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ABSTRACT
Deep Reinforcement Learning (DRL) has proven its usefulness
across various fields, sparking growing interest in applying it to
education. However, most research on DRL in educational applica-
tions utilizes methods in simulation, with little evaluation involving
real learners, resulting in limited evidence of their effectiveness in
real-world contexts. Arguably, we consider real-world applications
and in-situ experiments with users as essential for a thorough eval-
uation. We thus propose ResUli-RL, a novel DRL approach rooted
in educational psychology, designed to provide adaptive feedback
to young learners in the form of a pedagogical agent in a mobile
educational app. To investigate its effectiveness, we conducted a
five-week real-world evaluation with 56 primary school students,
comparing ResUli-RL to an expert-designed baseline. Both groups
significantly improved in reading competence, with no significant
differences between them and a notable decrease in motivation
in both conditions. In our aim to further improve the children’s
reading competence using DRL, our approach did, however, not
yield the expected results. Our findings provide guidance for future
work and highlight the need for real-world evaluations in education
to assess the value of an educational DRL approach.

CCS CONCEPTS
• Applied computing→ Interactive learning environments; •
Human-centered computing→ Field studies; • Computing
methodologies→ Reinforcement learning.
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1 INTRODUCTION
Reinforcement Learning (RL), a method of learning an optimal map-
ping of state-action pairs to optimize a numerical reward [49], has
emerged as a powerful method for addressing complex sequential
decision-making tasks in several domains due to its applicability to
different scientific and engineering disciplines [47]. Deep Reinforce-
ment Learning (DRL) further leverages neural network models to
enhance traditional RL algorithms [51], thus allowing these to han-
dle high-dimensional learning problems [47], and applications, such
as natural language processing (e.g., [54]), or robot control tasks
(e.g., [1]). We have also been witnessing a growing interest in apply-
ing (D)RL in education, demonstrating promising results in the area
of, for example, personalized learning [20]. However, despite the
promising potential demonstrated in existing literature [18], these
approaches are often not evaluated with real learners, resulting in
a gap when it comes to translating simulation results into practice,
providing limited evidence of their effectiveness in addressing real-
world problems in education. Further, RL in education appears to
be most effective when informed by principles and theories from
cognitive psychology and the learning sciences, and requires ap-
proaches to be tested in real-world settings against sophisticated
baselines [18].

To address this, we introduce a new approach for incorporating
DRL into an empirically validated digital reading application for
primary school students, guided by knowledge from the cognitive
sciences, implemented as an adaptive Pedagogical Agent (PA). PAs
are virtual characters aiming to support the learning process [30],
allowing for peer-like interaction and a personalized learning ex-
perience for children [9]. We employ DRL to adapt the agent’s
feedback behavior to each child’s individual learning process and
evaluate the model in a real-world experiment. For this purpose,
we compare it to an expert-designed baseline in the form of an
empirically validated reading app for primary students, allowing
them to practice various reading skills on different difficulty levels.
Thus, our contribution is twofold: 1) We present a new approach to
the Deep Q-Network (DQN) algorithm [35] (ResUli-RL), where the
components of the Markov-Decision-Process (MDP) are inferred
from educational psychology, and 2) conducted a five-week inter-
vention within the app’s target group to assess its effects on the
children’s reading competence and motivation in the long-term,
comparing the ResUli-RL model to an expert-designed baseline. In
the following, we describe our novel concept and the results and
implications of the real-world evaluation.
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2 RELATEDWORK
2.1 (Deep) Reinforcement Learning
Reinforcement Learning involves determining the optimal actions
to take in situations in a trial-and-error process in order to maxi-
mize a numerical reward signal [49]. Deep Reinforcement Learning
further incorporates neural network models into conventional RL
algorithms and has proven its usefulness in various application
areas, for example, end-to-end control, robotics, investment or rec-
ommender systems [22, 51]. RL is commonly framed as a Markov
Decision Process, where an agent acts as the decision-maker, tak-
ing an action at each time step within an environment, entailing
changes in the environment’s state with the agent ultimately aim-
ing to maximize a reward [49]. MDPs are characterized by a tuple
⟨𝑆,𝐴, 𝑝, 𝑅, γ⟩, where 𝑆 represents the set of states the agent can be
in, and 𝐴 denotes the set of available actions at each time step 𝑡
within a given state, receiving a numerical reward 𝑅 in the subse-
quent time step [18, 19, 49]. The probability distribution function
𝑝 (𝑠′ |𝑠, 𝑎) specifies the likelihood of transitioning from state 𝑠 to
state 𝑠′ after executing action 𝑎 and receiving a reward 𝑟 discounted
by γ ∈ [0, 1] [16, 39, 49]. The interaction process within an envi-
ronment unfolds as follows: Starting in a specific state 𝑠0 ∈ 𝑆 , the
agent makes an initial observation ω0 ∈ Ω (with Ω as the set of
possible observations). At each time step 𝑡 , the agent then chooses
an action 𝑎𝑡 ∈ 𝐴, leading to a reward 𝑟𝑡 ∈ 𝑅, a transition to the
next state 𝑠𝑡+1 ∈ 𝑆 , and a subsequent observation ω𝑡+1 ∈ Ω [22].

