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ABSTRACT
An important challenge in multi-objective reinforcement learning
is obtaining a Pareto front of policies to attain optimal performance
under di"erent preferences. We introduce Iterated Pareto Refer-
ent Optimisation (IPRO), which decomposes# nding the Pareto
front into a sequence of constrained single-objective problems.
This enables us to guarantee convergence while providing an upper
bound on the distance to undiscovered Pareto optimal solutions
at each step. We evaluate IPRO using utility-based metrics and
its hypervolume and# nd that it matches or outperforms methods
that require additional assumptions. By leveraging problem-speci#c
single-objective solvers, our approach also holds promise for ap-
plications beyond multi-objective reinforcement learning, such as
planning and path#nding.
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1 INTRODUCTION
In sequential decision-making problems, agents often have mul-
tiple and con$icting objectives. Controlling a water reservoir, for
example, involves a complex trade-o" between environmental, eco-
nomic and social factors [6]. Because the objectives are con$icting,
decision-makers ultimately need to make a suitable trade-o". In
such situations, multi-objective reinforcement learning (MORL) can
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be used to compute a set of candidate optimal policies that o"er
the best available trade-o"s, empowering decision-makers to select
their preferred policy [15].

We focus on learning the Pareto front, which comprises all poli-
cies yielding non-dominated expected returns. When assuming
decision-makers employ a linear scalarisation function or allow
stochastic policies, the Pareto front is guaranteed to be convex [27],
facilitating the use of e"ective solution methods [34, 35]. How-
ever, deterministic policies are often preferred for reasons of safety,
accountability, or interpretability, and in such cases, the Pareto
front may exhibit concave regions. Algorithms addressing this set-
ting have been elusive, with successful solutions limited to purely
deterministic environments [25].

To tackle general policy classes and MOMDPs, we propose Iter-
ated Pareto Referent Optimisation (IPRO), which decomposes this
task into a sequence of constrained single-objective problems. In
multi-objective optimisation (MOO), decomposition stands as a suc-
cessful paradigm for computing a Pareto front. This approachmakes
use of e%cient single-objective methods to solve the decomposed
problems, thereby also establishing a robust connection between
advances in multi-objective and single-objective methods [38]. In
particular, existing MORL algorithms dealing with a convex Pareto
front frequently employ decomposition and rely on single-objective
RL algorithms to solve the resulting problems [4, 17].
Contributions. IPRO is an anytime algorithm that decomposes
learning the Pareto front into learning a sequence of Pareto optimal
policies. We show that learning a Pareto optimal policy corresponds
to a constrained single-objective problem for which principled so-
lution methods are derived. Combining these, we guarantee con-
vergence to the Pareto front and provide bounds on the distance to
undiscovered solutions at each iteration. Our complexity analysis
shows that IPRO requires a polynomial number of iterations to
approximate the Pareto front for a constant number of objectives.
While IPRO applies to any policy class, we speci#cally demonstrate
its e"ectiveness for deterministic policies, a class lacking general
methods. When comparing IPRO to algorithms that require ad-
ditional assumptions on the structure of the Pareto front or the
underlying environment, we# nd that it matches or outperforms
them, thereby showcasing its e%cacy.
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2 RELATEDWORK
When learning a single policy in MOMDPs, as is necessary in IPRO,
conventional methods often adapt single-objective RL algorithms.
For example, Siddique et al. [29] extend DQN, A2C and PPO to learn
a fair policy by optimising the generalised Gini index of the expected
returns. Reymond et al. [26] extend this to general non-linear func-
tions and establish a policy gradient theorem for this setting. When
maximising a concave function of the expected returns, e%cient
methods exist that guarantee global convergence [14, 36, 37].

Decomposition is a promising technique for MORL due to its
ability to leverage strong single-objective methods as a subroutine
[13]. When the Pareto front is convex, many techniques rely on the
fact that it can be decomposed into a sequence of single-objective
RL problems where the scalar reward is a convex combination of
the original reward vector [4, 35]. When the Pareto front is non-
convex, Van Mo"aert et al. [31] learn deterministic policies on
the Pareto front by decomposing the problem using the Chebyshev
scalarisation function but do not provide any theoretical guarantees
and only evaluate on discrete settings.

In MOO, a related methodology was proposed by Legriel et al.
[16] to obtain approximate Pareto fronts. Their approach iteratively
proposes queries to an oracle and uses the return value to trim sec-
tions from the search space. In contrast, we introduce an alternative
technique for query selection that ensures convergence to the exact
Pareto front and aims to minimise the number of iterations. More-
over, we introduce a procedure that deals with imperfect oracles
and contribute novel results that are particularly useful for MORL.

