
Reinforcement Learning Based Simulated Annealing
Nathan Qiu

Stony Brook University

Stony Brook, United States of America

nathanqiu07@gmail.com

Daniel Liang

Stony Brook University

Stony Brook, United States of America

daniel.liang.2@stonybrook.edu

ABSTRACT
Simulated Annealing (SA) is a stochastic optimization algorithm

widely employed to approximate the global optimum of an en-

ergy function in both discrete and continuous problem domains.

As an extension of conventional gradient descent methods, SA

probabilistically accepts worse solutions to escape local optima,

thereby enhancing the exploration of the solution space. SA’s per-

formance is highly contingent upon specific components, notably

the neighbor proposal distribution and the temperature annealing

schedule. Recent advancements such as Neural SA have improved

upon traditional SA by adopting a reinforcement learning perspec-

tive, interpreting the neighbor proposal distribution as a learnable

policy. Neural SA outperforms vanilla SA algorithms across various

combinatorial optimization benchmarks and exhibits scalability

and computational efficiency for larger problems. However, its per-

formance remains inferior to standard commercial solvers, and it is

not very generalizable across continuous problems. In this work,

we introduce Reinforcement Learning Based Simulated Annealing

(RL Based SA), a significant enhancement over Neural SA in terms

of performance and generalizability. RL Based SA modifies the state

parameters to include the change in energy from SA. It also replaces

the multilayer perceptron neural networks trained using proximal

policy optimization (PPO) with long short-term memory (LSTM)

neural networks. This substitution enables the processing of time-

series inputs of variable lengths, allowing the utilization of the en-

tire SA rollout as input. We demonstrate that RL Based SA achieves

superior results over Neural SA, vanilla SA, and adaptive SA, while

attaining performance comparable to standard solvers in terms

of solution quality and runtime across a spectrum of discrete and

continuous problems. The benchmarks evaluated include the Knap-

sack, Bin Packing, and Traveling Salesperson problems, as well as

continuous optimization functions such as Rosenbrock, Ackley, and

Eggholder functions, and we presented training and convergence

time comparisons on each function to highlight the computational

trade-offs of our approach. Additionally, we show that RL Based

SA is generalizable across different continuous problems, robustly

scalable with respect to problem size, and computationally efficient.

KEYWORDS
Reinforcement Learning, Simulated Annealing, Combinatorial Op-

timization

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

ACM Reference Format:
Nathan Qiu and Daniel Liang. 2025. Reinforcement Learning Based Simu-

lated Annealing. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Combinatorial optimization (CO) problems are widespread in vari-

ous real-world applications, including logistics, resource allocation,

scheduling, and network design. Efficient solutions are crucial, as

suboptimal ones can cause financial losses, higher costs, and adverse

environmental impacts [33]. However, the inherent computational

complexity of CO problems, characterized by NP-hardness, makes

exact algorithms impractical for large instances. This necessitates

the use of metaheuristics, which are general problem solving frame-

works that can provide near-optimal solutions within reasonable

timeframes [20].

Simulated Annealing (SA) is a metaheuristic inspired by the an-

nealing process in metallurgy. It approximates the global optimum

by probabilistically accepting both improvements and occasional

worse solutions, enhancing exploration and helping escape local

minima [7, 30]. Despite its simplicity and broad applicability, SA’s

performance relies on careful tuning of components such as the

neighbor proposal distribution and temperature schedule, which

limits scalability and adaptability across different problems [4].

Recent advances in Simulated Annealing integrate machine

learning, particularly reinforcement learning (RL), to enhance per-

formance. For example, [2, 31] use RL to generate and refine candi-

date solutions. However, these methods focus on initial solutions or

partial policy parameters rather than learning the full proposal dis-

tribution. Neural SA [5] models the neighbor proposal distribution

as a learnable policy, improving scalability and efficiency on combi-

natorial benchmarks. However, it still underperforms commercial

solvers and lacks generalizability for continuous problems.

In this work, we introduce Reinforcement Learning Based Simu-

lated Annealing (RL Based SA), enhancing both performance and

generalizability. By framing SA within an RL approach, we optimize

neighbor generation, automate parameter tuning, and enable dy-

namic adaptation for diverse problems. RL Based SA preserves SA’s

guaranteed convergence while improving solution quality across

various benchmarks. We evaluate RL Based SA on three discrete

problems: the Knapsack, Bin Packing, and Traveling Salesperson

problems, and three continuous functions: the Rosenbrock, Ackley,

and Eggholder functions.

2 BACKGROUND AND RELATEDWORK
2.1 Simulated Annealing Algorithm
Simulated Annealing (SA) is a probabilistic optimization technique

designed to find an approximate global optimum of a function in

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1718

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

a large search space, especially when the search space contains

numerous local optima. Inspired by the physical process of anneal-

ing in metallurgy, SA emulates the cooling of a material to reach

a state of minimum energy. The algorithm starts with an initial

solution and a high "temperature," which allows it to accept not

only improvements but also occasional worsening in the objective

function. This characteristic enables the algorithm to escape local

minima [7, 30].

First, the algorithm starts with an initial solution 𝑥0 and an ini-

tial temperature 𝑇0. The initial solution can be chosen randomly

or based on some heuristic. For each iteration 𝑘 , a new candidate

solution 𝑥 ′ is generated from the current solution 𝑥𝑘 using a neigh-

bor proposal distribution 𝑁 (𝑥𝑘). This distribution defines how the

algorithm explores the neighboring solutions. Common strategies

include small random perturbations or moves along specific dimen-

sions. Then, the change in the objective function, also known as

the energy function, is calculated Δ𝐸 = 𝐸 (𝑥 ′) − 𝐸 (𝑥𝑘) [19].
To decide whether to accept the new solution 𝑥 ′, the Metropolis-

Hastings criterion is applied. Specifically, the acceptance probability

is defined as [3]:

𝑃accept (𝑥 ′) =

1, if Δ𝐸 ≤ 0,

exp

(
−Δ𝐸
𝑇𝑘

)
, if Δ𝐸 > 0.

This criterion ensures that any solution that improves the objec-

tive function (Δ𝐸 ≤ 0) is accepted, while solutions that worsen it

(Δ𝐸 > 0) are accepted with a probability that decreases exponen-

tially with Δ𝐸 and increases with temperature 𝑇𝑘 . This mechanism

allows the algorithm to escape local minima by accepting worse

solutions with a certain probability.

Finally, if the new solution 𝑥 ′ is accepted, set 𝑥𝑘+1 = 𝑥
′
; other-

wise, retain the current solution (𝑥𝑘+1 = 𝑥𝑘). As the SA algorithm

progresses, the temperature 𝑇𝑘 is updated according to a cooling

schedule. A commonly used schedule is the exponential cooling

schedule [17], 𝑇𝑘+1 = 𝛼𝑇𝑘 , where 𝛼 ∈ (0, 1) is the cooling rate. The

algorithm continues iterating until a stopping criterion is met, such

as reaching a minimum temperature 𝑇min, a maximum number of

iterations, or a convergence threshold for the objective function.

