π𝑛 (𝑀 )
min

𝑗∈[𝑛]
𝑣𝑖 (𝑃 𝑗 ) .

Any partition for which the maximum is attained is called an MMS

partition of agent 𝑖 .

An allocation 𝐴 is said to satisfy the 𝛼-MMS, for some 𝛼 ∈ [0, 1],
if for every agent 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝛼 ·MMS𝑖 (𝑛,𝑀).

We demonstrate agents’ MMS values below.

Example 3.2. Consider an instance involving three agents {1, 2, 3}
and five goods {𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5}. Each agent has the one-breakpoint
piecewise-constant valuation 0.4 · 1{𝑝≥0.3} for exactly two goods,

and the valuation 0.2 · 1{𝑝≥0.8} for the remaining three goods.
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Specifically, agent 1 (resp., 2 and 3) regards goods 𝑔1, 𝑔2 (resp., 𝑔2, 𝑔3
and 𝑔3, 𝑔4) in manner as the first valuation.

It can be verified that the MMS of each agent is 1. We illustrate

an MMS partition of agent 1:

• each of the two goods with breakpoint at 0.3 (i.e., 𝑔1 and 𝑔2)

is divided equally across three different bundles so that its

value 0.4 is attained in all three bundles;

• the three remaining goods with breakpoint at 0.8 are allo-

cated integrally to the three bundles respectively.

𝑔3

1

3
· 𝑔2

1

3
· 𝑔1

0.2

0.4

𝑔4

1

3
· 𝑔2

1

3
· 𝑔1

𝑔5

1

3
· 𝑔2

1

3
· 𝑔1

0.4

A similar MMS partition can be obtained for agents 2 and 3 by

relabelling the goods according to their valuations. The following

is a 0.8-MMS allocation:

• Agent 1 receives {𝑔1, 0.5 · 𝑔2, 𝑔5} and gets utility 1.

• Agent 2 receives {0.5 · 𝑔2, 0.5 · 𝑔3} and gets utility 0.8.

• Agent 3 receives {0.5 · 𝑔3, 𝑔4} and gets utility 0.8.

As we mentioned in previous section, our model captures the

setting of indivisible-goods allocation, in which an agent’s max-

imin share is already NP-hard to compute and this can be seen

from an immediate reduction from Partition [see, e.g., 28]. There

have been polynomial-time approximate schemes (PTASs) designed

to approximate each agent’s maximin share when allocating indi-

visible goods [40], or a mix of heterogeneous cake and indivisible

goods [10]. In our model concerning non-linear valuations over

homogeneous divisible goods, we give a PTAS to approximate an

agent’s maximin share for constant𝑛 and one-breakpoint piecewise-

constant valuations. Its detail, alongwith all other omittedmaterials,

can be found in the full version of our paper [4].

Theorem 3.3. For any constant 𝜀 > 0, there exists a polynomial-

time algorithm that computes an MMS value with an approximation

ratio of (1 − 𝜀)2 for a constant number of agents with one-breakpoint

piecewise-constant valuations.

3.1 Any Number of Agents
We start with an impossibility result. Given a fair division instance,

theMMS approximation guarantee of the instance is the maximum 𝛼

such that the instance admits an 𝛼-MMS allocation. We show that

the worst-case MMS approximation guarantee is at most 1/𝑛.

Theorem 3.4. For𝑛 agents with one-breakpoint piecewise-constant

valuations, the worst-case MMS approximation guarantee is at most
1

𝑛 .

In what follows, we provide an algorithm which always produce

a
1

2𝑛−1 -MMS allocation for agents with non-decreasing valuations,

asymptotically matching the upper bound. The pseudocode can

be found in Algorithm 1. Note that our algorithmic result works

for a much broader valuation class than that being used in the

impossibility result. We remark that one can adopt the value and cut

queries from Caragiannis et al. [18] to access agents’ non-decreasing

valuations. This section is most interested in existence results, and

won’t discuss query or computational complexities.

Algorithm 1: 1

2𝑛−1 -MMS Allocation Algorithm

Input: Agents 𝑁 = [𝑛] and goods𝑀 .

Output: A 1

2𝑛−1 -MMS allocation 𝐴.

1 foreach 𝑖 ∈ 𝑁 do
2 𝐴𝑖 ← ∅
3 Compute agent 𝑖’s maximin share MMS𝑖 (𝑛,𝑀).
// Phase I: Allocate large goods.

4 while ∃𝑔∗ ∈ 𝑀 s.t. 𝑣𝑖 (𝑔∗) ≥ MMS𝑖

2𝑛−1 for some 𝑖 ∈ 𝑁 do
5 foreach 𝑖 ∈ 𝑁 do
6 if 𝑣𝑖 (𝑔∗) ≥ MMS𝑖

2𝑛−1 then
7 𝑥𝑖,𝑔∗ ← argmin𝑝∈[0,1] 𝑣𝑖 (𝑔∗, 𝑝) ≥

MMS𝑖

2𝑛−1
8 else
9 𝑥𝑖,𝑔∗ ← +∞

10 Let 𝑆 ⊆ 𝑁 denote the subset of agents such that: (i) for

all 𝑖 ∈ 𝑆 and for all 𝑗 ∈ 𝑁 \ 𝑆 , 𝑥𝑖,𝑔∗ ≤ 𝑥 𝑗,𝑔∗ , (ii)∑
𝑖∈𝑆 𝑥𝑖,𝑔∗ ≤ 1, and (iii) for all 𝑗 ∈ 𝑁 \ 𝑆 ,∑
𝑖∈𝑆∪{ 𝑗 } 𝑥𝑖,𝑔∗ > 1.

11 foreach 𝑖 ∈ 𝑆 do 𝐴𝑖,𝑔∗ ← 𝑥𝑖,𝑔∗

12 𝑁 ← 𝑁 \ 𝑆 ,𝑀 ← 𝑀 \ {𝑔∗}
// Phase II: Bag-filling for small goods.