3 PRELIMINARIES
Pareto dominance. For two vectors 𝜴, 𝜴→ ↑ R𝐿 we say that 𝜴 Pareto
dominates 𝜴→, denoted 𝜴 ↓ 𝜴→, when ↔𝐿 ↑ {1, . . . , 𝑀} : 𝑁 𝑀 ↗ 𝑁 →𝑀 and
𝜴 ω 𝜴→. When dropping the second condition, we write 𝜴 ↘ 𝜴→.
We say that 𝜴 strictly Pareto dominates 𝜴→, denoted 𝜴 > 𝜴→ when
↔𝐿 ↑ {1, . . . , 𝑀} : 𝑁 𝑀 > 𝑁 →𝑀 . When a vector is not pairwise Pareto
dominated, it is Pareto optimal. A vector is weakly Pareto optimal
whenever there is no other vector that strictly Pareto dominates it.

In multi-objective decision-making, Pareto optimal vectors are
relevant when considering decision-makers with monotonically
increasing utility functions. In particular, if 𝜴 ↓ 𝜴→, then 𝜴 will be
preferred over 𝜴→ by all decision-makers. The set of all pairwise
Pareto non-dominated vectors is called the Pareto front, denoted
V

≃, and an approximate Pareto front V𝑁 with tolerance 𝑂 is an
approximation toV≃ such that↔𝜴 ↑ V

≃, ⇐𝜴→ ↑ V
𝑁 : ⇒𝜴⇑𝜴→ ⇒⇓ ⇔ 𝑂 .

We refer to the least upper bound of the Pareto front as the ideal 𝜴i,
and the greatest lower bound as the nadir 𝜴n (see Figure 1).
Achievement scalarising functions. Achievement scalarising
functions (ASFs) scalarise a multi-objective problem such that an
optimal solution to the single-objective problem is (weakly) Pareto
optimal [19]. These functions are parameterised by a reference point
𝜶 , also called the referent. Points dominating the referent form the
target region. ASFs are classi#ed into two types: order representing
and order approximating. An ASF 𝑃𝜴 is order representing when
it is strictly increasing, i.e. 𝜴 > 𝜴→ =↖ 𝑃𝜴 (𝜴) > 𝑃𝜴 (𝜴→), and only
returns non-negative values for 𝜴 when 𝜴 ↘ 𝜶 . An ASF is order
approximating when it is strongly increasing, i.e. 𝜴 ↓ 𝜴→ =↖
𝑃𝜴 (𝜴) > 𝑃𝜴 (𝜴→), but may assign non-negative values to solutions

outside the target region. AnASF cannot be both strongly increasing
and exclusively non-negative within the target region [33].

As an example, consider two vectors 𝜴1 = (1, 2) and 𝜴2 = (1, 1)
where 𝜴1 Pareto dominates 𝜴2 (𝜴1 ↓ 𝜴2) but does not strictly
dominate it. With a strictly increasing ASF 𝑃𝜴 , it is possible that
𝑃𝜴 (𝜴1) = 𝑃𝜴 (𝜴2). However, a strongly increasing ASF ensures that
𝑃𝜴 (𝜴1) > 𝑃𝜴 (𝜴2). Consequently, maximising an order representing
ASF guarantees a weakly Pareto optimal solution inside the target
region, while maximising an order approximating ASF guarantees
a Pareto optimal solution, though this solution might lie outside the
target region. We employ the augmented Chebyshev scalarisation
function, a frequently used ASF [23, 31].
Problem setup. We consider sequential multi-objective decision-
making problems, modelled as a multi-objective Markov decision
process (MOMDP). A MOMDP is a tuple M = ↙S,A, P, R, 𝑄, 𝑅∝
where S is a set of states,A a set of actions, P a transition function,
R : S ′A ′ S ∞ R𝐿 a vectorial reward function with 𝑀 ↗ 2 the
number of objectives, 𝑄 a distribution over initial states and 𝑅 a
discount factor. Since there is generally not a single policy that max-
imises the expected return for all objectives, we introduce a partial
ordering over policies on the basis of Pareto dominance. We say
that a policy 𝑆 ↑ ω Pareto dominates another if its expected return,
de#ned as 𝜴𝑂 := E𝑂,𝑃

[∑
⇓
𝑄=0 𝑅

𝑄R(𝑃𝑄 ,𝑇𝑄 , 𝑃𝑄+1)
]
, Pareto dominates

the expected return of the other policy.
Our goal is to learn a Pareto front of memory-based deterministic

policies in MOMDPs. Such policies are relevant in safety-critical
settings, where stochastic policies may have catastrophic outcomes
but can Pareto dominate deterministic policies [8]. Furthermore, for
deterministic policies, it can be shown that memory-based policies
may Pareto dominate stationary policies [27]. In this setting, it is
known that the Pareto front may be non-convex and thus cannot
be fully recovered by methods based on linear scalarisation. Fur-
thermore, to the best of our knowledge, no algorithm exists that
produces a Pareto front for such policies in general MOMDPs.

4 ITERATED PARETO REFERENT
OPTIMISATION

We present Iterated Pareto Referent Optimisation (IPRO) to learn a
Pareto front in MOMDPs. IPRO generates a sequence of constrained
single-objective problems while retaining a set of guaranteed lower
and upper bounds to the Pareto front. An example execution of
IPRO is illustrated in Figure 1. Formal proofs for all theoretical
results are provided in Appendix A.