2.2 Markov Decision Process
In the context of a Markov Decision Process (MDP) [29], defined

byM = (S,A, 𝑅, 𝑃,𝛾), the primary objective is to maximize the

expected return, denoted as E𝜏∼𝑃 (𝜏 |𝜋) [𝑅(𝜏)]. This expected return

is calculated by summing the discounted rewards received over a

trajectory,𝑅(𝜏) = ∑𝐾−1
𝑘=0

𝛾𝑘𝑟𝑘 , where 𝑟𝑘 = 𝑅(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) represents
the immediate reward for transitioning from state 𝑠𝑘 to state 𝑠𝑘+1
via action 𝑎𝑘 . Each trajectory 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝐾) is generated
according to a stochastic policy 𝜋 , which dictates the probability

distribution over actions given the current state, and a transition

kernel 𝑃 , which governs the probability distribution over the next

states. The trajectory’s initial state 𝑠0 is sampled from the start-state

distribution 𝜌0. The goal within this framework is to find a policy

𝜋 that results in the highest expected return, effectively solving the

MDP by optimizing the policy to maximize the cumulative rewards

across the trajectories determined by S,A, 𝑅, 𝑃, and 𝛾 .

2.3 Reinforcement Learning
Reinforcement Learning (RL) is a branch of machine learning where

an agent learns to make decisions by interacting with an environ-

ment to maximize cumulative rewards. Unlike supervised learning,

which relies on labeled data, RL involves learning through trial and

error from the consequences of actions without explicit instruction

[16].

In RL, the agent interacts with the environment over discrete

time steps. At each time 𝑡 , the agent observes the current state 𝑠𝑡 , se-

lects an action 𝑎𝑡 based on a policy 𝜋 (𝑎𝑡 | 𝑠𝑡), and receives a reward
𝑟𝑡 . The environment then transitions to a new state 𝑠𝑡+1 according
to the transition probability 𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡) [16]. Reinforcement

learning can be formally modeled as a Markov Decision Process

(MDP), where the dynamics of the environment are governed by

the transition probability 𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡), which is unknown. The

reward 𝑟𝑡 is typically available at time 𝑡 + 1, providing feedback for

updating the policy.

The agent’s objective is to find an optimal policy 𝜋∗ that maxi-

mizes the expected cumulative discounted reward, defined as:

𝐺𝑡 =

∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1,

where 𝛾 ∈ [0, 1) is the discount factor that balances the importance

of immediate and future rewards [27].

The value function 𝑉 𝜋 (𝑠) represents the expected return when

starting from state 𝑠 and following policy 𝜋 , and is defined as

𝑉 𝜋 (𝑠) = E𝜋 [𝐺𝑡 | 𝑠𝑡 = 𝑠]. Additionally, the optimal value func-

tion𝑉 ∗ (𝑠) is the maximum value achievable from state 𝑠 under any

policy, defined as 𝑉 ∗ (𝑠) = max𝜋 𝑉
𝜋 (𝑠) [27].

2.4 Application of RL on SA and Advantages
over other SA methods

We formulate simulated annealing (SA) within a reinforcement

learning (RL) framework by interpreting neighbor generation and

temperature scheduling as policies, allowing RL methods to learn

optimal proposal distributions and temperature schedules. Unlike

previous works [2, 31] that use RL to generate initial solutions

for SA, we integrate RL directly into SA by making key compo-

nents—specifically the proposal distribution—learnable policies.

Adaptive Simulated Annealing (ASA) improves the proposal dis-

tribution by dynamically adjusting parameters during optimization

based on criteria like neighbor proposal distribution or cooling

scheduling [14, 17]. However, ASA relies on heuristic rules that

may not generalize well across different problems. Applying RL

to SA enables learning adaptive proposal distributions and tem-

perature schedules through experience, automatically adjusting

behavior based on specific problem characteristics.

This approach allows the proposal distribution to be adapted

based on the current state and past experience, enabling more

efficient exploration of the solution space compared to fixed or

heuristically adjusted proposal distributions in vanilla SA and ASA.

Moreover, the temperature schedule can also be learned as part of

the policy, providing further adaptability.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1719

3 PROBLEM SETTING AND METHOD
In this section, we outline the problem setting, and define the MDP

formulation for SA. We then demonstrate how a proposal distribu-

tion can be learned, and describe the architectures of the various

models we employ. Finally, we justify how in RL Based SA, conver-

gence is still guaranteed just like in vanilla SA.

3.1 Problem Setting
The objective is to find the optimal solution X∗ that minimizes (or

maximizes) the energy function 𝐸 (X) over the domain D:

X∗ = argmin

X∈D
𝐸 (X)

This optimization employs the Simulated Annealing (SA) algorithm,

a stochastic technique that mimics the cooling process inmetallurgy

to escape local minima and approach a global optimum.

Algorithm 1 Reinforcement Learning Based Simulated Annealing

Input: Initial state s0 = (x0,𝜓,Δ𝐸,𝑇0), proposal distribution 𝜋 ,
temperature schedule 𝑇1,𝑇2,𝑇3, . . . , energy function 𝐸 (•;𝜓)
Output: Approximate solution x∗

for 𝑖 = 1 : 𝐾 do
Generate action a using policy 𝜋𝜃 (s𝑖)
Propose x′ ← x from action a
Calculate Δ𝐸 ← 𝐸 (x′;𝜓) − 𝐸 (x;𝜓)
Calculate acceptance probability 𝑝 ← exp

(
−Δ𝐸
𝑇

)
Generate a random number 𝑢 ∼ Uniform(0, 1)
if 𝑢 < 𝑝 then

s𝑘+1 ← (x′,𝜓,Δ𝐸,𝑇𝑘+1)
else

s𝑘+1 ← (x𝑘 ,𝜓,Δ𝐸,𝑇𝑘+1)
end if
Update 𝑇 using temperature schedule 𝑇1,𝑇2,𝑇3, . . .

end for
return X

The Simulated Annealing (SA) algorithm systematically explores

the solution space to find an approximate global minimum of the

energy function 𝐸 (X). Starting from an initial solution X0 and

temperature 𝑇0, the algorithm iteratively generates new candidate

solutions by applying a perturbation defined by the policy 𝜋ΔX.
Each new solution undergoes an acceptance test based on the Boltz-

mann distribution, which favors solutions with lower energy but

allows occasional acceptance of higher energy solutions to escape

local minima. The temperature is methodically reduced according

to a predefined schedule 𝜋𝑇 , decreasing the likelihood of accept-

ing worse solutions as the process continues. This gradual cooling

mirrors the physical process of annealing, aiming to balance ex-

ploration and exploitation until the termination condition is met,

typically after a fixed number of iterations. The final solution X
approximates the global minimum, effectively utilizing the dual

strategy of adaptive search and controlled temperature descent.