2.2 Reinforcement Learning in Education
One field of application that seems to be increasingly researched
is the application of RL in education. Recent reviews by Doroudi
et al. [18] and Fahad Mon et al. [20] indicated promising learning-
related outcomes in educational settings. Half of the studies (21/36)
that applied RL for instructional sequencing in education and eval-
uated it in a real-world experiment showed that at least one RL
policy significantly outperformed all baselines, with the majority
reporting a substantial Cohen’s 𝑑 effect size of 0.8 [18]. Recent
examples involve using RL for scheduling linear algebra course
activities, with learners in the RL condition achieving significantly
higher learning gains compared to an expert-designed baseline [4],
or RL-based personalized story selection in literacy education for
children, resulting in significantly higher engagement and learning
outcomes in comparison to a non-adaptive condition [37].

RL has also been applied in education to induce pedagogical
policies, through providing adaptive feedback and hints. For ex-
ample, Chi et al. [13] used RL to select suitable tutorial decisions
(e.g., either prompting the student for the next problem-solving
step or providing it directly) and evaluated them in a college-level
physics course, where the proposed method significantly surpassed
both the RL and random baselines in terms of students’ learning
performance. Further, Zhou et al. [55] demonstrated the effective-
ness of applying a pedagogical decision policy using RL, with the
proposed method significantly outperforming the baseline in terms
of students’ post-test score. Focusing on primary education, Chen
et al. [12] leveraged RL to adapt an agent’s interactive behavior to
the child’s knowledge level. The RL-adapted agent helped children
learn the most words and evoked positive emotions significantly
more often.

While there exists a growing number of research conducting
real-world experiments as presented above, reviewing related work
shows that out of 80 publications applying RL in education, half
of them (37/80) rely on interaction datasets or simulated data [44].
Considering that real-world experiments are crucial to accurately
evaluate the effectiveness of RL on students’ learning outcomes [18],
this highlights the need for further research regarding real-world
RL applications. Real-world evaluations entail several ethical and
practical challenges (e.g., vulnerable target groups, constraints of
real-world classrooms). The complexity of real-world environments
thus poses challenges for implementing RL systems in practical
settings [19]. Similar to the challenges highlighted by Dulac-Arnold
et al. [19] regarding recommender systems, RL-driven educational
applications face numerous and diverse optimization goals (e.g.,
enhancing motivation and learning gain, reducing dropout rates,
and improving algorithm performance). The need for real-time
interaction further complicates matters, as the system must make
immediate decisions. Particularly in education, extensive offline
datasets are often scarce, thus RL-based systems depend heavily on
such data logs, as online experimentation tends to be costly.

Additionally, approaches deeming the RL policy to be signifi-
cantly superior often apply weak baselines (e.g., random or poorly
designed models), whereas expert-crafted baselines are used less
often [18]. In the context of instructional sequencing, Doroudi et
al. [18] summarized that 71% of approaches that demonstrated sig-
nificant beneficial effects of their adaptive RL policies applied ran-
dom baselines or other RL policies, which have not demonstrated
robust performance, instead of being compared to state-of-the-
art baselines. This implies that although a personalized learning
process might be helpful, it does not clarify whether RL-based ap-
proaches lead to significantly better outcomes compared to relying
on expert-driven strategies [18]. Moreover, RL in education seems
to be most successful when framed by concepts and theories from
psychology and the learning sciences, indicating that RL approaches
should more frequently draw on insights from educational research
extensively explored by psychologists, rather than relying solely
on a data-driven approach [18].

2.3 Pedagogical Agents
Educational applications often integrate a virtual character, a so
called pedagogical agent (PA), that “[...] seeks to promote learning,
enhance motivation, and provide support to engage in an educa-
tional activity” [30, p. 307]. It can take on different roles in edu-
cational applications, comprising the role of 1) an expert agent
demonstrating expertise or deep knowledge of the domain, 2) a
peer-like motivator agent aiming to engage the learner with the
learning tasks, 3) a mentor agent as a hybrid version offering both
information and encouragement, and 4) a student-like learner agent
interacting with an expert or mentor agent [5, 15], with the expert
agent being the most commonly used role [15].

PAs seem to have an overall small positive effect on students’ per-
formance compared to learning environments without an agent [10,
46], with 2D agents being slightlymore effective than 3D agents [10].
They can also be beneficial for student motivation [45]. Combin-
ing these agents with methods from Artificial Intelligence further
enables the introduction of adaptivity in the behavior of PAs. This
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could enhance the learning process by allowing students to advance
through the learning environment at their own pace, facilitated by
individually scheduled learning activities and personalized learning
pathways [2]. They also allow for peer-like interaction, promoting
children’s development and learning [9].

3 RESULI-RL: CONCEPT AND
IMPLEMENTATION

In previous work, we proposed the initial framework for our DRL-
powered PA providing automated feedback behavior [41] and eval-
uated it in its target group of primary students, demonstrating
promising results on real-world feasibility and a long-term moti-
vational potential [40]. Building on this, we present our approach
ResUli-RL, a Residual RL-powered PA named "Uli" that provides
individually adapted feedback within the framework of a validated
reading intervention. Thus, we aim to account for individual dif-
ferences in children’s learning behaviors and abilities, while also
improving motivation and reading competence. In the following,
we describe our baseline learning environment, the proposed novel
DRL approach, and model pre-training.