4.1 Algorithm overview
The core idea of IPRO is to bound the search space that may con-
tain value vectors corresponding to Pareto optimal policies and
iteratively remove sections from this space. This is achieved by
leveraging an oracle to obtain a policy with its value vector in some
target region and utilising this to update the boundaries of the
search space. Detailed pseudocode is given in Algorithm 1.
Bounding the search space. It is necessary to bound the space
in which Pareto non-dominated solutions may exist. By de#nition,
the box spanned by the nadir 𝜴n and ideal 𝜴i contains all such
points (shown as B in Figure 1). We obtain the ideal by maximising
each objective independently, e"ectively reducing the MOMDP
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(a) (b) (c)

Figure 1: (a) The bounding box B, de!ned by the nadir 𝜴n and ideal 𝜴i, contains all Pareto optimal solutions. The dominated set
D and infeasible set I are de!ned by the current approximation to the Pareto front V = {𝜴1, 𝜴2, 𝜴3} and are shaded. The lower
bounds 𝜷 ↑ L are highlighted in green, while the upper bounds 𝜸 ↑ U are highlighted in blue. (b) After querying the Pareto
oracle ε𝑁 with 𝜷2, 𝜴4 is added to the Pareto front and L andU are updated to represent the new corners of D and I respectively.
(c) When the Pareto oracle cannot! nd a feasible solution strictly dominating 𝜷4, it is added to the completed set C and the
shaded orange area is added to the infeasible set I.

Algorithm 1 The IPRO algorithm.

Input: A Pareto oracle ε𝑁 with tolerance 𝑂
Output: A 𝑂-Pareto frontV
1: Get maximal points {𝜴1, . . . , 𝜴𝐿 } to create the ideal 𝜴i
2: Get minimal points to estimate the nadir 𝜴n
3: Form a bounding box B from 𝜴n and 𝜴i
4: U ∈ {𝜴i}, L ∈ {𝜴n}
5: V ∈ {𝜴1, . . . , 𝜴𝐿 } and C ∈ ∋

6: for 𝜴 ↑ {𝜴1, . . . , 𝜴𝐿 } do
7: L ∈ !"#$%&(𝜴,L)

8: while max𝜶↑U min𝜷→ ↑V ⇒𝜸 ⇑ 𝜴→ ⇒⇓ > 𝑂 do
9: 𝜷 ∈ S&’&(%(L)

10: )!((&)), 𝜴≃ ∈ ε𝑁
(𝜷)

11: if )!((&)) then
12: V ∈ V △ {𝜴≃}
13: L ∈ !"#$%&(𝜴≃,L),U ∈ ⇑!"#$%&(⇑𝜴≃,⇑U)

14: else
15: C ∈ C △ {𝜷}
16: L ∈ L \ {𝜷},U ∈ ⇑!"#$%&(⇑𝜷,⇑U)

17: Function !"#$%&(𝜴≃,X)
18: X

→
∈ {}

19: for 𝜴 ↑ X do
20: if 𝜴≃ > 𝜴 then
21: X

→
∈ X

→
△ {(𝜴⇑ 𝑀 , 𝜴≃𝑀 ) | 𝐿 ↑ [𝑀]}

22: else
23: X

→
∈ X

→
△ {𝜴}

24: X
→
∈ P*!+&(X→

)

to a regular MDP. The solutions constituting the ideal are further
used to instantiate the Pareto front V . Since obtaining the nadir
is generally more complicated [19], we compute a lower bound of
the nadir by minimising each objective independently, analogous
to the instantiation of the ideal.
Obtaining a Pareto optimal policy. To obtain individual Pareto
optimal policies we introduce a Pareto oracle (fully formalised in

Section 5). Informally, a Pareto oracle ε𝑁 with tolerance 𝑂 takes a
referent 𝜶 as input and attempts to return a weakly Pareto optimal
policy 𝑆 whose expected return 𝜴𝑂 strictly dominates the referent,
i.e. 𝜴𝑂 > 𝜶 . The oracle’s output guides IPRO in deciding which
points may still correspond to Pareto optimal policies. If the oracle
succeeds (Figure 1b), 𝜴𝑂 is guaranteed to be weakly Pareto optimal,
meaning all points dominated by 𝜴𝑂 can be discarded, while all
points strictly dominating 𝜴𝑂 are infeasible, as otherwise 𝑆 would
not have been returned. If the evaluation fails (Figure 1c), all points
strictly dominating 𝜶 can be excluded as they are either infeasible
or within tolerance 𝑂 . This mechanism ensures e%cient exploration
of the Pareto front by eliminating infeasible or dominated regions.

Reducing the search space. We use the Pareto oracle to exclude
sections of the search space by maintaining a dominated set D and
infeasible set I, that respectively contain points dominated by the
current Pareto front and points guaranteed infeasible by a previous
iteration (Figure 1a). A naive approach would be to iteratively query
the oracle and adjust D and I until they cover the entire bounding
box. However, when Pareto oracle evaluations are expensive, such
as when learning policies in a MOMDP, a more systematic approach
is preferable to minimise the number of evaluations.