3.2 MDP formulation of SA
Simulated Annealing (SA) can be effectively described within the

Markov Decision Process (MDP) [29] framework where SA acts

as an agent interacting with an environment defined by the op-

timization problem, providing a structured method to analyze its

optimization capabilities. In this formalization, the components of

theMDP are tailored to encapsulate the mechanics of SA, enhancing

the clarity of its stochastic and adaptive processes.

The state space S in our MDP is defined by each state s =

(x,𝜓,Δ𝐸,𝑇), where x is the current solution within the problem

domain,𝜓 is a parametric description of the problem instance, Δ𝐸
is change in energy from the previous state, and 𝑇 represents the

instantaneous temperature, crucial for the adaptive acceptance of

new solutions.

Actions a ∈ A correspond to transitions in the solution space,

mapping (x,𝜓,Δ𝐸,𝑇) ↦→ (x′,𝜓,Δ𝐸,𝑇), where x′ ∈ N (x) signi-
fies a candidate solution within a defined neighborhood of x. This
neighborhood is intentionally restricted to limit the energy varia-

tion between states, a heuristic that discards extreme moves and

generally results in faster convergence.

The transition dynamics are governed by theMetropolis-Hastings

(MH) algorithm [23], serving as a stochastic transition kernel de-

pendent on the current temperature:

x𝑘+1 =

{
x′, with probability 𝑝accept

x𝑘 , with probability 1 − 𝑝accept
The reward structure can be either the negative change in energy,

which is the immediate energy gain:

Immediate gain = −Δ𝐸𝑘 = 𝐸 (x𝑘) − 𝐸 (x𝑘+1),

or a terminal reward capturing the lowest energy achieved during

a complete trajectory:

Terminal reward = − min

x∈x1:𝑘
𝐸 (x) .

This MDP formulation provides a robust framework for analyz-

ing and enhancing the SA algorithm, utilizing both contemporary

reinforcement learning strategies and traditional optimization tech-

niques.

3.3 Neural SA Agent Architecture
In Neural SA [5], the SA state is defined as (𝑥,𝜓,𝑇), where 𝑥 is

the current solution,𝜓 is a parametric description of the problem

instance, and 𝑇 is the instantaneous temperature. They trained

the SA chain using Proximal Policy Optimization (PPO) [26] and

Evolution Strategies (ES) [24]. The immediate gain reward works

best with PPO, providing feedback at each iteration on whether

the previous action improved the solution. ES works best with the

primal reward, which is non-local and provides the minimum value

over the entire trajectory 𝜏 at the end of the rollout.

In their policy network architecture, the state is mapped into a

set of features for each problem. Each feature is fed into a Multilayer

Perceptron (MLP), which embeds it into a logit space; a softmax ac-

tivation function is then applied to generate probabilities. Since the

computations andMLPs are embarrassingly parallel, the complexity

increases linearly with 𝑁 , crucial for high-dimensional problems.

This architecture is permutation equivariant [34], meaning the

network output changes consistently when the input order is rear-

ranged—an important requirement for the considered combinatorial

optimization problems [25].

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1720

3.4 Neural SA Modified State Formulation
We reformulate the Neural SA state to include the change in en-

ergy between each step, effectively incorporating the immediate

reward into the state. The SA state becomes (𝑥,𝜓,Δ𝐸,𝑇). Includ-
ing Δ𝐸 enables the agent to learn which actions decrease energy

and improve solutions. Providing the MLP [22] with explicit infor-

mation about the immediate effect of transitions helps the model

understand the local energy landscape and the impact of solution

modifications. The immediate energy change captures the gradient

of energy transitions, offering the network direct insight into the

quality of each step and enhancing its ability to balance exploration

and exploitation. This richer representation leads to more informed

decision-making, allowing for more efficient exploration of the so-

lution space and potentially higher-quality solutions as the network

better learns how changes propagate across the energy landscape.

3.5 LSTM Agent Architecture
We replace the MLPs in both the actor and critic of PPO with

Long Short-Term Memory Networks (LSTMs) [13]. Instead of us-

ing only the current state, we utilize the entire sequence of states

for an SA rollout. Each element in the time series is expressed

as 𝑆𝑖 = (𝑥,𝜓, 𝐸,Δ𝐸,𝑇) for discrete optimization problems and

𝑆𝑖 = (𝑥, 𝐸,Δ𝐸,𝑇) for continuous optimization problems. Discrete

problems include problem parameters 𝜓 in the state to facilitate

learning, while continuous problems omit them to demonstrate the

model’s generalizability and ease of use.

We demonstrate that an RL Based SA LSTM agent trained on

one continuous problem performs well when evaluated on different

continuous problems. Incorporating LSTMs into PPO for time series

data offers significant advantages over MLPs. Since SA involves

sequential decision-making where each step depends on past solu-

tions and temperatures, LSTMs more effectively capture temporal

trends across the SA chain. By retaining information from prior

time steps through a hidden state, LSTMs help the PPO agent to

predict the impact of future actions, improving neighbor sampling

decisions. This enhances solution space exploration and optimiza-

tion performance, especially in complex energy landscapes with

strong temporal correlations.

In order to reduce computational costs, we feed time series states

individually into the LSTM during SA rollout. However, this method

is not applicable during the backpropagation and optimization

phase of the model training process since training the model for the

entire time series data requires inputting the entire SA rollout up

to a given time step into the LSTM architecture for each parameter

update. Thus, while LSTMs can offer significantly bettermodeling of

temporal dependencies, they are more computationally expensive

than MLPs. Future work could explore methods like truncated

backpropagation through time (TBPTT) [28] to limit the inputted

SA rollout and reduce computational cost.

3.6 Convergence Guarantee
Note that despite thesemodifications, RL Based SA preserves Neural

SA’s theoretical convergence, as the Metropolis-Hastings accep-

tance step remains intact. Therefore, the learned policy proposes

neighbor generation moves but does not override Neural SA’s tem-

perature annealing schedule, ensuring global convergence.

4 EXPERIMENT

We evaluate our RL Based SA architecture on two different types

of problems: discrete and continuous optimization problems. By

using the same model architecture and hyperparameters for all

problems, we show broad applicability and user convenience. For

discrete problems, we test RL Based SA on various problem sizes,

but only train on the smallest problem size for each corresponding

problem setting. This allows us to demonstrate effective scalability

of a light model with lower training time. Similarly, we consider

different SA rollout lengths but train only on short rollouts, reduc-

ing training time and demonstrating generalization. Using these

methods, we demonstrate great performance and generalizability

with a lightweight, equivariant architecture.

In all experiments, we start from random solutions and use an

exponential cooling schedule: 𝑇𝑘 = 𝛼𝑘𝑇0, where 𝛼 is determined

by fixing 𝑇0 and 𝑇𝐾 and computing it from the total steps 𝐾 . This

method permits us to vary the rollout length while maintaining

the same range of temperatures for every run. We use the Adam

optimizer [8] for both the actor and critic networks in PPO.