3.1 The MobiLe Reading App (Expert Baseline)
The environment used for implementing and testing our approach
is built on an empirically validated digital reading application [24,
25, 42], which is itself based on a validated analogue reading in-
tervention for second graders with reading difficulties [36]. The
digital training is a mobile app and was developed in close col-
laboration with experts from pedagogical psychology. It has been
validated within the target group in a 20 session wait-list-control
group design where children using the app demonstrated signifi-
cant gains in general word recognition and phonological recoding
processes compared to similarly low-skilled children who received
no intervention [24].

The app comprises 21 games designed to enhance various read-
ing skills, focusing on phonological and orthographic comparison
processes, as well as reading comprehension. Games involve differ-
ent reading-related activities, for example separating word items
syllable by syllable or reading short stories. Several games have
also been evaluated within the target group regarding its usability
and enjoyment [42]. All games are wrapped in a training struc-
ture, allowing for different difficulty levels. The app also includes a
PA named "Uli, the owl" (see Figure 1) that provides feedback and
support after a set number of incorrect attempts, following a prede-
termined behavioral sequence defined by experts from pedagogical
psychology.

The PA either remarks on the accuracy of the child’s response,
provides the correct solution, or offers help by directing the child to
a tutorial video. In earlier work, we highlighted the benefits of in-
corporating adaptive mechanisms rooted in educational psychology
into both the learning environment and the behavior of the PA [43].
Our previous method relied on a fixed feedback system, which we
now seek to improve by leveraging DRL to automate the type of
the agent’s feedback behavior. This automation enables the PA to
provide real-time, personalized feedback tailored to each child’s
learning process. In this context, personalized feedback means that
the type of feedback on mistakes varies for each learner (either

Figure 1: The Sailor Game with the pedagogical agent “Uli,
the owl” in the top right corner

motivating feedback, the solution, or a hint), depending on their
learning behavior. The original digital reading intervention used as
our learning environment comprises 20 sessions, which exceeded
the scope of our planned real-world experiment. For our approach,
we thus selected a subset of games that cover all central aspects of
the digital reading training while maintaining some variation. We
adopted a reduced form of the original reading training structure,
resulting in 13 different games (namely Anthill, Balloon Ride, Bee
Flight, Butterfly Flight, Picnic, Sailor Game, Sea Game, Syllable
Drum, Syllable Salad, Syllable Soup, Uschis’s Post, Word Bakery,
Word Signals) that are played multiple times on different difficulty
levels while progressing through a fixed training structure. A brief
description of all games can be found in Heß et al. [24].

3.2 ResUli-RL
We consider our environment as aMDP, consisting of states, actions,
rewards, and probabilities that capture the dynamics of the decision-
making process [49]. State feature variables are used to represent
the state, encapsulating the history of the learning session and pre-
serving all relevant details about both past and current interactions.
The state features are selected based on key factors that influence
the perception and effectiveness of feedback in educational science
(see [7, 23, 53]).

They comprise the difficulty of the game currently played (1− 5)
and the support given by the PA (i.e., referring to the tutorial video),
both for the word item currently worked on and the entire game ses-
sion. Further, the likeability (i.e., how motivated children currently
are to engage with the app) is queried regularly (every five tasks)
within the app. A pop-up is displayed and children are prompted to
adjust a slider between 0 − 1 (with 1 as highest likeability), aiming
to include motivational aspects into the state space, as suggested
by Doroudi et al. [18]. Additionally, the number of mistakes made
by the learner in the current game session is monitored, along with
the reaction time for each interaction. Together, all specified fea-
tures form the current state 𝑠 = {GameDifficulty, SupportPerWord,
SupportPerSession, Likeability, Mistakes, ReactionTime}.

For each incorrect answer given by the child during app inter-
action, the DRL-powered PA chooses one out of three feedback
behaviors, thus the set of actions is defined as 𝐴 = {𝐺𝑖𝑣𝑒𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘,
𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝐻𝑖𝑛𝑡, 𝑆ℎ𝑜𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛}. For selecting a respective action, we
used a residual approach to the Deep Q-Network (DQN) algo-
rithm [35]. Residual RL is a concept in which a RL agent uses a
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residual function to improve or adjust an existing control policy or
value function [52]. It is built on the premise that an agent doesn’t
need to learn the full policy or value function from scratch, but
can instead adjust or improve an already existing, often heuristic-
based or pre-trained Q-function. Residual RL is frequently used to
improve stability and enhance generalization [52] and has been
applied in various domains, such as robotics [27, 52], value function
factorizing in Multi-Agent RL [38], or other control tasks [31]. Our
proposed approach adjusts the concept of residual RL with a focus
on error correction and bias reduction. For ResUli-RL, the residual
Q-value represents the difference between the actual Q-value and
a pre-trained Q-value (estimated as described in Section 3.3). We
expect the pre-trained Q-value to provide a strong initial estimate,
and the goal of the residual network is to learn the necessary adjust-
ments to this estimate to refine the Q-function further. In traditional
DQN, as described by Mnih et al. [35], the Q-value function 𝑄 (𝑠, 𝑎)
is directly approximated by a neural network, which maps states 𝑠
and actions 𝑎 to their corresponding expected cumulative rewards.
However, this approach can suffer from high variance and slow
convergence, especially in environments where a rough prior of
the Q-values can be established. To address these challenges, our
approach decomposes the Q-value function into two components:
A fixed, pre-trained Q-function 𝑄𝑝𝑟𝑒 (𝑠, 𝑎) and a target Q-function
𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎). The residual Q-value 𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑠, 𝑎) is computed as
the difference between the target Q-value and the fixed component:

𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑠, 𝑎) = 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎) −𝑄𝑝𝑟𝑒 (𝑠, 𝑎) (1)
Our approach allows the residual network to focus on learning

the correction to the pre-trained baseline provided by 𝑄𝑝𝑟𝑒 (𝑠, 𝑎),
rather than learning the entire Q-function from scratch. This ap-
proach allows for bias adjustment and error correction between
pre-trained and actual target values to avoid compounding errors.
This method is particularly advantageous in this context since
𝑄𝑝𝑟𝑒 (𝑠, 𝑎) is derived from pre-training on a dataset collected in the
actual application context (see Section 3.3), thus serving as an in-
formative yet biased estimate that requires refinement. Subtracting
the pre-trained Q-value𝑄𝑝𝑟𝑒 (𝑠, 𝑎) can help highlight where the pre-
trained value is overestimated or biased, mitigating overfitting to
the fixed Q-value. The pre-trained value provides an initial estimate
of the Q-values, capturing general trends and relationships within
the environment, and remains static during subsequent training.

The target Q-value 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎) is approximated by a deep neu-
ral network. As in DQN, we used two neural networks with iden-
tical architectures, with both the Q-network and target network
being structured as a two-layer sequential neural network (64, 64),
utilizing the 𝑇𝑎𝑛ℎ function for activation, with the final layer cor-
responding to the dimensions of the action space. Input feature
values are normalized using min-max scaling, and the algorithm is
fine-tuned with the Adam stochastic optimization method [28]. We
estimate 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎) following the Bellman Equation in that:

𝑄 (𝑠, 𝑎) = 𝑟 + γmax
𝑎′

𝑄 (𝑠′, 𝑎′) (2)

In this context, 𝑟 represents the expected immediate reward for
choosing action 𝑎 in state 𝑠 , γ is the discount factor, and𝑄 (𝑠′, 𝑎′) is
the expected value of 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎) in the subsequent state 𝑠′ when
taking an action 𝑎′ and then adhering to policy π afterwards. The

Q-Network is then fine-tuned during online learning through live
interactions with the target group (see Figure 2), where it updates
the residual Q-function by learning the discrepancy between the
fixed Q-values and the actual returns observed during interaction
with the environment, see Equation 1.

Figure 2: Agent-environment interaction at time-step 𝑡

Further, the target network is updated based on a child’s next
interaction after making a mistake and receiving feedback from
the DRL-powered PA. We opted for the Huber loss function as a
more robust alternative to MSELoss. To balance exploration and
exploitation, the DRL-based PA makes use of the epsilon-greedy
policy, selecting the action with the highest estimated reward. Ini-
tially, we set ε𝑖𝑛𝑖𝑡 = 4.5𝑒 −1, with linear epsilon decrement for each
interaction with ε𝑑𝑒𝑐𝑎𝑦 = 2𝑒 − 4, to end at ε𝑒𝑛𝑑 = 8𝑒 − 2. The learn-
ing rate is set as 𝑙𝑟 = 1𝑒 − 1. Algorithm 1 shows the pseudo-code
for training ResUli-RL online.

Algorithm 1 ResUli-RL

Input Live training data𝐷 ,𝑄𝑝𝑟𝑒 (𝑠, 𝑎), current residual predictions
𝑄 (𝑠, 𝑎; θ) with parameters θ
for 𝑘 = 1, 2, 3, ... do

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎) = 𝑟 + γmax𝑎′ 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠′, 𝑎′)
𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑠, 𝑎) = 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎) −𝑄𝑝𝑟𝑒 (𝑠, 𝑎)
θ← θ − 𝑙𝑟 (𝑄 (𝑠, 𝑎; θ) −𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑠, 𝑎))∇θ𝑄 (𝑠, 𝑎; θ)

end for

Rewards are assigned based on the accuracy of the child’s answer,
either 1 for correct or 0 for incorrect answers. A discount ξ ∈ [0, 1]
is applied for previously given incorrect answers, calculated as
the accuracy divided by the total number of answers given in the
current game. Thus, we denote 𝑟 = ξ ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦.

3.3 Offline Training to Estimate 𝑄𝑝𝑟𝑒
To estimate 𝑄𝑝𝑟𝑒 , we trained offline on a previously collected
dataset of the app’s target group which contains interaction data of
144 children, working through the reading training in the app in 20
sessions. They played the selected 13 games multiple times, involv-
ing approximately 40− 60 interactions per game. The data collected
encompasses accuracy, reaction time, difficulty level, and specific
word characteristics. All other necessary information for training,
such as actions and states, was inferred from the dataset. We used
Boosted Fitted Q-Iteration (BFQI) [50] to estimate the Q-function
based on the given dataset, accounting for the continuous state
space. BFQI is an approximated value iteration algorithm which
estimates the action-value function in RL problems utilizing a boost-
ing technique. Given a pre-collected dataset of transitions, BFQI
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approximates the optimal action-value function by aggregating the
approximations of the Bellman residuals over multiple iterations,
see Algorithm 2.