We propose selecting referents from a set of guaranteed lower
bounds to maximise improvement in each iteration. Any remaining
Pareto optimal solution 𝜴≃ must strictly dominate a point on the
boundary of the dominated set D and be upper bounded by a point
on the boundary of the infeasible set I. Instead of considering the
full boundaries, which contain in#nitely many points, we restrict
our attention to the inner corners. Formally, we de#ne the lower
bounds L and upper boundsU, which cover these inner corners of
D andI respectively (Figure 1a). By this de#nition, 𝜴≃ dominates at
least one 𝜷 ↑ L, making it identi#able by a Pareto oracle. Moreover,
since 𝜴≃ is dominated by some 𝜸 ↑ U,U provides guarantees on
the distance to the remaining Pareto optimal solutions.

IPRO iteratively selects lower bounds fromL to query the oracle,
updating boundaries based on the oracle’s response. This process
continues until the distance between every upper bound and its
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nearest lower bound falls below a user-de#ned tolerance 𝑂 , ensur-
ing a 𝑂-Pareto front is obtained. In practice, IPRO prioritises lower
bounds using a heuristic selection function based on the hypervol-
ume improvement metric, accelerating convergence by focusing on
regions with the highest potential for exploration.
IPRO-2D. While in Figure 1 all unexplored sections are contained
in isolated rectangles, this is a special property of bi-objective prob-
lems. In general, feasible solutions may dominate multiple lower
bounds, necessitating careful updates (see the !"#$%& function in
Algorithm 1). This allows for a dedicated variant, IPRO-2D, where
signi#cant simpli#cations can be made. When a new Pareto optimal
solution is found, updating L andU requires adding at most two
new points on either side of the adjusted boundary. Moreover, cal-
culating the area of each rectangle is straightforward, enabling the
construction of a priority queue which processes larger rectangles
#rst to reduce the upper bound of the error quickly. Finally, instead
of a full max-min operation required for the stopping criterion, the
maximum error is determined by the rectangle with the greatest
distance between its lower and upper bound.

4.2 Upper bounding the error
We now turn again to the general case for 𝑀 ↗ 2 objectives, demon-
strating that U may be used to bound the distance between the
current approximation of the Pareto front V𝑄 and the remaining
Pareto optimal solutions V≃

\ V𝑄 . The true approximation error at
timestep 𝑈 fromV𝑄 to the true Pareto frontV≃ is de#ned as,

𝑉≃𝑄 = sup
𝜷≃↑V≃

min
𝜷↑V

⇒𝜴≃ ⇑ 𝜴⇒⇓ . (1)

Since U is# nite for any 𝑈 < ⇓ by construction, we can substitute
the sup𝜷≃↑V≃ by a max𝜶↑U , resulting in an upper bound on the
true approximation error 𝑉≃𝑄 . We formalise this in Theorem 4.1.

Theorem 4.1. Let V≃ be the true Pareto front, V𝑄 the approximate
Pareto front obtained by IPRO and 𝑉≃𝑄 the true approximation error at
timestep 𝑈 . Then the following inequality holds,

𝑉≃𝑄 ⇔ max
𝜶↑U𝐿

min
𝜷↑V𝐿

⇒𝜸 ⇑ 𝜴⇒⇓ . (2)

One can verify this in Figure 1b whereU = {𝜸1, 𝜸3, 𝜸4} contains
the upper bounds on the remaining Pareto optimal solutions. Note
that while approximate Pareto fronts are commonly computed with
regard to the 𝑊⇓ norm, this result can be extended to other metrics.

4.3 Convergence to a Pareto front
As IPRO progresses, the sequence of errors generated by Theo-
rem 4.1 can be shown to bemonotonically decreasing and converges
to zero. Intuitively, this can be observed in Figure 1b where the
retrieval of a new Pareto optimal solution reduces the distance to
the upper bounds. Additionally, the closure of a section, illustrated
in Figure 1c, results in the removal of the upper point which subse-
quently reduces the remaining search space. Since IPRO terminates
when the true approximation error is guaranteed to be at most
equal to the tolerance 𝑂 , this results in a 𝑂-Pareto front.

Theorem 4.2. Given a Pareto oracle ε𝑁 and tolerance 𝑂 > 0, IPRO
converges to a 𝑂-Pareto front in a! nite number of iterations. For a
Pareto oracle ε𝑁 with tolerance 𝑂 = 0, IPRO converges almost surely
to the exact Pareto front as 𝑈 ∞ ⇓.

P*,,- ).&%(/. As a corollary to Theorem 4.1 we# rst show
that the sequence of errors produced by IPRO is monotonically
decreasing. For 𝑂 > 0, this sequence is further proven to converge
to zero in a# nite number of iterations. Since IPRO stops when the
approximation error is at most 𝑂 , this results in a 𝑂-Pareto front.