We first incorporate the modified state formulation, which we

refer to as "Added Δ𝐸 to State (Ours)" in tables, and then add in

LSTMs in combination as well, which we refer to as "LSTMs (Ours)."

We generate all datasets of problems using consistent random seeds

to allow for reproducibility.

4.1 Discrete Problems
For discrete optimization problems, we train and evaluate on the

Knapsack, Bin Packing, and Traveling Salesperson problems. We

demonstrate superior performance for both our architectures, modi-

fied state formulation and LSTMs, compared to vanilla SA, adaptive

SA, and superior or comparable performance to the original Neural

SA. For the different methods trained within each discrete problem,

we keep the hyperparameters such as number of problems, number

of epochs, reward type, batch size, and learning rate constant to

demonstrate generalizability. All models trained and evaluated on

discrete problems were implemented using Pytorch 2.5 and trained

and evaluated with 2 V100 GPUs.

4.1.1 Knapsack Problem.
The Knapsack problem is a fundamental combinatorial optimization

challenge in resource allocation. Given 𝑁 items with values 𝑣𝑖 > 0

and weights𝑤𝑖 > 0, the objective is to select a subset of these items

that maximizes the total value without exceeding a weight capacity

𝑊 . Each item is either fully included or excluded. The problem is

weakly NP-complete with an exponential search space of size 2
𝑁
.

The formal mathematical formulation is as follows:

Maximize 𝐸 (𝑥 ;𝜓) =
𝑁∑︁
𝑖=1

𝑣𝑖𝑥𝑖 ,

Subject to

𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊,

𝑥𝑖 ∈ {0, 1}, ∀𝑖 = 1, . . . , 𝑁 ,

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1721

Table 1: Average cost of Knapsack Problem solutions across five random seeds. In parentheses is the optimality gap to the best
solution. Bigger is better. *Values reported in [1]

Problem
Dimension Bello RL Bello AS Vanilla SA ASA

Neural SA
PPO

Added ΔE
to State (Ours) LSTMs (Ours) OR-Tools

Knap50 19.86* 20.07* 18.37 (8.61%) 18.52 (7.86%) 19.58 (2.59%) 19.47 (3.13%) 19.99 (0.55%) 20.10 (0.00%)

Knap100 40.27* 40.50* 36.69 (9.21%) 36.79 (8.96%) 39.20 (3.00%) 39.02 (3.44%) 40.10 (0.77%) 40.41 (0.00%)

Knap200 57.10* 57.45* 50.85 (11.66%) 50.00 (13.13%) 51.31 (10.86%) 53.15 (7.66%) 54.96 (4.52%) 57.56 (0.00%)

Knap500 - - 126.97 (11.28%) 123.30 (14.28%) 130.08 (9.57%) 135.22 (5.99%) 126.94 (11.75%) 143.84 (0.00%)

Knap1000 - - 254.59 (11.77%) 245.85 (14.80%) 263.99 (8.51%) 273.34 (5.27%) 253.84 (12.03%) 288.56 (0.00%)

Knap2000 - - 508.71 (11.89%) 489.47 (15.22%) 533.04 (7.68%) 549.50 (4.83%) 508.97 (11.85%) 577.37 (0.00%)

where the solution 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) is a binary vector indicat-

ing the inclusion (𝑥𝑖 = 1) or exclusion (𝑥𝑖 = 0) of item 𝑖 , and 𝜓

encapsulates the problem parameters 𝑣𝑖 and𝑤𝑖 .

In Simulated Annealing (SA), potential solutions are represented

by 𝑥 . The solution space is explored by defining a neighborhood

around 𝑥 that includes all feasible solutions reachable by flipping a

single bit—changing the inclusion status of one item—while ensur-

ing the total weight constraint is not violated.

A new solution 𝑥 ′ is proposed by flipping the bit for item 𝑖 ,

ensuring that adding or removing the item keeps the total weight

within capacity 𝑊 . If flipping 𝑥𝑖 from 0 to 1 (adding the item)

exceeds𝑊 , the move is disallowed.

To efficiently navigate the solution space, we implement a policy

𝜋𝜃 (𝑖 | 𝑠) parameterized by 𝜃 , where 𝑠 represents the current state.

This policy is modeled using a neural network that predicts the

probability of selecting each item for a flip based on the item’s

features and the current system state.

The mapping from state to action probabilities is defined as:

𝜋𝜃 (𝑖 | 𝑠) = softmax(𝑧)𝑖 , where 𝑧𝑖 = 𝑓𝜃 ([𝑥𝑖 ,𝑤𝑖 , 𝑣𝑖 ,𝑊 ,𝑇]) ,

and the proposed new solution is: 𝑥 ′ = 𝑥 +onehot(𝑖) (mod 2) with
𝑓𝜃 being the neural network function with parameters 𝜃 which we

define using our model architecture.

In the original Neural SA, the neural network 𝑓𝜃 is a simple

two-layer network 5 → 16 → 1. It consists of an input layer of

size 5, corresponding to the five features, a hidden layer with 16

neurons using ReLU activations, and an output layer producing a

single logit 𝑧𝑖 . This architecture is lightweight, with 112 learnable

parameters.

In our modified state formulation, 𝑓𝜃 becomes a two-layer net-

work 6 → 16 → 1. The input layer now has size 6, adding a

parameter to denote the change in energy. The hidden and output

layers remain the same, resulting in a lightweight model with 129

learnable parameters.

Finally, when incorporating LSTMs instead of MLPs in PPO, 𝑓𝜃 is

a three-layer network 7→ 16→ 16→ 1. The input layer is of size

7, adding two parameters for the current energy and immediate

gain. There are two hidden layers with 16 neurons each using

ReLU activations, and an output layer producing a single logit. This

architecture is more complex but still relatively lightweight, with

417 learnable parameters.

We implement the setup as outlined in [1], focusing on the

self generated datasets Knap50, Knap100, and Knap200. For each

dataset, Knap𝑁 contains 𝑁 items with weights and values uni-

formly randomly generated from (0, 1]. Additionally, the knapsack
capacities 𝐶𝑁 are defined such that 𝐶50 = 12.5, 𝐶100 = 𝐶200 = 25,

and𝐶𝑁 = 𝑁
8
for 𝑁 > 200. We use OR-Tools [21] to compare against

as a standard CO solver. We train for 1000 epochs on 128 problems

on the Knap50 dataset.

The results in Table 1 indicate that RL Based SA improves sig-

nificantly over vanilla SA and adaptive SA, up to a 9% optimality

gap. The addition of Δ𝐸 to the state results in comparable per-

formance to Neural SA for Knap50, Knap100, and Knap200, and

consistently superior performance for Knap500, Knap1000, and

Knap2000. However, it slightly falls behind the two methods used

in [1], referred to as "Bello RL" and "Bello AS" in Table 1, which

use a much larger neural network with orders of magnitude more

parameters and 10, 000 training steps. It also falls slightly behind

OR-Tools, with an average optimality gap of around 5%.