Algorithm 2 Boosted Fitted Q-Iteration
Input Training dataset 𝐷 , 𝑄0 = 0

for 𝑘 = 0, ..., 𝐾 do
ϱ̃𝑘 ← 𝑇 ∗𝑄𝑘 −𝑄𝑘 (w.r.t. 𝐷 (𝑘 ) )
𝑄𝑘+1 ← 𝑄𝑘 + ϱ̃𝑘

end for
return π̄(𝑠) = arg max𝑎 𝑄𝐾+1 (𝑠, 𝑎) ∀𝑠 ∈ 𝑆

Accordingly, as noted by Tosatto et al. [50, p. 3435] “the complex-
ity (e.g., supremum norm) of fitting the Bellman residual should
decrease as the estimated value function approaches the optimal
one [...], thus allowing to use simpler function approximators and
requiring less samples”. With it, we aimed to compensate for both
the continuous state space as well as the small amount of historical
learner data available for training, since simulating young learn-
ers’ behavior is not possible and learning applications have to be
ultimatively evaluated in real-world scenarios, requiring in-situ
studies with children. We adopted the BFQI implementation of the
MushroomRL library [17] and adapted it for our setting, using the
GradientBoostingRegressor to approximate the Q-function. On the
dataset, we achieved an average cumulative reward of μ𝐺𝑝𝑟𝑒

= 51.88
and 𝑄𝑝𝑟𝑒 was estimated as 𝑄𝑝𝑟𝑒 = 0.75.

4 REAL-WORLD EVALUATION
We assessed the effectiveness of the DRL-powered PA in a real-
world setting, examining whether the DRL-induced policy out-
performed the expert baseline in a school environment regarding
students’ reading competence and motivation. For our experiment,
we connected the DRL model with the existing reading app using
the Chaquopy plugin [11], enabling the PA to determine the appro-
priate feedback behavior whenever a child made a mistake while
using the app. We expected a higher increase in reading compe-
tence scores (H1) and post-test motivation (H2) in the group using
the app with the DRL-powered PA compared to the baseline con-
dition. Further, we investigated the feasibility and performance of
the ResUli-RL approach (RQ1).

4.1 Method
4.1.1 Measures. Tomeasure the children’s reading competence, we
administered a standardized screening test (Stolperwörter-Lesetest
(STOLLE) [34]) that measures reading fluency and -ability at the
sentence level. As noted by Metze [34], the test implicitly includes
the assessment of meaning and syntactic coherence. In 60 sentences,
the children’s task is to identify the word that doesn’t align with
the overall meaning of the sentence, such as the word “young” in
the example: “My friend is eight young years old.”. A percentile
rank can then be derived for each child’s raw score (number of
correctly solved sentences), indicating the percentage of children
in the tested sample who performed the same or worse. Percentile
ranks 25− 74 correspond to an average performance in reading. We
assessed the children’s reading competence before and after using
the app for five weeks. Three children had to be excluded due to

missing pre-test values. The test–retest reliability, calculated based
on pre- and post-measures in both conditions, was computed as
the intraclass correlation of the STOLLE percentile ranks for a total
of 53 children (those with complete data sets). For calculating the
intraclass correlation coefficient (ICC), a two-way mixed effects
model for mean rating and consistency was used [33, 48]. According
to Koo and Li [29], the estimated test–retest reliability was good
with 𝐼𝐶𝐶 (3, 𝑘) = .87, 95% 𝐶𝐼 [0.78, 0.93].

Motivation was assessed after the initial use of the app and
again on the final day of the intervention after five weeks. Five
children had to be excluded due to missing values. We used the
Reduced Instructional Materials Motivation Survey (RIMMS) [32].
The questionnaire contains four subscales, namely Attention, e.g., “I
liked that there were different tasks.”, Relevance, e.g., “It helps me if I
can read well.”, Confidence, e.g., “I was sure from the beginning that
I would manage the tasks.”, and Satisfaction, e.g., “I had a lot of fun
playing.”. Each scale comprises three items measured on a five-point
Likert scale, with the wording slightly adapted to the target group as
described in Riedmann et al. [43]. An overall score across all scales
measures motivation. The test–retest reliability was computed as
the intraclass correlation of the overall RIMMS score (pre- and post-
measures in both conditions) for all children with complete datasets
(𝑛 = 51). For calculating the ICC, a two-way mixed effects model
for mean rating and consistency was used [33, 48] and according to
Koo and Li [29], the estimated test–retest reliability was moderate
with 𝐼𝐶𝐶 (3, 𝑘) = .62, 95% 𝐶𝐼 [0.35, 0.78].

To assess the perception of the pedagogical agent, we employed
the Agent Persona Instrument (API) [6] at the final day of the in-
tervention, containing four subscales. They comprise 10 items for
Facilitating Learning, e.g., “The agent made the instruction inter-
esting.” (α = .93), and five items each for Credibility, e.g., “The
agent was intelligent.” (α = .77), Human-Likeness, e.g., “The agent
was human-like.” (α = .86), and Engagement, e.g., “The agent was
friendly.” (α = .90), each measured on a five-point Likert scale.