13 while |𝑁 | > 1 do
14 Add one good at a time to an empty bundle 𝐵 until

𝑣𝑖 (𝐵) ∈
[
MMS𝑖

2𝑛−1 ,
2·MMS𝑖

2𝑛−1

]
holds for some 𝑖 ∈ 𝑁 .

15 𝐴𝑖 ← 𝐵

16 𝑁 ← 𝑁 \ {𝑖},𝑀 ← 𝑀 \ 𝐵
17 Give all remaining goods to the last agent.

18 return (𝐴1, 𝐴2, . . . , 𝐴𝑛)

Theorem 3.5. For 𝑛 agents with arbitrary non-decreasing valua-

tion functions, Algorithm 1 computes a
1

2𝑛−1 -MMS allocation.

Given agents 𝑁 , goods𝑀 and agents’ MMS values (MMS𝑖 )𝑖∈𝑁 ,

good𝑔 ∈ 𝑀 is said to be a large good if there exists some agent 𝑖 ∈ 𝑁
such that 𝑣𝑖 (𝑔) ≥ MMS𝑖

2𝑛−1 ; otherwise, we will say 𝑔 is a small good.

At a high level, Algorithm 1 has two phases. Algorithm 1 starts

by processing large goods in the first while-loop (lines 4 to 12) by

allocating the goods to agents. After all large goods are allocated,

the remaining goods are allocated to the remaining agents in lines 13

to 16 via bag-filling. We remark that although the last agent gets all

remaining goods, this agent may not necessarily receive a lot more

value due to her non-linear utility over each good. Note that in

the following, MMS𝑖 refers to MMS𝑖 (𝑛,𝑀) (i.e., the maximin share

computed in the original 𝑛-agent instance). Sometimes, we will

refer to maximin share in reduced instances—we will make it clear.

First, we investigate instances that have only small goods.

Lemma 3.6. Given ⟨[𝑛], 𝑀⟩ in which 𝑣𝑖 (𝑔) < 1

2𝑛−1 · MMS𝑖 for

all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 , Algorithm 1 computes a
1

2𝑛−1 -MMS allocation.

Proof. Given the 𝑛-agent instance, the first while-condition
in line 4 is evaluated as false due to the assumption in the lemma

statement that for all agents 𝑖 ∈ 𝑁 and goods 𝑔 ∈ 𝑀 , 𝑣𝑖 (𝑔) <
MMS𝑖

2𝑛−1 . Algorithm 1 thus executes lines 13 to 16 to process this
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instance. Line 14 adds one good at a time to an empty bundle 𝐵

until there exists some agent 𝑖 ∈ 𝑁 such that 𝑣𝑖 (𝐵) ≥ MMS𝑖

2𝑛−1 . As
we have assumed that agents’ valuations across goods are additive,

such an agent 𝑖 always exists. We allocate bundle 𝐵 to agent 𝑖 and

remove both the agent and her goods from further consideration.

Clearly, agent 𝑖 is satisfied with her bundle and gets a utility of at

least
1

2𝑛−1 ·MMS𝑖 .

For all agents 𝑗 ∈ 𝑁 , we have 𝑣 𝑗 (𝐵) ≤
2·MMS𝑗

2𝑛−1 , because 𝑣 𝑗 (𝑔) <
MMS𝑗

2𝑛−1 for all 𝑔 ∈ 𝑀 . It implies that in the reduced instance ⟨𝑁 \
{𝑖}, 𝑀 \ 𝐵⟩, for all agents 𝑗 ∈ 𝑁 \ {𝑖},

MMS𝑗 (𝑛 − 1, 𝑀 \ 𝐵) ≥
(
1 − 2

2𝑛 − 1

)
·MMS𝑗 .

Put differently, whenever we remove one agent and their goods

from consideration in Algorithm 1, the remaining agents’ MMS

values in the reduced instance decrease by at most
2

2𝑛−1 of their

MMS values computed in the original (𝑛-agent) instance.

By the design of the algorithm, it is clear that each removed

agent in lines 13 to 16 is satisfied with their received bundle and

gets a utility of at least
1

2𝑛−1 of their own maximin share (computed

in the original 𝑛-agent instance). It remains to show when there

is only one agent left, this last agent is satisfied with receiving all

remaining goods. This can be seen from the fact that all remaining

goods is worth at least 1− 2· (𝑛−1)
2𝑛−1 = 1

2𝑛−1 of her maximin share. □

In what follows, we investigate instances having large goods.

Lemma 3.7. Given any instance with agents 𝑁 = [𝑛], goods 𝑀
and 𝑣𝑖 (𝑔) ≥ 1

2𝑛−1 · MMS𝑖 for some 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 , lines 4 to 12

of Algorithm 1 computes an allocation (𝐴𝑖 )𝑖∈𝑁 ′ for agents 𝑁 ′ ⊆ 𝑁

and a reduced instance with agents 𝑁 ′′ = 𝑁 \ 𝑁 ′ and goods 𝑀′′ =
𝑀 \⋃𝑖∈𝑁 ′ 𝐴𝑖 such that

(i) for each 𝑖 ∈ 𝑁 ′, 𝑣𝑖 (𝐴𝑖 ) ≥ MMS𝑖

2𝑛−1 ;

(ii) for each 𝑖 ∈ 𝑁 ′′ and 𝑔 ∈ 𝑀′′, 𝑣𝑖 (𝑔) < MMS𝑖

2𝑛−1 ;

(iii) for each 𝑖 ∈ 𝑁 ′′, MMS𝑖 ( |𝑁 ′′ |, 𝑀′′) ≥ |𝑁 ′′ | · 2·MMS𝑖

2𝑛−1 .

Lemma 3.8. Given any (reduced) instance with agents 𝑁 ′′ and
goods 𝑀′′, lines 13 to 16 of Algorithm 1 computes an

1

2𝑛−1 -MMS

allocation for the original instance ⟨𝑁,𝑀⟩.

The correctness of Theorem 3.5 follows from Lemmas 3.6 to 3.8.