Our LSTM implementation achieves highly competitive results

for Knap50 and Knap100, matching the performance of [1] and OR-

Tools, despite a lightweight architecture with far fewer parameters.

It significantly outperforms SA, ASA, and Neural SA for these

problem sizes. On Knap200, LSTMs fall slightly behind [1] and OR-

Tools. LSTMs perform worse on larger problem sizes, exhibiting

results similar to vanilla SA. Thus, this suggests that our LSTM

method excels on problem sizes similar to the model’s training data,

but lack scalability for larger Knapsack problems. Therefore, our

LSTM method might require more specialized training or more

layers to scale more efficiently.

Overall, incorporatingΔ𝐸 into the state consistently outperforms

vanilla SA, ASA, and Neural SA, only slightly trailing optimizers

with significantly larger architectures and many more parameters.

LSTMs exhibit extremely strong performance on problem sizes sim-

ilar to their training set, being comparable to larger state-of-the-art

optimizers. In general, RL Based SA demonstrates strong perfor-

mance with a lightweight generalizable architecture not specifically

tailored for this problem.

4.1.2 Bin Packing Problem.
The Bin Packing problem, related to the Knapsack problem, is a

fundamental combinatorial optimization problem that aims to pack

𝑁 items into the fewest bins of fixed capacity𝑊 without exceeding

the weight𝑊 in any bin. Every item is either fully included or

excluded. Each item 𝑖 ∈ {1, 2, . . . , 𝑁 } has weight𝑤𝑖 > 0 and must

fit in some bin, assuming𝑊 ≥ max𝑖 𝑤𝑖 .

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1722

Table 2: Average cost of Bin Packing Problem solutions across five random seeds. In parentheses is the optimality gap to the
best solution. Lower is better. *Indicates that only the trivial solution was found in the set time

Problem
Dimension Vanilla SA ASA Neural SA PPO

Added ΔE
to State (Ours) OR-Tools (SCIP) FFD

Bin50 30.29 (13.40%) 29.87 (11.83%) 27.25 (2.02%) 27.20 (1.83%) 26.71 (0.00%) 27.10 (1.46%)

Bin100 60.49 (14.33%) 59.36 (12.19%) 53.35 (0.83%) 53.24 (0.62%) 53.91 (1.89%) 52.91 (0.00%)

Bin200 121.18 (16.24%) 118.77 (13.93%) 105.77 (1.46%) 105.57 (1.27%) 109.19 (4.74%) 104.25 (0.00%)

Bin500 302.73 (17.78%) 296.35 (15.30%) 261.19 (1.62%) 260.76 (1.46%) 267.63 (4.13%) 257.02 (0.00%)

Bin1000 604.79 (18.71%) 592.43 (16.29%) 519.60 (1.99%) 518.83 (1.84%) 1000* 509.46 (0.00%)

Bin2000 1209.37 (17.57%) 1184.41 (15.14%) 1035.56 (0.67%) 1034.04 (0.52%) 2000* 1028.67 (0.00%)

The problem can be formulated as an integer linear program

using binary variables 𝑥𝑖 𝑗 and 𝑦 𝑗 . Here, 𝑥𝑖 𝑗 = 1 if item 𝑖 is placed

in bin 𝑗 and 𝑥𝑖 𝑗 = 0 otherwise. Similarly, 𝑦 𝑗 = 1 if bin 𝑗 is used and

𝑦 𝑗 = 0 otherwise. The mathematical formulation of the Bin Packing

problem is as follows:

Minimize 𝐸 (𝑥 ;𝜓) =
𝑀∑︁
𝑗=1

𝑦 𝑗 ,

Subject to

𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 𝑗 ≤𝑊, ∀𝑗 = 1, . . . , 𝑀, (bin capacity constraint)

𝑁∑︁
𝑗=1

𝑥𝑖 𝑗 = 1, ∀𝑖 = 1, . . . , 𝑁 , (1 bin per item)

𝑦 𝑗 ≥ 𝑥𝑖 𝑗 , ∀𝑖 = 1, . . . , 𝑁 , ∀𝑗 = 1, . . . , 𝑁 ,

𝑥𝑖 𝑗 ∈ {0, 1}, 𝑦 𝑗 ∈ {0, 1}, (bin occupancy indicators),

The Bin Packing problem is NP-hard with a combinatorial search

space of size given by the 𝑁 -th Bell number, representing ways to

partition 𝑁 items into bins.

In applying Simulated Annealing (SA) to Bin Packing, a pol-

icy guides item-to-bin assignments. Each action selects an item 𝑖

for reassignment and a bin 𝑗 for placement to improve packing

efficiency.

This policy can be represented as a joint probability distribution:

𝜋𝜃,𝜙 (𝑎 = (𝑖, 𝑗) | 𝑠) = 𝜋𝜃 (𝑖 | 𝑠) · 𝜋𝜙 (𝑗 | 𝑠, 𝑖)

In this equation, the policy probabilities are computed using neural

networks as follows:

𝜋𝜃 (𝑖 | 𝑠) = softmax(𝑧item𝑖), where 𝑧item𝑖 = 𝑓𝜃

(
𝑥𝑖 ,𝑤𝑖 , 𝑐𝑏 (𝑖) ,𝑇

)
,

𝜋𝜙 (𝑗 | 𝑠, 𝑖) = softmax(𝑧bin𝑗), where 𝑧bin𝑗 = 𝑓𝜙
(
𝑥𝑖 ,𝑤𝑖 , 𝑐 𝑗 ,𝑇

)
,

where:𝑏 (𝑖) is the index of the bin that item 𝑖 is currently assigned

to, and 𝑐 𝑗 =𝑊 −
∑𝑁
𝑖=1𝑤𝑖𝑥𝑖 𝑗 is the remaining capacity of bin 𝑗 . 𝑓𝜃

and 𝑓𝜙 are both neural networks that output logits that are fed into

softmax activation functions.

In the original Neural SA, the neural networks 𝑓𝜃 and 𝑓𝜙 are

two-layer neural networks 4→ 16→ 1. The input layer of size 4

corresponds to the features𝑤𝑖 , 𝑏 (𝑖) or 𝑐 𝑗 , and 𝑇 . This is followed
by a hidden layer with 16 neurons using ReLU activations and an

output layer producing a single logit 𝑧𝑖 , resulting in 97 learnable

parameters.

In our modified state formulation, 𝑓𝜃 and 𝑓𝜙 are two-layer neural

networks 5 → 16 → 1. The input layer now has size 5, adding a

parameter for the change in energy. The hidden and output layers

remain the same, yielding 113 learnable parameters.

For our incorporation of LSTMs, 𝑓𝜃 and 𝑓𝜙 are three-layer neural

networks 6 → 16 → 16 → 1. The input layer has size 6, with

two extra parameters representing current energy and immediate

gain. Both networks have two hidden layers with 16 neurons each

(ReLU activations), and the output layer produces a single logit.

This architecture has 401 learnable parameters.