Additionally, we tracked the children’s performance and number
of attempts in all games through the reading intervention to derive
their accuracy ratio ϕ ∈ [0, 1], calculated as the number of correct
answers given in relation to the overall number of interactions,
used as discount ξ for reward calculation. As input for the DRL
model, we logged the difficulty, support per word and session given
by the PA, likeability, reaction time, and mistakes made by the child.
Further, cumulative reward and loss values for each network time
step were logged to calculate the average cumulative reward (ACR)
and average Rate of Change (ARoC) as indicators of how well our
model is learning. Data of five children of the ResUli-RL condition
had to be excluded from this analysis due to technical difficulties.

4.1.2 Participants and Procedure. The real-world evaluation of
ResUli-RL was conducted as a five-week intervention study in a
German primary school, involving two second grade and one third
grade school classes, in close consultation with responsible teachers,
school administration, and the education authority. Sixty-one pri-
mary school students voluntarily agreed to participate in the exper-
iment. Parents were informed about the study in advance through
an information letter and provided written informed consent for all
participants. One child had to be excluded due to technical difficul-
ties and four children did not participate in post-testing, resulting in
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𝑁 = 56 children, aged 7−10 years (𝑀 = 8.45, 𝑆𝐷 = 0.71). Thirty-one
girls and 25 boys participated, none identified as diverse. They were
randomly assigned to either the condition with the adaptive PA
(ResUli-RL, 𝑛 = 29) or the control group using the expert-designed
version with the non-adaptive PA (ExpertApp, 𝑛 = 27).

All participating children used the app regularly once or twice a
week for 45 minutes for in total five weeks, supervised by an experi-
menter during school time. The first and last session included filling
out the respective paper-based questionnaires and the STOLLE. The
children played a subset of the original reading training on a 10.5-
inch Android tablet, involving 13 games that were repeated several
times in different difficulties through the course of the training, with
varying focus on different reading aspects. The sequence, game
types, and the content of the PA’s feedback in the learning app were
the same for both conditions, while the feedback selection differed
in being either on a fixed schedule in the ExpertApp condition or
individually adapted to the child by the DRL model in the ResUli-
RL condition. Our experiment was approved by the responsible
institutional ethics committee (application number 150524).

4.2 Results
All analyses were conducted with JASP [26] and alpha was set at .05.
We used mixed-design analysis of variance (ANOVA) to investigate
the children’s reading competence and motivation, with time as
the within-subjects factor and condition as between-subjects factor.
As indicated by Levene’s test, equality of variances was not given
with 𝑝 < .05, however, repeated-measures ANOVA (and thus
mixed ANOVA) can be considered robust to non-normality [8].
An a priori power analysis was conducted using G*Power [21]
to estimate the sample size needed for a mixed-design ANOVA.
The analysis aimed to detect a medium effect size (𝑑 = 0.50) [14],
using an alpha level of .05 and a desired power of .95, resulting in
a suggested minimum sample size of 54 participants. The sample
size of 56 participants exceeded this minimum value, suggesting
adequate statistical power for detecting group differences.

To compare the children’s perception of the agent between condi-
tions, a one-way multivariate analysis of variance (MANOVA) was
used. The Shapiro-Wilk test for multivariate normality indicated
significance (𝑝 < .001), however, MANOVA is considered relatively
robust against violations of equality of variance [3]. Homogeneity
of covariances was given, as assessed by Box’s test (𝑝 = .117).
Table 1 displays all descriptive values.

4.2.1 Reading Competence. There were no significant differences
among the children’s STOLLE pre-test scores (𝑈 = 320.00, 𝑝 = .587,
𝑑 = −0.09), thus we assume a similar range of reading skills in
both groups. We investigated whether children in the ResUli-RL
condition improved their reading skills more from pre- to post-test
compared to the ExpertApp group. The mixed-design ANOVA re-
vealed a significant main effect for time on reading competence,
𝐹 (1, 51) = 50.03, 𝑝 < .001, η2 = 0.10. Overall, children im-
proved their reading ability from pre-test (𝑀 = 35.91, 𝑆𝐷 = 23.21)
to post-test (𝑀 = 52.02, 𝑆𝐷 = 25.76). Post-hoc tests showed that
this effect applied for both the ResUli-RL condition (𝑡 (26) = −4.55,
𝑝ℎ𝑜𝑙𝑚 < .001, 𝑑 = −0.59), and the control group (𝑡 (25) = −5.44,
𝑝ℎ𝑜𝑙𝑚 < .001, 𝑑 = −0.72), see Figure 3. However, there was no
significant difference between the two conditions (𝐹 (1, 51) = 0.241,

𝑝 = .626, η2 = 0.00). We also found no significant interaction
effect between time and condition (𝐹 (1, 51) = 0.484, 𝑝 = .490,
η2 = 0.00).

Figure 3: Pre-/post-test improvement of the children’s read-
ing competence for both conditions

4.2.2 Motivation. We further investigated whether the children’s
motivation differed from first to last app usage between the two
conditions. A mixed-design ANOVA showed a significant effect
for time on motivation, 𝐹 (1, 49) = 23.10, 𝑝 < .001, η2 = 0.11.
Overall, motivation significantly decreased from pre-test (𝑀 = 4.55,
𝑆𝐷 = 0.49) to post-test (𝑀 = 4.12, 𝑆𝐷 = 0.71). Post-hoc tests
revealed significantly reducedmotivation in the ResUli-RL condition
from pre- to post-test (𝑡 (25) = 4.30, 𝑝ℎ𝑜𝑙𝑚 < .001, 𝑑 = 0.87),
but not for the ExpertApp condition (𝑡 (24) = 2.51, 𝑝ℎ𝑜𝑙𝑚 = .062,
𝑑 = 0.52). There was neither a significant difference between
the two conditions (𝐹 (1, 49) = 0.01, 𝑝 = .921, η2 = 0.00)
nor a significant interaction effect between time and condition
(𝐹 (1, 49) = 1.49, 𝑝 = .228, η2 = 0.01).