3.2 A Small Number of Agents
We now consider cases involving a small number of agents who

have one-breakpoint piecewise-constant valuations over the goods.

Our main result in this subsection is the following: For 𝑛 ≤ 3

agents with one-breakpoint piecewise-constant valuations, there

always exists a
1

𝑛 -MMS allocation. It is worth noting that our algo-

rithmic results match the upper bounds stated in Theorem 3.4. For

𝑛 ≤ 3 agents, we give a tight approximation ratio for MMS.

Our algorithmic result holds trivially when 𝑛 = 1. In what fol-

lows, we will first present an algorithm that can always output

a
1

2
-MMS allocation for two agents in Section 3.2.1. Built up on

this 2-agent-
1

2
-MMS algorithm, we will then present an algorithm

that always outputs a
1

3
-MMS allocation for three agents in Sec-

tion 3.2.2. To establish the algorithms, we present some auxiliary

lemmas which will be proven useful. These lemmas hold for any

number of agents, and connect an original instance and its reduced

instance where some goods are removed. Our first two lemmas, at

a high level, establish the relation between agents’ MMS values in

a reduced instance and those in the original instance.

Lemma 3.9. Let 𝐼 = ⟨𝑁 = [𝑛], 𝑀⟩ be an instance, 𝑀𝑟 ⊆ 𝑀 be a

subset of goods, and 𝐼 ′ = ⟨𝑁,𝑀 \𝑀𝑟 ⟩ be an instance where goods𝑀𝑟

are removed from𝑀 . Then, for any agent 𝑖 ∈ 𝑁 ,

MMS𝑖 (𝑛,𝑀 \𝑀𝑟 ) + 𝑣𝑖 (𝑀𝑟 ) ≥ MMS𝑖 (𝑛,𝑀).

Lemma 3.10. Consider any instance ⟨[𝑛], 𝑀⟩ and fix 𝑖 ∈ [𝑛].
Let 𝑀′ ⊆ 𝑀 be an integral subset of goods such that 𝑣𝑖 (𝑀′) ≤
𝛼 ·MMS𝑖 (𝑛,𝑀). Then, MMS𝑖 (𝑛− 1, 𝑀 \𝑀′) ≥ (1−𝛼) ·MMS𝑖 (𝑛,𝑀).

Our next lemma shows that if we remove a bundle of goods

whose thresholds are greater than 0.5 (for some agent) and whose

value is upper bounded, then the agent still have enough value for

the remaining goods.

Lemma 3.11. Consider an instance ⟨[𝑛], 𝑀⟩ and let 𝑖 ∈ [𝑛]. If
there exists 𝐺 ⊆ 𝑀 such that 𝑐𝑖,𝑔 > 0.5 for all 𝑔 ∈ 𝐺 and 𝑣𝑖 (𝐺) <
𝛼 ·MMS𝑖 (𝑛,𝑀) where 𝛼 ≥ 0 is some non-negative real number, then

𝑣𝑖 (𝑀 \𝐺) ≥ 𝑛−𝛼
𝑛 ·MMS𝑖 (𝑛,𝑀).

We now introduce the concepts of compatible goods and contested

goods. Given any instance ⟨[𝑛], 𝑀⟩, for each 𝑔 ∈ 𝑀 , good 𝑔 is said

to be a compatible good if

∑
𝑖∈[𝑛] 𝑐𝑖,𝑔 ≤ 1; otherwise, the good 𝑔 is

said to be a contested good. In words, compatible goods are those

where the thresholds for all agents sum to at most 1. Intuitively,

each compatible good 𝑔 can be allocated to all agents and each

agent 𝑖 gets a utility of 𝑣𝑖 (𝑔). By applying Lemma 3.9 to compatible

goods, we formalize below the intuition that it suffices to focus on

allocating contested goods.

Given any instance 𝐼 = ⟨𝑁 = [𝑛], 𝑀⟩, let 𝐺𝑐
(resp., 𝐺) be the set

of all compatible (resp., contested) goods in instance 𝐼 such that

𝑀 = 𝐺𝑐 ∪ 𝐺 . Consider a reduced instance 𝐼 ′ = ⟨𝑁,𝐺⟩ with the

same set of agents 𝑁 and all compatible goods 𝐺𝑐
being removed.

Suppose we are given an 𝛼-MMS allocation 𝐴′ = (𝐴′
1
, 𝐴′

2
, . . . , 𝐴′𝑛)

for instance 𝐼 ′, where 𝛼 ∈ [0, 1]. Put differently, for all agents 𝑖 ∈ 𝑁 ,

𝑣𝑖 (𝐴′𝑖 ) ≥ 𝛼 ·MMS𝑖 (𝑛,𝐺).

We construct an allocation 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) as follows:
• for each 𝑔 ∈ 𝐺 and 𝑖 ∈ 𝑁 , let 𝐴𝑖,𝑔 = 𝐴′

𝑖,𝑔
; and

• for each 𝑔 ∈ 𝐺𝑐
, let 𝐴𝑖,𝑔 = 𝑐𝑖,𝑔 for all 𝑖 ∈ [𝑛 − 1] and 𝐴𝑛,𝑔 =

1 −∑
𝑖∈[𝑛−1] 𝑐𝑖,𝑔 .

It can be verified that for each 𝑖 ∈ 𝑁 ,

𝑣𝑖 (𝐴𝑖 ) = 𝑣𝑖 (𝐴′𝑖 ) +
∑︁
𝑔∈𝐺𝑐

𝑣𝑖 (𝑔) = 𝑣𝑖 (𝐴′𝑖 ) + 𝑣𝑖 (𝐺
𝑐 )

≥ 𝛼 ·MMS𝑖 (𝑛,𝐺) + 𝑣𝑖 (𝐺𝑐 )
≥ 𝛼 ·

(
MMS𝑖 (𝑛,𝐺) + 𝑣𝑖 (𝐺𝑐 )

)
≥ 𝛼 ·MMS𝑖 (𝑛,𝑀),

where the last transition is due to Lemma 3.9. As a result, alloca-

tion 𝐴 is an 𝛼-MMS allocation for instance 𝐼 . To summarize, we

have the following lemma.