We did not train or evaluate our LSTM implementation for the

Bin Packing problem because we could not do so for the same

problem size as the other models due to computing limitations.

Maintaining a consistent problem size across all models is essential

for a fair comparison, and ensuring constant problem size across

different problems is important for demonstrating generalizability.

The results in Table 2 demonstrate that RL Based SA with Δ𝐸
added to the state consistently performs better than Neural SA,

and significantly outperforms vanilla SA and ASA. It is also able to

consistently achieve solutions with energy values of around only 1%

higher than those found by FFD [15], a highly effective heuristic for

the Bin Packing problem. We also note that our model with Δ𝐸 very

often outperformed the SCIP [10] optimizer in OR-Tools. RL Based

SA is able to achieve superior or comparable results to specialized

optimizers with a lightweight and generalizable architecture not

specifically designed for the Bin Packing Problem.

4.1.3 Traveling Salesperson Problem.
The Traveling Salesperson Problem (TSP) is a combinatorial opti-

mization challenge that seeks the shortest route visiting 𝑁 cities

exactly once before returning to the start. Despite its simple formu-

lation, TSP is NP-hard, with a factorial search space (𝑁 !), making

exact solutions impractical for large 𝑁 and necessitating heuris-

tics. It has key applications in logistics, route planning, and circuit

design.

Formally, given𝑁 cities {𝑐1, 𝑐2, . . . , 𝑐𝑁 }with coordinates 𝑐𝑖 ∈ R2
,

the goal is to find a permutation 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) that minimizes

the total tour length. The problem is mathematically formulated as:

Minimize 𝐸 (𝑥 ;𝜓) =
𝑁∑︁
𝑖=1

∥𝑐𝑥𝑖+1 − 𝑐𝑥𝑖 ∥2,

Subject to 𝑥𝑖 ≠ 𝑥 𝑗 , ∀𝑖 ≠ 𝑗,

𝑥𝑖 ∈ {1, 2, . . . , 𝑁 }, ∀𝑖 = 1, . . . , 𝑁 ,

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1723

Table 3: Average cost of TSP solutions across five random seeds. In parentheses is the optimality gap to the best solution. Lower
is better. *Values reported by [11], [12], [21], [32], [6], and [9] respectively

TSP20 TSP50 TSP100 TSP200
Cost Gap Time Cost Gap Time Cost Gap Time Cost Gap Time

CONCORDE* 3.836 0.00% 48s 5.696 0.00% 2m 7.764 0.00% 7m 10.70 0.00% 38m

LKH-3* 3.836 0.00% 1m 5.696 0.00% 14m 7.764 0.00% 1h 10.70 0.00% 21m

Vanilla SA 3.881 1.17% 6s 5.944 4.35% 38s 8.342 7.44% 5m 11.97 11.87% 9m

Neural SA PPO 3.838 0.05% 11s 5.734 0.67% 2m 7.874 1.42% 10m 11.00 2.80% 16m

Added ΔE To State (Ours) 3.836 0.00% 17s 5.712 0.28% 2m 7.826 0.80% 12m 10.88 1.68% 28m

LSTMs (Ours) 3.839 0.08% 2m 5.742 0.81% 23m - - - - - -

OR-Tools* 3.86 0.85% 1m 5.85 2.87% 5m 8.06 3.86% 23m - - -

GAT-T {1000}* 3.84 0.03% 12m 5.75 0.83% 16m 8.01 3.24% 25m - - -

Costa {500}* 3.84 0.01% 5m 5.72 0.36% 7m 7.91 1.84% 10m - - -

Fu et al.* 3.84 0.00% 1m 5.70 0.01% 8m 7.76 0.04% 15m - - -

where 𝑥𝑁+1 = 𝑥1 ensures the tour is closed by returning to the

starting city, ∥ · ∥2 denotes the Euclidean distance between two

points, and 𝜓 encapsulates the problem instance, specifically the

coordinates 𝑐𝑖 of the cities.

In the context of Simulated Annealing (SA), solutions are repre-

sented by permutations 𝑥 of the city indices. To effectively explore

the solution space, we employ the 2-opt move, a well-established

local search operator for the TSP. A 2-opt move involves selecting

two positions 𝑖 and 𝑗 (with 𝑖 < 𝑗) in the tour and reversing the

subsequence between them, potentially reducing the tour length by

eliminating crossings. The new solution 𝑥 ′ resulting from a 2-opt

move is given by:

𝑥 ′ =
(
𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑥 𝑗 , 𝑥 𝑗−1, . . . , 𝑥𝑖 , 𝑥 𝑗+1, . . . , 𝑥𝑁

)
.

To navigate the solution space efficiently, we implement a policy

𝜋𝜃,𝜙 (𝑎 | 𝑠) parameterized by 𝜃 and𝜙 , where 𝑠 represents the current

state, including the current tour 𝑥 and the temperature𝑇 . The action

𝑎 = (𝑖, 𝑗) specifies the indices for the start and end of the segment

to reverse. The policy operates in two stages. First, the start index 𝑖

is selected based on a probability distribution:

𝜋𝜃 (𝑖 | 𝑠) = softmax(𝑧start𝑖), 𝑧start𝑖 = 𝑓𝜃
(
[𝑐𝑥𝑖−1 , 𝑐𝑥𝑖 , 𝑐𝑥𝑖+1 ,𝑇]

)
where 𝑓𝜃 represents the first neural network. Second, the end index

𝑗 is selected using:

𝜋𝜙 (𝑗 | 𝑠, 𝑖) = softmax(𝑧end𝑗),

𝑧end𝑗 = 𝑓𝜙

(
[𝑐𝑥𝑖−1 , 𝑐𝑥𝑖 , 𝑐𝑥𝑖+1 , 𝑐𝑥 𝑗−1 , 𝑐𝑥 𝑗 , 𝑐𝑥 𝑗+1 ,𝑇]

)
.

where 𝑓𝜙 represents the second neural network. By applying the

softmax function to the logits, we obtain probability distributions

over possible start and end indices, from which actions are sampled.

In the original Neural SA [5], simple MLP neural networks are

used, with 𝑓𝜃 and 𝑓𝜙 being two-layer networks of dimensions 7→
16 → 1 and 13 → 16 → 1, respectively. 𝑓𝜃 has an input layer of

size 7 due to the state (𝑐𝑥𝑖−1 , 𝑐𝑥𝑖 , 𝑐𝑥𝑖+1 ,𝑇). The hidden layer has 16

neurons with ReLU activations, and the output layer produces a

single logit 𝑧𝑖 , resulting in lightweight models with 145 parameters

for 𝑓𝜃 and 241 parameters for 𝑓𝜙 .

In our modified state formulation, 𝑓𝜃 and 𝑓𝜙 remain two-layer

neural networks but now have dimensions 8 → 16 → 1 and

14→ 16→ 1, respectively. The input layers gained an additional

parameter representing the change in energy. This simple and effec-

tive architecture produces lightweight models with 161 parameters

for 𝑓𝜃 and 257 parameters for 𝑓𝜙 .