For 𝑂 = 0, we demonstrate under mild assumptions that the
sequence of errors almost surely has its in#mum at zero. By the
monotone convergence theorem, we can therefore guarantee that
IPRO almost surely converges to the exact Pareto front. ⊋

Finally, we analyse the complexity of IPRO for 𝑂 > 0. As shown
in Theorem 4.2, IPRO is guaranteed to terminate in a# nite number
of iterations; however, this number could still be arbitrarily large
depending on 𝑂 and the number of objectives 𝑀 . Similar to related
work, we# nd that IPRO exhibits polynomial complexity in 𝑂 but
exponential complexity in 𝑀 [7, 24].

Theorem 4.3. Given a Pareto oracle ε𝑁 and tolerance 𝑂 > 0, let
↔𝐿 ↑ [𝑀],𝑋 𝑀 = ▽(𝑅i𝑀⇑𝑅

n
𝑀 )/𝑁̸. IPRO constructs a 𝑂-Pareto front in at

most
𝐿∏
𝑀=1

𝑋 𝑀 ⇑
𝐿∏
𝑀=1

(𝑋 𝑀 ⇑ 1) (3)

iterations which is a polynomial in 𝑂 but exponential in the number
of objectives 𝑀 .

P*,,- ).&%(/. This bound is derived by constructing a worst-
case scenario for IPRO in the grid induced by 𝜴n, 𝜴i and 𝑂 . We
show that the worst case arises when covering 𝑀 facets with Pareto
optimal solutions. The resulting bound is obtained by calculating
the original number of cells in the grid,

∏𝐿
𝑀=1 𝑋 𝑀 , and subtracting

the number of cells in the smaller grid that excludes the Pareto
optimal facets,

∏𝐿
𝑀=1 (𝑋 𝑀 ⇑ 1). ⊋

4.4 Dealing with imperfect Pareto oracles
While IPRO relies on a Pareto oracle that solves the scalar problem
exactly, this condition cannot always be guaranteed in practice
when dealing with function approximators or heuristic solvers. To
overcome this, we introduce a backtracking procedure that main-
tains the sequence {(𝜷𝑄 , 𝜴𝑄 )}𝑄 ↑N of lower bounds and retrieved
solution in each iteration. When, at iteration 𝑌, the returned solu-
tion 𝜴𝑆 strictly dominates a point 𝜹 ↑ C𝑆 or 𝜴≃ ↑ V𝑆 , it indicates an
incorrect oracle evaluation in a previous iteration and we initiate a
replay of the sequence.

Let 𝑈 represent the time step when the incorrect result was re-
turned. For the subsequence {(𝜷𝑄 , 𝜴𝑄 )}0⇔𝑄<𝑄 , we replay the pairs
using standard IPRO updates and treat 𝜴𝑆 as the solution retrieved
for 𝜷𝑄 . For the subsequent pairs {(𝜷𝑄 , 𝜴𝑄 )}𝑄<𝑄<𝑆 , we verify for each
(𝜴𝑄 , 𝜷𝑄 ) whether the original evaluation succeeded. If so, 𝜴𝑄 was
weakly Pareto optimal, and if a new lower bound 𝜷→ exists that is
dominated by 𝜴𝑄 , we perform an update with (𝜷→, 𝜴𝑄 ). If the evalu-
ation failed, 𝜷𝑄 was marked as complete, and we check whether a
new lower bound 𝜷→ dominates 𝜷𝑄 . If so, 𝜷→ is also marked as com-
plete. This mechanism corrects earlier mistakes and reuses previous
iteration outcomes as e%ciently as possible.
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5 PARETO ORACLE
Obtaining a solution in a designated region is central to IPRO. We
introduce Pareto oracles for this purpose and derive theoretically
sound methods that lead to e"ective implementations in practice.

5.1 Formalisation
In each iteration, IPRO queries a Pareto oracle with a referent from
the lower bounds to identify a new weakly Pareto optimal policy
in the target region. We de#ne two Pareto oracle variants that
di"er in the quality of the returned policy and their adherence to
the target region. When zero tolerance is required, a weak Pareto
oracle returns weakly Pareto optimal solutions.

De!nition 5.1. A weak Pareto oracle ε𝑁 with tolerance 𝑂 = 0
maps a referent 𝜶 ↑ R𝐿 to a weakly Pareto optimal policy 𝑆 ↑ ω
such that 𝜴𝑂 > 𝜶 or returns F$’)& when no such policy exists.

While De#nition 5.1 requires no tolerance, limiting solutions
to weakly Pareto optimal ones may be restrictive in practice. To
address this, we de#ne approximate Pareto oracles, which guarantee
Pareto optimal solutions but require a strictly positive tolerance.
This ensures that each iteration yields meaningful progress—either
identifying a new Pareto optimal solution with at least minimal
improvement over the lower bound or closing an entire section.
Since these oracles return Pareto optimal rather than merely weakly
optimal solutions, fewer evaluations are required overall.

De!nition 5.2. An approximate Pareto oracle ε𝑁 with intrinsic
tolerance 𝑂 ↗ 0 and user-provided tolerance 𝑂 > 𝑂 maps a referent
𝜶 ↑ R𝐿 to a Pareto optimal policy 𝑆 ↑ ω such that 𝜴𝑂 ↘ 𝜶 + 𝑂 or
returns F$’)& when no such policy exists.