Lemma 3.12. Let 𝐺 be the set of all contested goods in 𝐼 = ⟨𝑁,𝑀⟩.
For any 𝛼 ∈ [0, 1], if there exists an 𝛼-MMS allocation for instance

⟨𝑁,𝐺⟩, an 𝛼-MMS allocation for instance 𝐼 always exists.
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Algorithm 2: 2-Agent- 1
2
-MMS-Alg( [2], 𝑀)

Input: An instance ⟨𝑁 = [2], 𝑀⟩, where both agents have

one-breakpoint piecewise-constant valuations.

Output: A 1

2
-MMS allocation 𝐴.

1 𝐴1, 𝐴2 ← ∅
// Allocate compatible goods.

2 𝐺𝑐 ← {𝑔 ∈ 𝑀 : 𝑐1,𝑔 + 𝑐2,𝑔 ≤ 1}
3 foreach 𝑔 ∈ 𝐺𝑐 do 𝐴1,𝑔 ← 𝑐1,𝑔 ; 𝐴2,𝑔 ← 1 − 𝑐1,𝑔
// Allocate the remaining contested goods.

4 𝐺 ← 𝑀 \𝐺𝑐

5 foreach 𝑖 ∈ 𝑁 do Compute MMS𝑖 := MMS𝑖 (2,𝐺).
6 if ∃𝑔∗ ∈ 𝐺, 𝑖 ∈ 𝑁 such that 𝑣𝑖 (𝑔∗) ≥ MMS𝑖/2 then
7 if 𝑣3−𝑖 (𝑔∗) ≥ MMS3−𝑖/2 then
8 Relabel 𝑖 as the agent such that 𝑐𝑖,𝑔∗ ≤ 𝑐3−𝑖,𝑔∗ .

9 𝐴𝑖 ← 𝐴𝑖 ∪ {𝑔∗}; 𝐴3−𝑖 ← 𝐴3−𝑖 ∪
(
𝐺 \ {𝑔∗}

)
10 else
11 foreach 𝑖 ∈ 𝑁 do 𝐺𝑖 ← {𝑔 ∈ 𝐺 : 𝑐𝑖,𝑔 > 0.5}
12 if ∃𝑖 ∈ 𝑁 such that 𝑣𝑖 (𝐺𝑖 ) ≥ MMS𝑖 then
13 Add one good integrally at a time from 𝐺𝑖 to an

empty bundle 𝐺∗ until 𝑣𝑖 (𝐺∗) ∈ [MMS𝑖/2,MMS𝑖 ).
14 Let agent 3 − 𝑖 pick her preferred bundle out of 𝐺∗

and 𝐺 \𝐺∗, and allocate the other bundle to 𝑖 .

15 else 𝐴𝑖 ← 𝐴𝑖 ∪
(
𝐺 \𝐺𝑖

)
; 𝐴3−𝑖 ← 𝐴3−𝑖 ∪𝐺𝑖

16 return 𝐴 = (𝐴1, 𝐴2)

3.2.1 Two Agents. We are now ready to present an algorithmwhich

always returns a
1

2
-MMS allocation for two agents having one-

breakpoint piecewise-constant valuations. The pseudocode can

be found in Algorithm 2. In this algorithm, we first allocate all

compatible goods𝐺𝑐
with the respective thresholds to both agents,

followed by allocating the remaining contested goods𝐺 by breaking

into cases based on whether there exists some (contested) good 𝑔 ∈
𝐺 and agent 𝑖 such that 𝑣𝑖 (𝑔) > MMS𝑖 (2,𝐺)/2.

Theorem 3.13. For 𝑛 = 2 agents and one-breakpoint piecewise-

constant valuations, Algorithm 2 returns a
1

2
-MMS allocation.

Proof. Algorithm 2 starts by allocating all compatible goods𝐺𝑐

in line 3. By Lemma 3.12, it suffices to show that Algorithm 2 finds

a 1/2-MMS allocation in the reduced instance 𝐼 ′ = ⟨𝑁,𝐺 = 𝑀 \𝐺𝑐 ⟩
which contains only contested goods. For notational convenience,

in the remainder of this proof, let MMS𝑖 denote MMS𝑖 (𝑁,𝐺), i.e.,
the maximin share in the reduced instance 𝐼 ′.

We distinguish cases based on whether there exists good 𝑔∗ ∈
𝐺 and 𝑖 ∈ 𝑁 such that 𝑣𝑖 (𝑔∗) ≥ MMS𝑖/2. Suppose that the if-
statement in line 6 is evaluated as true, i.e., such a good 𝑔∗ and
agent 𝑖 exists. We first consider the case where 𝑣3−𝑖 (𝑔∗) ≥ MMS3−𝑖

2
,

and assume without loss of generality that 𝑐𝑖,𝑔∗ ≤ 𝑐3−𝑖,𝑔∗ (relabel
the agents if needed). Since good 𝑔∗ is contested, 𝑐3−𝑖,𝑔∗ > 0.5,

which implies that 𝑣3−𝑖 (𝐺 \ {𝑔∗}) ≥ MMS3−𝑖 . We now consider

the other case where 𝑣3−𝑖 (𝑔∗) < MMS3−𝑖
2

. It can be verified that

𝑣3−𝑖 (𝐺\{𝑔∗}) = 𝑣3−𝑖 (𝐺)−𝑣3−𝑖 (𝑔∗) ≥ MMS3−𝑖−MMS3−𝑖
2

=
MMS3−𝑖

2
.