With the substitution of LSTMs for MLPs, both 𝑓𝜃 and 𝑓𝜙 become

three-layer networks with dimensions 9 → 16 → 16 → 1 and

15 → 16 → 16 → 1 respectively. The input layers have two

additional parameters corresponding to the current energy and

immediate gain. Both networks feature two hidden layers with

16 neurons each using ReLU activation functions, and the output

layer produces a single logit. While more complex, this architecture

remains relatively lightweight, with 449 parameters for 𝑓𝜃 and 545

parameters for 𝑓𝜙 .

We evaluate our models on the publicly available TSP 20 / 50 /

100 / 200 [18], with 10, 000 problems each. The results in Table 3

indicate that RL Based SA with Δ𝐸 in the state consistently achieves

superior results to Neural SA, and significantly outperforms vanilla

SA. It also consistently attains better results than OR-Tools [21], and

slightly outperforms other neural improvement heuristic methods

in [32] and [6]. RL Based SA with Δ𝐸 in the state demonstrates com-

parable results to the optimal solutions achieved by CONCORDE

[11] and LKH-3 [12], and also similar performance to [9]. Consider-

ing that RL Based SA has a lightweight generalizable architecture

not custom designed for TSP while the competing methods do, we

consider these results to be quite decent.

4.2 Continuous Problems
For continuous optimization, we train and evaluate on three 2D

continuous optimization functions: the Rosenbrock, Ackley, and

Eggholder functions, known for their challenging landscapes with

narrow valleys and numerous local minima. We demonstrate supe-

rior performance and generalizability by training on one problem

and evaluating on another, with our RL Based SA architecture

consistently arriving at satisfactory solutions. To ensure fair evalu-

ation and generalizability, hyperparameters such as problem count,

epochs, reward type, batch size, and learning rate remain constant

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1724

Table 4: Average cost of solutions for various 2D continuous optimization functions across five random seeds for constant SA
rollout length (640 steps). In parentheses is the optimality gap to the best solution. Lower is better.

Function Vanilla SA ASA
Neural SA PPO

Rosenbrock Model
Neural SA PPO
Ackley Model

Neural SA PPO
Eggholder Model

Rosenbrock 0.0791 (1,482%) 0.0793 (1,486%) 0.0183 (266%) 0.0255 (410%) 0.0280 (460%)

Ackley 0.850 (1,015) 0.668 (777%) 3.450 (4,428%) 0.105 (37.80%) 0.584 (666%)

Eggholder -519.76 (9.10%) -519.51 (9.14%) -296.24 (48.19%) -455.52 (20.33%) -441.93 (22.71%)

Function
Added ΔE to State
Rosenbrock Model

Added ΔE to State
Ackley Model

Added ΔE to State
Eggholder Model

LSTMs
Rosenbrock Model

LSTMs
Ackley Model

LSTMs
Eggholder Model

Rosenbrock 0.0232 (364%) 0.0232 (364%) 0.0440 (780%) 0.00500 (0.00%) 0.0192 (284%) 0.0727 (1,354%)

Ackley 2.721 (3,471%) 0.0869 (14.04%) 1.077 (1,313%) 4.622 (5,966%) 0.0762 (0.00%) 0.578 (659%)

Eggholder -290.39 (49.21%) -441.26 (22.83%) -420.13 (26.52%) -416.24 (27.20%) -571.78 (0.00%) -521.65 (8.77%)

across all problems. All models were implemented in PyTorch 2.5

and trained on an Apple M3 Pro 12-core CPU.

The Rosenbrock function is characterized by a narrow, parabolic-

shaped valley where the global minima resides. Its two-dimensional

formulation is defined by:

𝑓 (𝑥,𝑦) = (𝑎 − 𝑥)2 + 𝑏 (𝑦 − 𝑥2)2,
where 𝑎 ∈ (0, 1] and 𝑏 ∈ (0, 100]. The function has a global min-

imum at (𝑥,𝑦) = (𝑎, 𝑎2), where 𝑓min (𝑥,𝑦) = 0. Despite simple

gradient descent methods being more effective for this function,

we will use it as an example of how Neural SA and RL Based SA

perform on simple continuous functions.

The Ackley function is characterized by its large number of local

minima, making it difficult for optimization algorithms to converge

to the global minimum. It is defined as:

𝑓 (𝑥,𝑦) = −𝑎 exp
(
−𝑏

√︂
1

2

(𝑥2 + 𝑦2)
)
−

exp

(
1

2

[cos(𝑐𝑥) + cos(𝑐𝑦)]
)
+ 𝑎 + exp(1),

where 𝑎 ∈ [0, 20), 𝑏 ∈ [0, 0.2), and 𝑐 ∈ (0, 2𝜋]. The global mini-

mum is located at (𝑥,𝑦) = (0, 0), where 𝑓min (𝑥,𝑦) = 0. Due to the

function’s numerous local minima, pure gradient descent methods

are much less effective. The Ackley function’s numerous local min-

ima test an algorithm’s ability to escape suboptimal solutions and

effectively navigate complex landscapes.

The Eggholder function is another challenging optimization

problem due to its complex surface with many local minima and

maxima. It is defined as:

𝑓 (𝑥,𝑦) = −(𝑦 + 47) sin
(√︂���𝑥

2

+ 𝑦 + 47
���) − 𝑥 sin (√︁

|𝑥 − (𝑦 + 47) |
)
.

The global minimum of the Eggholder function is approximately

at (𝑥,𝑦) = (512, 404.2319), where 𝑓min (𝑥,𝑦) ≈ −959.6407. The
function’s intricate topology makes it suitable for assessing an

algorithm’s capability to explore complex multi-modal spaces.

The results in Table 4 indicate extremely strong performance of

our RL Based SA LSTM implementation on continuous problems.

For the same rollout length, when trained and evaluated on the

same problem, our LSTM implementation significantly outperforms

vanilla SA, ASA, and Neural SA on all three continuous problems,

achieving considerably lower energies than all other methods. Even

when trained on one problem and evaluated on another, our LSTM

implementation matches Neural SA’s performance when trained

and evaluated on that same problem. Moreover, our LSTM imple-

mentation shows better results than Neural SA in cross-problem

training and evaluation, demonstrating improved generalizability

across continuous problems.

5 CONCLUSION
We introduced Reinforcement Learning Based Simulated Annealing

(RL Based SA), enhancing the traditional SA algorithm by incorpo-

rating the change in energy Δ𝐸 into the state representation and

replacing MLPs in PPO with LSTMs. Our approach improves the

agent’s understanding of the energy landscape, effect of actions,

and temporal dependencies across the SA chain. We conducted ex-

periments across various combinatorial optimization benchmarks,

including the Knapsack, Bin Packing, and Traveling Salesperson

problems, and two-dimensional continuous optimization functions

such as the Rosenbrock, Ackley, and Eggholder functions. Our

results demonstrate that RL Based SA consistently outperforms

vanilla SA, adaptive SA, and Neural SA, achieving solution quality

comparable to state-of-the-art or problem specific solvers, despite

utilizing a significantly more lightweight architecture.