Unlike weak Pareto oracles, approximate Pareto oracles incor-
porate an intrinsic tolerance 𝑂 alongside a user-de#ned tolerance 𝑂 .
Intuitively, 𝑂 represents the minimal adjustment needed to ensure
the oracle returns solutions strictly within the target region. The
user-de#ned tolerance, being strictly greater, determines the mini-
mal improvement necessary to justify further exploration. In some
implementations, 𝑂 is zero, allowing the user to freely select any
tolerance (see Section 5.3).

To illustrate the di"erence between a weak and approximate
Pareto oracle, we show a possible evaluation of both oracles in
Figure 2. We note that related concepts have been studied in multi-
objective optimisation [24] and planning [7].

5.2 Relation to achievement scalarising
functions

In Section 3, we introduced order representing and order approxi-
mating achievement scalarising functions (ASFs) and their role in
obtaining (weakly) Pareto optimal solutions. Here, we demonstrate
their direct application in constructing Pareto oracles.

We# rst show that evaluating a weak Pareto oracle ε𝑁 can be
framed as maximising an order representing ASF over a set of
allowed policies ω. Since such ASFs guarantee that their maximum
is reached within the target region at some weakly optimal solution,
Theorem 5.3 follows immediately.

Theorem 5.3. Let 𝑃𝜴 be an order representing ASF. Then ε𝑁
(𝜶) =

argmax𝑂↑ω 𝑃𝜴 (𝜴𝑂 ) with tolerance 𝑂 = 0 is a valid weak Pareto oracle.

(a) A weak Pareto oracle.

(b) An approximate Pareto oracle.

Figure 2: Solutions inside the target region are black, while
solutions outside the target region are grey. (a) The weak
Pareto oracle returns 𝜴4, which is in the target region but is
only weakly Pareto optimal as it is dominated by 𝜴5. (b) The
approximate Pareto oracle returns a Pareto optimal solution
𝜴5, but cannot!nd 𝜴3, shown in blue.

This ensures that weakly optimal solutions can be obtained by
proposing referents to an order representing ASF. However, practi-
cal considerations may lead us to favour an order approximating
ASF, which yields Pareto optimal solutions instead. We demonstrate
in Theorem 5.4 that such ASFs can indeed be applied to construct
approximate Pareto oracles.

Theorem 5.4. Let 𝑃𝜴 be an order approximating ASF and let 𝜷 ↑ R𝐿

be a lower bound such that only referents 𝜶 are selected when 𝜶 ↘ 𝜷 .
Then 𝑃𝜴 has an inherent oracle tolerance 𝑂 > 0 and for any user-
provided tolerance 𝑂 > 𝑂 , ε𝑁

(𝜶) = argmax𝑂↑ω 𝑃𝜴+𝑁 (𝜴𝑂 ) is a valid
approximate Pareto oracle.

By de#nition, an order approximating ASF attains its maximum
at a Pareto optimal solution. However, since such ASFs assign
non-negative values to solutions outside the target region, this
maximum may occur outside the desired area. To mitigate this, we
introduced the inherent tolerance in De#nition 5.2. Ensuring 𝑂 > 𝑂
guarantees that new solutions remain within the correct region.
Since directly determining 𝑂 can be challenging, a practical alter-
native is to use an order approximating ASF while still optimising
argmax𝜷𝑁 ↑ω 𝑃𝜴 (𝜴𝑂 ), as done in the weak Pareto oracle.

5.3 Principled implementations
While Theorems 5.3 and 5.4 establish that Pareto oracles may be
implemented using an ASF, optimising the ASF over a given pol-
icy class may still be challenging. Here, we show that e%cient
implementations can be derived from existing literature. First, the
proposed approach using ASFs can be implemented by solving an
auxiliary convex MDP in which the goal is to minimise a convex
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function over a set of admissible stationary distributions [36]. Re-
cent work has proposed multiple methods that come with strong
convergence guarantees to solve convex MDPs [14, 36, 37].

Proposition 5.5. Let 𝑃𝜴 be an ASF that is concave for any 𝜶 ↑

R𝐿 . Then, for any 𝜶 ↑ R𝐿 and tolerance 𝑂 ↗ 0, a valid weak or
approximate Pareto oracle ε𝑁 can be implemented for the class of
stochastic policies by solving an auxiliary convex MDP.

In addition, approximate Pareto oracles can be implemented
without optimising an ASF but rather by solving an auxiliary con-
strained MDP. Treating the referent as lower bound constraints and
maximising the sum of rewards can be shown to result in a Pareto
optimal solution inside the target region if one exists. One impor-
tant advantage of this oracle is that there is no inherent tolerance
and so 𝑂 can be chosen freely.

Proposition 5.6. For any referent 𝜶 ↑ R𝐿 , tolerance 𝑂 > 0 and policy
class, a valid approximate Pareto oracle ε𝑁 can be implemented by
solving an auxiliary constrained MDP.