In either case, allocating good 𝑔∗ to agent 𝑖 and all remaining

goods𝐺 \ {𝑔∗} to the other agent in line 9 gives a
1

2
-MMS allocation

for instance 𝐼 ′, as desired.
Finally, we consider the scenario where for all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝐺 ,

𝑣𝑖 (𝑔) < MMS𝑖/2. For each 𝑖 ∈ 𝑁 , let𝐺𝑖 ⊆ 𝐺 consist of goods where

agent 𝑖 has thresholds larger than 0.5. There are two cases:

(i) 𝑣𝑖 (𝐺𝑖 ) ≥ MMS𝑖 for some agent 𝑖 ∈ 𝑁 , and

(ii) 𝑣𝑖 (𝐺𝑖 ) < MMS𝑖 for both agents.

In the first case, because all goods 𝑔 ∈ 𝐺 follow that 𝑣𝑖 (𝑔) <

MMS𝑖/2, we can keep adding goods 𝑔 ∈ 𝐺𝑖 to find a subset𝐺
∗ ⊆ 𝐺𝑖

such that 𝑣𝑖 (𝐺∗) ∈
[
MMS𝑖

2
, 𝑀𝑀𝑆𝑖

)
. By Lemma 3.11, 𝑣𝑖 (𝐺 \𝐺∗) ≥

1

2
·MMS𝑖 . Therefore, allocating the preferred bundle between 𝐺∗

and 𝐺 \ 𝐺∗ to agent 3 − 𝑖 and the other bundle to agent 𝑖 is a

1/2-MMS allocation for instance 𝐼 ′. In the second case, we have

𝑣𝑖 (𝐺𝑖 ) < MMS𝑖 for both agents 𝑖 ∈ 𝑁 . By Lemma 3.11, this implies

𝑣𝑖 (𝐺 \𝐺𝑖 ) ≥ MMS𝑖/2, where 𝐺 \𝐺𝑖 is the set of goods such that

agent 𝑖 has thresholds at most 0.5. However, since all goods in 𝐺

are contested, the sets 𝐺 \𝐺𝑖 and 𝐺 \𝐺3−𝑖 are mutually exclusive.

This means that allocating𝐺 \𝐺𝑖 to agent 𝑖 and all remaining goods

to the other agent satisfies 1/2-MMS in instance 𝐼 ′.
In conclusion, Algorithm 2 finds a 1/2-MMS allocation in the

reduced instance 𝐼 ′. Moreover, due to Lemma 3.12, Algorithm 2 finds

a
1

2
-MMS allocation for the two agents in the original instance. □

3.2.2 Three Agents. Built upon our 2-agent-
1

2
-MMS allocation al-

gorithm, we proceed to present an algorithm that finds a 1/3-MMS

allocation for three agents with one-breakpoint piecewise-constant

valuations. The pseudocode is given as Algorithm 3.

Algorithm 3 takes as input a set of agents 𝑁 = [3] and a set of

goods𝑀 = 𝐺𝑐 ∪𝐺 , where 𝐺𝑐
denotes the set of compatible goods

and𝐺 denotes the set of contested goods. Following Lemma 3.12,

Algorithm 3 starts by allocating all compatible goods 𝐺𝑐
with the

respective thresholds to the three agents. It remains to show that our

algorithm finds a
1

3
-MMS allocation in the reduced instance with

agents 𝑁 and contested goods 𝐺 . Note also that in the following,

for each agent 𝑖 ∈ 𝑁 , MMS𝑖 := MMS𝑖 (3,𝐺).
Based on whether there exists some agent 𝑖 and good 𝑔 ∈ 𝐺

such that 𝑣𝑖 (𝑔) ≥ MMS𝑖/3, our algorithm can be naturally broken

into two components, with lines 5 to 10 processing instances with

some large good and lines 11 to 31 processing remaining instances

with only small goods. Comparing with the 2-agent case presented

previously, our Algorithm 3 is more intricate in the sense that

besides agents’ valuations for a single good or a set of goods, we

also need to reason about the thresholds by which agents start

having positive utilities for a given good. Naturally, this is more

complicated since each good can be allocated to any of the 7 non-

empty subsets of agents {1, 2, 3} based on the instance.

Theorem 3.14. For 𝑛 = 3 agents and one-breakpoint piecewise-

constant valuations, Algorithm 3 returns a
1

3
-MMS allocation.

Before showing Algorithm 3 indeed finds a 1/3-MMS allocation,

we prove a few useful results. The following two lemmas allow

us to form an allocation when there is some “large” good(s) in the

given instance, i.e., an agent 𝑖 values a good 𝑔 at least MMS𝑖/3.

Lemma 3.15. Let 𝑖 ∈ 𝑁 . If there exists 𝑔∗ ∈ 𝐺 such that 𝑐𝑖,𝑔∗ > 1/3,
then 𝑣𝑖 (𝐺 \ 𝑔∗) ≥ MMS𝑖 .
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Algorithm 3: 3-Agent- 1
3
-MMS Allocation

Input: Instance 𝐼 = ⟨𝑁 = [3], 𝑀 = 𝐺𝑐 ∪𝐺⟩, where agents
have one-breakpont piecewise-constant valuations.

Output: A 1/3-MMS allocation 𝐴.

1 𝐴1, 𝐴2, 𝐴3 ← ∅
2 foreach 𝑔 ∈ 𝐺𝑐 do // Allocate compatible goods.
3 𝐴𝑖,𝑔 ← 𝑐𝑖,𝑔∀𝑖 ∈ [𝑛 − 1]; 𝐴𝑛,𝑔 ← 1 −∑

𝑖∈[𝑛−1] 𝑐𝑖,𝑔

4 foreach 𝑖 ∈ 𝑁 do Compute MMS𝑖 := MMS𝑖 (3,𝐺).
// Process instances with some large goods.

5 if ∃𝑔∗ ∈ 𝐺 and 𝑎 ∈ 𝑁 such that 𝑣𝑎 (𝑔∗) ≥ MMS𝑎

3
then

6 Let 𝑆 ⊊ 𝑁 be the set of agents such that 𝑣𝑖 (𝑔∗) ≥ MMS𝑖

3

for all 𝑖 ∈ 𝑆 and

∑
𝑗∈𝑆 𝑐 𝑗,𝑔∗ ≤ 1, breaking ties in favour

of larger |𝑆 | and then smaller

∑
𝑗∈𝑆 𝑐 𝑗,𝑔∗ .