4.2.3 Perception of the PA. We additionally compared the percep-
tion of the PA between the two conditions, subdivided according
to its ability to facilitate learning, credibility, human likeness, and
engagement. Using these aspects as dependent variables and condi-
tion as independent variable, we conducted a one-way MANOVA.
We found no significant main effect for condition,𝑊𝑖𝑙𝑘𝑠′Λ = .92,
𝐹 (4, 42) = 0.95, 𝑝 = .445.

Figure 4: AverageCumulativeReward (ACR) μ𝐺 for time steps
reached in app interactions by at least 50% of the children
using the app version with the DRL-powered PA
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Table 1: Means for both conditions with SD in parentheses

Scale ResUli-RL ExpertApp

Pre Post n Pre Post n

Reading competence 0-100 38.22(26.32) 52.78(28.49) 27 33.50(19.72) 51.23(23.14) 26
Motivation 1-5 4.61(0.37) 4.08(0.70) 26 4.49(0.60) 4.17(0.72) 25
Facilitating learning 1-5 3.70(1.01) 28 4.03(0.88) 25
Credibility 1-5 4.10(0.84) 29 4.21(0.75) 26
Human likeness 1-5 3.64(1.07) 28 3.78(1.06) 24
Engagement 1-5 3.85(1.22) 27 3.95(1.02) 26

Figure 5: Average loss for time steps reached in app interac-
tions by at least 50% of the children using the app version
with the DRL-powered PA

Figure 6: Average Rate of Change (ARoC) Δ𝐿 for time steps
reached in app interactions by at least 50% of the children
using the app version with the DRL-powered PA

4.2.4 Additional Measurements. In the ResUli-RL condition, the
children (𝑛 = 29) played 27 games on average during the five-
week intervention, resulting in approximately 67 interactions per
game for the DRL agent. These children further made averagely 544
mistakes throughout the entire app interaction, which is equal to the
mean number of actions selected by the PA per child and thus the
training episodes. To capture both the agent’s effectiveness across
multiple users and its ability to learn over time, we calculated the
ACR. As our DRLmodel was trained live in a continuous interaction
setting, we calculated the ACR μ𝐺 as 1

𝑛

∑𝑛
𝑖=1𝐺𝑖 , averaged by the

number of children (𝑛 = 29). 𝐺𝑖 is computed as
∑𝑇
𝑡=0 𝑟𝑖,𝑡 , with 𝑟𝑖,𝑡

as the reward received at time step 𝑡 for child 𝑖 . For our context, this
resulted in μ𝐺 = 73.43, which is an increase by 41.54% compared to

the ACR achieved when trained on historical data. The ACR values
for ResUli-RL during live training are displayed in Figure 4, showing
that while rewards continuously increased, the policy was not able
to fully converge.

Figure 5 shows a general downward trend of the Huber loss,
indicating that the DRL model was learning and improving during
the live training, but the learning process was not very smooth
as visible by the large oscillations. This continued fluctuation is
reflected in the ARoC (see Figure 6), suggesting that the policy
was not converging effectively. The ARoC Δ𝐿 represents the dif-
ference between the current and the previous loss value for each
child at each time step, thus Δ𝐿 = 1

𝑛−1
∑𝑛−1
𝑖=1

𝐿 (𝑡𝑖+1 )−𝐿 (𝑡𝑖 )
𝑡𝑖+1−𝑡𝑖 , averaged

over the children, resulting in an overall small, but positive value
Δ𝐿 = 0.06. Please note that Figures 4 to 6 display only results of a
subset of children in the ResUli-RL condition to account for the high
variation in time steps between children while being able to show
a gradient. This variation arises from differences in the speed at
which children progressed through the app, necessitating a cut-off
at 1600 time steps — the maximum number reached by at least 50%
of the children during app interactions.

5 DISCUSSION
With our work, we aimed to address the gap in real-world research
on applying RL in education. We presented our novel approach
ResUli-RL, a DRL-powered PA in a reading app for primary stu-
dents, and demonstrated its feasibility in a real-world experiment.
We leveraged knowledge from educational psychology to infer suit-
able state features and actions, and compared the DRL-powered
application to an expert-designed baseline. In a five-week primary
school intervention, we collected data on the children’s motivation
and reading competence to investigate long-term effects.