Several algorithms with strong theoretical foundations have
been proposed for solving such models in a reinforcement learn-
ing context [3, 9]. When the constrained MDP is known and the
state and action sets are# nite, an optimal stochastic policy can be
computed in polynomial time [5]. Together with Theorem 4.3, this
guarantees that IPRO obtains a Pareto front of stochastic policies
in polynomial time, recovering prior guarantees [7, 24]. Although
computing optimal stationary deterministic policies in constrained
MDPs is NP-complete [11], mixed-integer linear programming has
been shown to be e"ective in practice [10].

6 DETERMINISTIC MEMORY-BASED POLICIES
As shown in Sections 4 and 5, IPRO obtains the Pareto front for any
policy class with a valid Pareto oracle. We now develop a Pareto
oracle speci#cally for deterministic memory-based policies, a class
for which there is currently no method that can learn non-convex
Pareto fronts in general MOMDPs.

6.1 Motivation
In single-objective MDPs, an optimal deterministic policy is always
guaranteed to exist. However, in MOMDPs, this result does not hold,
and stochastic policies may be required to capture all solutions on
the Pareto front. Nevertheless, in practical applications where in-
terpretability, explainability, and safety are critical, deterministic
policies remain preferable, as noted in related work [15]. For exam-
ple, in medical applications, decisions must be interpretable, with
deterministic treatment protocols being essential.

To avoid the need for randomisation in policies, memory can be
used to learn additional policies that provide alternative trade-o"s
for the decision-maker. Consider a pick-up and delivery MOMDP
where the agent can either collect a package (yielding a reward
of (3, 0)) or deliver it (yielding (0, 3)), with both actions return-
ing to the same state. Without memory, deterministic policies are
restricted to always collecting or always delivering, resulting in dis-
counted returns of (3/1⇑𝑇, 0) or (0, 3/1⇑𝑇). By incorporatingmemory,
the agent can condition its actions on past behaviour—for instance,
delivering after each collection—achieving a discounted return of

(3/1⇑𝑇2, 3𝑇/1⇑𝑇2). This demonstrates how memory increases the set
of feasible Pareto optimal policies, as proved by White [32].

6.2 ASF selection
In our experimental evaluation, we utilise the well-known aug-
mented Chebyshev scalarisation function [23], shown in Equa-
tion (4). We highlight that this ASF is concave for all referents,
implying its applicability together with Proposition 5.5 for stochas-
tic policies as well.

𝑃𝜴 (𝜴) = min
𝑀↑{1,...,𝐿}

𝑍 𝑀 (𝑁 𝑀 ⇑ 𝑎 𝑀 ) + 𝑏
𝐿∑
𝑀=1

𝑍 𝑀 (𝑁 𝑀 ⇑ 𝑎 𝑀 ) (4)

Here, 𝝐 > 0 serves as a normalisation constant for the di"erent
objectives, and 𝑏 is a parameter determining the strength of the
augmentation term. Selecting 𝝐 = (𝜴i ⇑ 𝜴n)⇑1 scales any vector 𝜴
relative to the distance between the nadir 𝜴n and ideal 𝜴i, thereby
ensuring a balanced scale across all objectives. This normalisation
prevents the dominance of one objective over another, a challenge
that is otherwise di%cult to overcome [1].

Equation (4) serves as a weak or approximate Pareto oracle,
depending on the augmentation parameter 𝑏 . When 𝑏 = 0, the
augmentation term is cancelled and the minimum ensures that only
vectors in the target region have non-negative values. However,
optimising a minimum may result in weakly Pareto optimal solu-
tions (e.g. (1, 2) and (1, 1) share the same minimum). For 𝑏 > 0, the
optimal solution will be Pareto optimal (the sum of (1, 2) is greater
than that of (1, 1)) but may exceed the target region.

6.3 Practical implementation
In Section 5.3 we demonstrated that Pareto oracle implementations
with strong guarantees exist for stochastic policies. In contrast,
obtaining a Pareto optimal policy that dominates a given referent
is NP-hard for memory-based deterministic policies [7]. To address
this, we extend single-objective reinforcement learning algorithms
to optimise the ASF in Equation (4). It is common in MORL to
encode the memory of a policy using its accrued reward at timestep
𝑈 de#ned as 𝜴acc𝑄 :=

∑𝑄⇑1
𝑈=0 𝑅

𝑈R(𝑃𝑈 ,𝑇𝑈 , 𝑃𝑈+1). In our implementation,
this accrued reward is directly added to the observation.

DQN. We extend the GGF-DQN algorithm, which optimises for the
generalised Gini welfare of the expected returns [29], to optimise
any scalarisation function 𝑐 . We note that GGF-DQN is itself an
extension of DQN [21]. Concretely, we train a Q-network such
that 𝜻 (𝑃𝑄 ,𝑇𝑄 ) = 𝜶 + 𝑅𝜻 (𝑃𝑄+1,𝑇≃) where the optimal action 𝑇≃ is
computed using the accrued reward and scalarisation function 𝑐 ,

𝑇≃ = argmax
𝑉↑A

𝑐
(
𝜴acc𝑄+1 + 𝑅𝜻 (𝑃𝑄+1,𝑇)

)
. (5)

One limitation of this action selection method is that it does not
perfectly align with the objective to be optimised since,