7 foreach 𝑖 ∈ 𝑆 do 𝐴𝑖,𝑔∗ ← 𝑐𝑖,𝑔∗

8 if |𝑆 | = 2 then 𝐴𝑘 ← 𝐴𝑘 ∪𝐺 \ {𝑔∗}, where 𝑘 ∉ 𝑆 .

9 else Call Algorithm 2 on sub-instance ⟨𝑁 \𝑆,𝐺 \ {𝑔∗}⟩
10 return 𝐴 = (𝐴1, 𝐴2, 𝐴3)

// Allocate small goods. Note, ∀𝑖 ∈ 𝑁, 𝑣𝑖 (𝑔) < MMS𝑖
3

.

11 foreach 𝑖 ∈ 𝑁 do 𝐺𝑖 ← {𝑔 ∈ 𝐺 : 𝑐𝑖,𝑔 > 0.5}; 𝐺 ′
𝑖
← 𝐺 \𝐺𝑖

12 if ∃𝑖 ∈ 𝑁 such that 𝑣𝑖 (𝐺𝑖 ) ≥ MMS𝑖 then
13 Partition goods 𝐺 into three integral bundles 𝐺∗

1
,𝐺∗

2
,𝐺∗

3

such that 𝑣𝑖 (𝐺∗
1
), 𝑣𝑖 (𝐺∗

2
), 𝑣𝑖 (𝐺∗

3
) ≥ MMS𝑖/3.

14 if ∃ 𝑗 ≠ 𝑖 values two distinct bundles at least
MMS𝑗

3
then

15 return the preferred bundle to 𝑘 ∈ 𝑁 \ {𝑖, 𝑗}, then the

preferred bundle to 𝑗 , and finally the last bundle to 𝑖 .

16 else
17 Let 𝐺∗𝑎 be the bundle s.t. 𝑣 𝑗 (𝐺∗𝑎) <

MMS𝑗

3
∀𝑗 ≠ 𝑖 .

18 𝐴𝑖 ← 𝐺∗𝑎
19 return 2-Agent-

1

2
-MMS-Alg( [3] \ {𝑖},𝐺 \𝐺∗𝑎)

20 ∀𝑖, 𝑗 ∈ 𝑁,𝐺 ′{𝑖, 𝑗 } ← {𝑔 ∈ 𝐺 : 𝑐𝑖,𝑔 ≤ 0.5 ∧ 𝑐 𝑗,𝑔 ≤ 0.5}

21 if ∃𝐺 ′{𝑖, 𝑗 } s.t. 𝑣𝑖 (𝐺
′
{𝑖, 𝑗 } ) ≥

MMS𝑖

3
and 𝑣 𝑗 (𝐺 ′{𝑖, 𝑗 } ) ≥

MMS𝑗

3

then
22 Relabel agents. Let 𝐺∗ ⊆ 𝐺 ′{𝑖, 𝑗 } be s.t. 𝑣𝑖 (𝐺

∗) ≥ MMS𝑖

3
,

𝑣 𝑗 (𝐺∗) ≥
MMS𝑗

3
, and 𝑣𝑘 (𝐺∗) < 2·MMS𝑘

3
.

23 ∀𝑔 ∈ 𝐺∗, 𝐴𝑖,𝑔 ← 0.5 and 𝐴 𝑗,𝑔 ← 0.5; 𝐴𝑘 ← 𝐺 \𝐺∗
24 else
25 Pick any 𝐺 ′{𝑖,𝑘 } such that 𝑣𝑘 (𝐺 ′{𝑖,𝑘 } ) < MMS𝑘/3.
26 Iteratively move 𝑔 ∈ 𝐺 ′

𝑖
to 𝐺∗

𝑖
until 𝑣𝑖 (𝐺∗𝑖 ) ≥ MMS𝑖/3.

27 ∀𝑔 ∈ 𝐺∗
𝑖
, 𝐴𝑖,𝑔 ← 0.5 and 𝐴 𝑗,𝑔 ← 0.5

28 Iteratively move 𝑔 ∈ 𝐺 ′
𝑗
to 𝐺∗

𝑗
until

𝑣 𝑗 (𝐴 𝑗 ∪𝐺∗𝑗 ) ≥
MMS𝑗

3
.

29 ∀𝑔 ∈ 𝐺∗
𝑗
, 𝐴 𝑗,𝑔 ← 0.5 and 𝐴𝑘,𝑔 ← 0.5

30 Allocate everything else to 𝑘 .

31 return 𝐴 = (𝐴1, 𝐴2, 𝐴3)

Lemma 3.16. Let 𝑖 ∈ 𝑁 . If there exists 𝑔∗ ∈ 𝐺 such that 𝑐𝑖,𝑔∗ > 1/2,
then MMS𝑖 (2,𝐺 \ {𝑔∗}) ≥ MMS𝑖 (3,𝐺).

We now establish the correctness of lines 5 to 10 of Algorithm 3.

Lemma 3.17. Given agents 𝑁 = [3] and (contested) goods 𝐺 , if

there exists some 𝑎 ∈ 𝑁 and some 𝑔∗ ∈ 𝐺 such that 𝑣𝑎 (𝑔∗) ≥ MMS𝑎

3
,

lines 5 to 10 of Algorithm 3 returns a
1

3
-MMS allocation.

Proof. Let 𝑆 ⊆ 𝑁 be the set of agents such that 𝑣𝑖 (𝑔∗) ≥ MMS𝑖

3

for all 𝑖 ∈ 𝑆 and

∑
𝑗∈𝑆 𝑐 𝑗,𝑔∗ ≤ 1, breaking ties in favour of larger |𝑆 |

and then smaller

∑
𝑗∈𝑆 𝑐 𝑗,𝑔∗ . In other words, we can allocate a frac-

tion 𝑐𝑖,𝑔∗ of good 𝑔∗ to each agent 𝑖 ∈ 𝑆 and the agent receives

a utility of at least
MMS𝑖

3
. Recall that we are allocating contested

goods, meaning that good 𝑔∗ can be allocated to at most two agents.