Children improved reading competence in both conditions.
We did not find differences in the increased reading competence
scores between the two conditions, thus rejecting H1. Interestingly,
children significantly improved their reading competence from pre-
to post-test in both groups, suggesting that the reading training
achieved the desired effect regardless of whether the feedback was
personalized or not. This aligns with previous work [24], demon-
strating the reading training’s general effectiveness. Further, the
high standard deviation in both groups’ pre- and post-test means
indicates the children’s high diversity in terms of their prior reading
abilities, although being equally distributed across conditions.
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High post-test motivation with an overall decrease. There
was also no significant difference between the children’s motiva-
tion in the post-test between conditions and we reject H2. Both
groups demonstrated descriptively lower means in motivation in
the post-test compared to the pre-test, with a significant difference
for the ResUli-RL condition, suggesting a significant decrease in
motivation. The fixed feedback request intervals in the ResUli-RL
condition might have negatively impacted the children’s experi-
ence. However, overall post-test motivation can still be considered
high in both conditions with a mean of 4.12 on a five-point Likert
scale, considering the overall long time children interacted with
the app. The lack of significant differences between the conditions
might be due to the initially high motivational potential of the
expert-designed baseline and further stretches the need to compare
new educational RL approaches to sophisticated baselines. Further,
adjusting only the feedback type might not have sufficiently per-
sonalized the experience, probably requiring a greater variety of
feedback types (i.e., actions), however, for comparability we aimed
to align with the original reading training as close as possible.

ResUli-RL provided personalized feedback, though not
fully converged. Regarding the performance of the DRL model
(RQ1), it seems that our ResUli-RL approach, while demonstrating
increasing rewards and a small downwards trend of the average
loss values, was not able to fully converge within the given real-
world setting. Looking at the ACR values, the agent progressively
improved its performance over time, however, the fluctuations near
the end suggest that the agent was still fine-tuning its policy and had
not fully converged yet. However, considering the relatively high
learning rate 𝑙𝑟 = 1𝑒−1, this smooth increase suggests that the agent
was managing to adapt effectively, even with limited interaction
steps (544 episodes per child on average). This is reflected in the
ResUli-RL group interaction data, as children that struggled more
often received more solutions by the PA, while those previously
performing well were given more opportunities to try again.

There is also a general decrease in the loss over time, indicating
that, overall, the model is learning and improving, but the large
oscillations, especially early on, suggest that the high learning rate
might have contributed to instability. While this rate helped the
model adapt quickly, which we considered important due to real-
world setting, it is also preventing smooth convergence. Our model
probably struggled to stabilize due to placing too much weight on
each update during interactions. Additionally, the general limited
amount of training steps due to the real-world constraints might
have hindered model convergence, with the model requiring more
training time to fully converge. This aligns with Park et al. [37],
reporting failed convergence after pursuing a similar number of
423 training episodes per child. The significant decrease in the
children’s motivation in the ResUli-RL condition could also be a
sign that the DRL-powered agent’s feedback was not well-aligned
with maintaining student motivation, potentially explaining why
the policy did not converge effectively. However, overall children
managed to improve their reading abilities significantly in both
conditions, indicating that the DRL-induced feedback provided by
the PA could keep up with the high standard of expert-designed
feedback. While this suggests that the policy successfully adapted
to the students, it was not able to fully converge within the given
real-world setting, which limits our findings.

RL in education has potential, but requires real-world
evaluation. In summary, our results demonstrate that applying
RL in real-world settings is equally important as it is challenging.
While RL-based approaches demonstrated to outperform baselines
in various contexts (and already did so several times within ed-
ucational applications), simply applying RL in education might
not be adequate or effective in every context, particularly when
benchmarked against sophisticated baselines. Still, despite some
technical and methodological limitations, our proposed approach
ResUli-RL demonstrated to be feasible for running on an average
tablet to be used in an applied school setting, demonstrating tech-
nical progress with steadily increasing cumulative rewards while
decreasing the average loss. However, this did not translate into
significantly better reading performance or motivation compared
to the expert-designed baseline, with both groups achieving com-
parable reading gains. While this suggests that the DRL-powered
PA did not offer added value in this particular context, it should
be carefully considered that the model’s performance not reaching
convergence limit our results. Thus, while our findings highlight
the importance of real-world evaluations, they also provide guid-
ance for future work, stressing the need to evaluate new approaches
in realistic real-world settings, comparing them to sophisticated
baselines. Future research should focus on educational application
contexts entailing a larger and diverse action space allowing a more
fine-grained adaptation to the learner, as well as exploring hybrid
approaches that combine expert-driven and data-driven methods
to support both performance and motivation effectively.

6 CONCLUSION
In our work, we proposed a novel residual approach for RL in pri-
mary education, ResUli-RL, where the components of the MDP are
inferred from educational psychology.We further address the gap in
real-world evaluations of educational RL systems by comparing the
DRL-powered pedagogical agent with an expert-designed baseline
in an in-situ five-week intervention, assessing long-term effects on
the children’s reading competence and motivation. While our RL
agent demonstrated technical improvements, as reflected by increas-
ing cumulative rewards during the interaction and reduced average
loss, the policy did not seem to fully converge and the post-test
results revealed no significant differences in increased reading com-
petence between the two conditions, but a significant improvement
from pre- to post-test in both groups. Further, motivation decreased
in both groups, with a significantly larger decline in the ResUli-RL
group. Notably, our DRL model was not able to reach full conver-
gence, limiting the resulting implications and highlighting the need
to evaluate DRL policies with real learners to better understand
their practical impact in such complex environments. However, suc-
cessfully applying RL in education requires overcoming multiple
hurdles (limited training data, vulnerable target group) while at
the same time outperforming sophisticated baselines, deeming our
method a feasible approach that can inform future work.
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