The key advantages of RL Based SA are its generalizability, ease

of use, and flexibility. Adding Δ𝐸 to the state improves adaptability

across different problem instances and sizes, ensuring robust scala-

bility. The use of LSTMs enables the processing of entire SA rollouts,

capturing long-term dependencies without significantly increasing

computational complexity. With its simple and lightweight archi-

tecture, RL Based SA is easy to implement and applicable to diverse

optimization tasks without extensive tuning, making it a practical

and efficient tool for both discrete and continuous domains.

ACKNOWLEDGMENTS
We wish to acknowledge our PhD student mentor, Ruichen Xu, and

our professor, Prof. Yuefan Deng, with guiding us throughout this

project and providing crucial insight.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1725

REFERENCES
[1] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.

2016. Neural combinatorial optimization with reinforcement learning. arXiv

preprint arXiv:1611.09940 (2016).

[2] Qingpeng Cai, Will Hang, Azalia Mirhoseini, George Tucker, Jingtao Wang, and

Wei Wei. 2019. Reinforcement learning driven heuristic optimization. arXiv

preprint arXiv:1906.06639 (2019).

[3] Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-

hastings algorithm. The american statistician 49, 4 (1995), 327–335.

[4] Vincent ACicirello. 2021. Self-Tuning LamAnnealing: LearningHyperparameters

While Problem Solving. Applied Sciences 11, 21 (2021), 9828.

[5] Alvaro HC Correia, Daniel E Worrall, and Roberto Bondesan. 2023. Neural

simulated annealing. In International Conference on Artificial Intelligence and

Statistics. PMLR, 4946–4962.

[6] Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. 2020.

Learning 2-opt heuristics for the traveling salesman problem via deep reinforce-

ment learning. In Asian conference on machine learning. PMLR, 465–480.

[7] Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau. 2019. Simulated

annealing: From basics to applications. Handbook of metaheuristics (2019), 1–35.

[8] P Kingma Diederik. 2014. Adam: A method for stochastic optimization. (No

Title) (2014).

[9] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. 2021. Generalize a small pre-

trained model to arbitrarily large tsp instances. In Proceedings of the AAAI

conference on artificial intelligence, Vol. 35. 7474–7482.

[10] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon

Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald,

Katrin Halbig, et al. 2020. The SCIP optimization suite 7.0. (2020).

[11] Michael Hahsler and Kurt Hornik. 2007. TSP-Infrastructure for the traveling

salesperson problem. Journal of Statistical Software 23, 2 (2007), 1–21.

[12] Keld Helsgaun. 2017. An extension of the Lin-Kernighan-Helsgaun TSP solver for

constrained traveling salesman and vehicle routing problems. Roskilde: Roskilde

University 12 (2017), 966–980.

[13] S Hochreiter. 1997. Long Short-term Memory. Neural Computation MIT-Press

(1997).

[14] Lester Ingber. 2000. Adaptive simulated annealing (ASA): Lessons learned. arXiv

preprint cs/0001018 (2000).

[15] David S Johnson. 1973. Near-optimal bin packing algorithms. Ph.D. Dissertation.

Massachusetts Institute of Technology.

[16] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-

forcement learning: A survey. Journal of artificial intelligence research 4 (1996),

237–285.

[17] Mariia Karabin and Steven J Stuart. 2020. Simulated annealing with adaptive

cooling rates. The Journal of Chemical Physics 153, 11 (2020).

[18] Wouter Kool, Herke Van Hoof, and Max Welling. 2018. Attention, learn to solve

routing problems! arXiv preprint arXiv:1803.08475 (2018).

[19] Alexander G Nikolaev and Sheldon H Jacobson. 2010. Simulated annealing.

Handbook of metaheuristics (2010), 1–39.

[20] Fernando Peres and Mauro Castelli. 2021. Combinatorial optimization prob-

lems and metaheuristics: Review, challenges, design, and development. Applied

Sciences 11, 14 (2021), 6449.

[21] Laurent Perron and Vincent Furnon. [n.d.]. OR-Tools. Google. https://developers.

google.com/optimization/

[22] Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and

Nikos Mastorakis. 2009. Multilayer perceptron and neural networks. WSEAS

Transactions on Circuits and Systems 8, 7 (2009), 579–588.

[23] Christian P Robert, George Casella, Christian P Robert, and George Casella. 2004.

The metropolis—hastings algorithm. Monte Carlo statistical methods (2004),

267–320.

[24] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.

Evolution strategies as a scalable alternative to reinforcement learning. arXiv

preprint arXiv:1703.03864 (2017).

[25] Harvey M Salkin and Cornelis A De Kluyver. 1975. The knapsack problem: a

survey. Naval Research Logistics Quarterly 22, 1 (1975), 127–144.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

https://arxiv.org/abs/1707.06347

[27] Ashish Kumar Shakya, Gopinatha Pillai, and Sohom Chakrabarty. 2023. Rein-

forcement learning algorithms: A brief survey. Expert Systems with Applications

231 (2023), 120495.

[28] Ilya Sutskever. 2013. Training Recurrent Neural Networks. Ph.D. Dissertation.

University of Toronto.

[29] William Uther. 2010. Markov Decision Processes. Springer US, Boston, MA,

642–646. https://doi.org/10.1007/978-0-387-30164-8_512

[30] Peter JM Van Laarhoven, Emile HL Aarts, Peter JM van Laarhoven, and Emile HL

Aarts. 1987. Simulated annealing. Springer.

[31] Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag,

Elias Fallon, and Levent Burak Kara. 2020. Placement in integrated circuits

using cyclic reinforcement learning and simulated annealing. arXiv preprint

arXiv:2011.07577 (2020).

[32] YaoxinWu,Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. 2021. Learning

improvement heuristics for solving routing problems. IEEE transactions on

neural networks and learning systems 33, 9 (2021), 5057–5069.

[33] Xiaofeng Xu, Jing Liu, and Jue Wang. 2018. AN–N optimization model for logistic

resources allocation with multiple logistic tasks under demand uncertainty. Soft

Computing 22, 21 (2018), 7073–7086.

[34] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R

Salakhutdinov, and Alexander J Smola. 2017. Deep sets. Advances in neural

information processing systems 30 (2017).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

1726

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-0-387-30164-8_512

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Simulated Annealing Algorithm
	2.2 Markov Decision Process
	2.3 Reinforcement Learning
	2.4 Application of RL on SA and Advantages over other SA methods

	3 Problem Setting and Method
	3.1 Problem Setting
	3.2 MDP formulation of SA
	3.3 Neural SA Agent Architecture
	3.4 Neural SA Modified State Formulation
	3.5 LSTM Agent Architecture
	3.6 Convergence Guarantee

	4 Experiment
	4.1 Discrete Problems
	4.2 Continuous Problems

	5 Conclusion
	Acknowledgments
	References