Clearly, |𝑆 | ≥ 1, as the if-condition in line 5 is evaluated as true.

Below, we distinguish two cases based onwhether |𝑆 | = 2 or |𝑆 | =
1. When |𝑆 | = 2, since we break ties in favour of smaller

∑
𝑗∈𝑆 𝑐 𝑗,𝑔∗ ,

the agent 𝑘 ∉ 𝑆 must either have 𝑐𝑘,𝑔∗ > 1/3, or 𝑣𝑘 (𝑔∗) < MMS𝑘

3
.

In the first case, Lemma 3.15 implies that 𝑣𝑘 (𝐺 \ {𝑔∗}) ≥ MMS𝑘 ;

and in the second case, we have 𝑣𝑘 (𝐺 \ {𝑔∗}) > MMS𝑘 − MMS𝑘

3
=

2MMS𝑘

3
. This implies that allocating𝐺 \ {𝑔∗} would give a 1/3-MMS

allocation.

When |𝑆 | = 1, let 𝑗 and 𝑘 be the agents not in 𝑆 . For any agent

𝑎 ∈ { 𝑗, 𝑘}, we must have either 𝑐𝑎,𝑔∗ > 1/2 or 𝑣𝑎 (𝑔∗) < MMS𝑎

3
.

In the first case, Lemma 3.16 implies that under the reduced in-

stance 𝐼 ′ = ⟨{ 𝑗, 𝑘},𝐺 \ {𝑔∗}⟩, MMS𝑎 (2,𝐺 \ {𝑔∗}) ≥ MMS𝑎 (3,𝐺);
in the second case, since 𝑣𝑎 (𝑔∗) < MMS𝑎

3
, Lemma 3.10 implies that

MMS𝑎 (2,𝐺 \ {𝑔∗}) ≥ 2

3
MMS𝑎 (3,𝐺). Therefore in both cases, a 1/2-

MMS allocation under instance 𝐼 ′ must correspond to an at least

1/3-MMS allocation under the instance with all three agents and

goods𝐺 . As a result, allocating𝐺 \𝑔∗ to 𝑗 and 𝑘 using Algorithm 2

would give a 1/3-MMS allocation. The conclusion follows. □

In the following, we are concerned with 3-agent instances with

only “small” goods. Formally, for all agents 𝑖 ∈ 𝑁 and all goods 𝑔 ∈
𝐺 , we have 𝑣𝑖 (𝑔) < MMS𝑖/3. For each agent 𝑖 ∈ 𝑁 , let𝐺𝑖 (resp.,𝐺

′
𝑖
)

denote the set of goods 𝑔 such that 𝑐𝑖,𝑔 > 0.5 (resp., 𝑐𝑖,𝑔 ≤ 0.5).

First, we observe that when 𝑣𝑖 (𝐺𝑖 ) ≥ MMS𝑖 for some agent 𝑖 ,

then we can partition goods𝐺 into three integral bundles such that

all three bundles are worth at least MMS𝑖/3.
Lemma 3.18. Let 𝑖 ∈ [3] and suppose that 𝑣𝑖 (𝑔) < MMS𝑖/3 for all

goods 𝑔 ∈ 𝐺 . If 𝑣𝑖 (𝐺𝑖 ) ≥ MMS𝑖 , then 𝐺 can be partitioned into three

integral bundles each of which is worth at least MMS𝑖/3.
We now establish the correctness of lines 11 to 31 of Algorithm 3.

Lemma 3.19. Given agents 𝑁 = [3] and (contested) goods𝐺 , if for

all goods 𝑔 ∈ 𝐺 and agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝑔) < MMS𝑖/3, lines 11 to 31
Algorithm 3 returns a 1/3-MMS allocation.

The proof of Theorem 3.14 follows from Lemmas 3.17 and 3.19.

4 EF AND PARETO OPTIMAL ALLOCATIONS
In this section, we focus on envy-freeness. To set the stage, we first

define several relevant concepts.

Definition 4.1 (EF). An allocation 𝐴 is said to be envy-free (EF) if,

for every pair of agents 𝑖, 𝑗 ∈ 𝑁 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ).
Definition 4.2 (PO). Given an allocation𝐴, another allocation𝐴′ =

(𝐴′
𝑖
)𝑖∈𝑁 Pareto dominates 𝐴 if 𝑣𝑖 (𝐴′𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all 𝑖 ∈ 𝑁 and

𝑣 𝑗 (𝐴′𝑗 ) > 𝑣 𝑗 (𝐴 𝑗 ) for some 𝑗 ∈ 𝑁 . An allocation is said to be Pareto

optimal (PO) if no other allocation Pareto dominates it.
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Definition 4.3. An allocation 𝐴 is said to be EF-constrained-PO

if 𝐴 is EF and no other envy-free allocation 𝐴′ exists such that

𝑣𝑖 (𝐴′𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all 𝑖 ∈ 𝑁 and 𝑣𝑖 (𝐴′𝑗 ) > 𝑣𝑖 (𝐴 𝑗 ) for some 𝑗 ∈ 𝑁 .

A PO allocation is guaranteed to exist for divisible goods, re-

gardless of the utility function. While an EF allocation of multiple

divisible goods also always exists in our context since each item can

be equally divided among agents, such an allocation is often not

PO. This raises the issue of achieving both EF and PO simultane-

ously, and for what instances does an EF and PO allocation always

exists. Under the indivisible goods setting, it is well established that

determining whether an EF allocation exists for multiple goods

is NP-hard, and the problem of finding an allocation that satisfies

both EF and PO is even more computationally complex [21]. In our

model, we show even when there are 3 goods, determining whether

an EF and PO allocation exists is NP-hard.

Theorem 4.4. The existence of an EF and PO allocation is NP-hard

for𝑚 ≥ 3 and one-breakpoint piecewise-constant valuations.

In the reminder of this section, we examine the single-good case,

which has been explored in related but different contexts [17, 22].

4.1 Single Good Allocation
Wepresent an algorithm that efficiently computes an EF-constrained

PO allocation for a single good, which can then be used to determine

whether an EF and PO allocation exists. For ease of notation and

since there is only𝑚 = 1 good concerned, we denote 𝑣𝑖 (𝑝) = 𝑣𝑖 (𝑔, 𝑝)
as a function of allocated proportion in this section only. Similarly,

we denote 𝐴𝑖 = 𝐴𝑖,𝑔 as the proportion allocated to agent 𝑖 under 𝐴.

Let 𝑠𝑖 (𝑏) represent the minimum proportion 𝑠 such that 𝑣𝑖 (𝑠) =
𝑣𝑖 (𝑏); let 𝐵 = {𝑏1, . . . , 𝑏𝑘 } denotes all breakpoints across all agents.
The proposed algorithm operates in three stages to ensure EF-

constrained PO in the allocation:

(1) Identify the largest breakpoint 𝑏 𝑗 such that

∑
𝑖∈𝑁 𝑠𝑖 (𝑏 𝑗 ) ≤ 1.

Allocate to each agent 𝑖 a portion of the good with 𝐴𝑖 = 𝑠𝑖 (𝑏 𝑗 ).
(2) Let 𝜖 denote a small remainder of the good, and define 𝐿 as the

set of agents such that, for all 𝑖 ∈ 𝐿, 𝑠𝑖 (𝑏 𝑗 + 𝜖) > 𝑏 𝑗 . Adjust the

allocation for each agent 𝑖 ∈ 𝐿 as:

𝐴𝑖 = min

(
𝑏 𝑗+1 − 𝜖, 𝑏 𝑗 +

1 −∑
𝑘∈𝑁 𝑠𝑘 (𝑏 𝑗 )
|𝐿 |

)
,

while keeping the allocation for other agents unchanged.

(3) Allocate the remaining portion of the good in such a way that

no agent gets 𝑏 𝑗+1 proportion of the good.

Since there are polynomially many breakpoints, the algorithm runs

in polynomial time. We now show that the algorithm returns an

EF-constrained PO allocation.

Lemma 4.5. The allocation found by Algorithm 4 is EF.

Lemma 4.6. No EF allocation Pareto dominates the allocation found

by Algorithm 4.

Combining Lemmas 4.5 and 4.6, we show that the allocation

found by Algorithm 4 is EF-constrained PO, and thus the following

theorem follows.

Theorem 4.7. An EF-constrained PO allocation always exist and

can be found in polynomial time for a single divisible good with

piecewise-linear utility functions.

Algorithm 4: EF-constrained PO allocation

Input: An instance 𝐼 = (𝑁,𝑀).
Output: An EF-constrained PO allocation 𝐴

1 𝑗 ← 0

2 while
∑
𝑖∈𝑁 𝑠𝑖 (𝑏 𝑗+1) ≤ 1 do 𝑗 = 𝑗 + 1

3 foreach 𝑖 ∈ 𝑁 do 𝐴𝑖 ← 𝑠𝑖 (𝑏 𝑗 )
4 𝐿 ← ∅
5 foreach 𝑖 ∈ 𝑁 do
6 if 𝑠𝑖 (𝑏 𝑗 + 𝜖) > 𝑏 𝑗 then 𝐿 ← 𝐿 ∪ 𝑖

7 foreach 𝑖 ∈ 𝐿 do 𝐴𝑖 ← min

(
𝑏 𝑗+1 − 𝜖, 𝑏 𝑗 +

1−∑𝑖∈𝑁 𝑠𝑖 (𝑏 𝑗 )
|𝐿 |

)
8 while

∑
𝑖∈𝑁 𝐴𝑖 < 1 do

9 find 𝑖 such that 𝐴𝑖 < 𝑏 𝑗+1 − 𝜖
10 𝐴𝑖 ← min(𝑏 𝑗+1 − 𝜖, 1 +𝐴𝑖 −

∑
𝑗∈𝑁 𝐴 𝑗 )

11 return 𝐴

Further, one can easily show that any EF and PO allocation must

itself be EF-constrained PO and PO. However, it turns out a stronger

result holds for𝑚 = 1 good: an EF and PO allocation exists if and

only if the EF-constrained PO allocation found by Algorithm 4 is

also PO. This is proved in the following theorem.

Theorem 4.8. The existence of an EF and PO allocation can be

checked in polynomial time for a single divisible good with piecewise-

linear utility functions.

5 DISCUSSION
In this paper, we have studied a fair division model where a set of

homogeneous divisible goods are allocated among agents who have

non-linear valuations in the sense that each agent’s value depends

only on the amount of each good she receive. We focus on the

fair-share-based notion of MMS and the comparison-based fairness

notion of envy-freeness. In more detail, we give tight or asymp-

totically tight approximation to MMS in various cases. For envy-

freeness, we explore computational complexity of checking the

existence of an envy-free and PO allocation. Since one-breakpoint

piecewise-constant valuations capture a wide range of real-world

applications and can be easily elicited from agents in practice, it

would be intriguing to fully understand whether we can guarantee

1

𝑛 -MMS for 𝑛 agents—we conjecture that the answer is affirmative,

and the computational complexity of checking the existence of an

EF and PO allocation for exactly two goods.

In future research, since complementarity and substitutability

are common in practice, it would be interesting to consider compact

but more expressive valuations that relax our assumption of values

across different goods being additive. As one possibility, we could

let each agent has a utility function 𝑣 ((𝑝 𝑗 ) 𝑗∈[𝑚] ) that specifies the
value for getting fraction 𝑝1 of item 𝑔1, 𝑝2 of item 𝑔2, and so on.
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