𝑐
(
𝜴𝑂

)
= 𝑐

(
E
𝑂,𝑃

[
𝜴acc𝑄+1

]
+ 𝑅𝜻 (𝑃𝑄+1,𝑇)

)
. (6)

As computing the expectation of 𝜴acc𝑄+1 is usually impractical, we use
the observed accrued reward as a substitute.
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Policy gradient. We extend A2C [20] and PPO [28] to optimise
𝑑 (𝑆) = 𝑐 (𝜴𝑂 ), where 𝑐 is a scalarisation function and 𝑆 a param-
eterised policy with parameters 𝑒 . For di"erentiable 𝑐 , the policy
gradient becomes↦𝑊 𝑑 (𝑆) = 𝑐 → (𝜴𝑂 )·↦𝑊𝜴

𝑂
(𝑃0) [26]. To ensure deter-

ministic policies, we take actions according to argmax𝑉↑A 𝑆 (𝑇 |𝑃)
during policy evaluation. Although this potentially changes the
policy, e"ectively employing a policy that di"ers from the one ini-
tially learned, empirical observations suggest that these algorithms
typically converge toward deterministic policies in practice. Fur-
thermore, recent work has theoretically analysed this practice and
found that under some assumptions convergence to the optimal
deterministic policy is guaranteed [22].
Extended networks. Rather than making separate calls to one
of the previous reinforcement learning methods for each oracle
evaluation, we employ extended networks [2] to improve sample
e%ciency. Concretely, we extend our actor and critic networks to
take a referent as additional input, enabling their reuse across IPRO
iterations. We further introduce a pre-training phase, where a pol-
icy is trained on randomly sampled referents for a# xed number
of episodes. To maximise the bene#t of this pre-training, we per-
form additional o"-policy updates for referents not used in data
collection. While this has no e"ect on DQN, policy gradient meth-
ods require alignment between behaviour and target policies. We
address this through importance sampling in A2C and an o"-policy
adaptation of PPO [18].

7 EXPERIMENTS
To test the performance of IPRO, we combine it with the modi#ed
versions of DQN, A2C, and PPO proposed in Section 6 as approxi-
mate Pareto oracles that optimise the augmented Chebyshev scalar-
isation function in Equation (4). All experiments are repeated over
#ve seeds and additional details are presented in Appendix C. Our
code is available at https://github.com/wilrop/ipro.

7.1 Evaluation metrics
Evaluating MORL algorithms poses signi#cant challenges due to
the di%culty in measuring the quality of a Pareto front [12]. To
address this, we compute two di"erent metrics during learning and
one for the# nal returned front.

We# rst consider the hypervolume, de#ned in Equation (7), a
well-established measure in MORL. The hypervolume quanti#es
the volume of the dominated region formed by the current estimate
of the Pareto front relative to a speci#ed reference point. However, a
notable drawback of this metric is that the choice of reference point
signi#cantly in$uences the obtained values, potentially distorting
the results. In practice, we use the nadir as the reference point.

𝑓𝑔 (V𝑄 ; 𝜶) = vol +,
-
⋃
𝜷↑V𝐿

[𝜶, 𝜴]
/


(7)

Following the approach outlined by Hayes et al. [15], we further
evaluate all algorithms using utility-based metrics. Concretely, for
a solution set V𝑄 at timestep 𝑈 we compute the maximum utility
loss (MUL) [39] compared to the true Pareto front V≃ as

𝑕𝑖𝑊(V𝑄 ;V≃
) = max

𝑋↑𝑌


max
𝜷↑V≃

𝑗 (𝜴) ⇑ max
𝜷↑V𝐿

𝑗 (𝜴)


. (8)

We generate piecewise linear, monotonically increasing functions
𝑗 : [𝜴n, 𝜴i] ∞ [0, 1] by sampling a grid of positive numbers as
gradients. The function value at 𝜴 is obtained by summing the pre-
ceding gradients and rescaling. Our grid uses six cells per dimension,
with gradients drawn uniformly from [0, 5). Notably, this method
produces functions biased towards risk aversion. Furthermore, we
estimateV≃ as the union of all# nal Pareto fronts obtained by both
IPRO and the baseline algorithms across all runs. Lastly, we evalu-
ate the quality of the# nal Pareto front by its true error as de#ned
in Equation (1). This metric provides an additional measure of how
closely the# nal approximation aligns with the true Pareto front.

7.2 Baselines
As IPRO is the# rst general-purpose method capable of learning
the Pareto front for arbitrary policies in general MOMDPs, we se-
lect baselines that are tailored to speci#c settings. To ensure a fair
comparison, we extend all baselines to accumulate their empiri-
cal Pareto fronts across evaluation steps, guaranteeing the same
monotonic improvement as in IPRO.
Convex hull algorithms. We evaluate two state-of-the-art convex
hull algorithms: Generalised Policy Improvement - Linear Support
(GPI-LS) [4] and Envelope Q-Learning (EQL) [35]. Both algorithms
train vectorial Q-networks that can be dynamically adjusted with
given weights to produce a scalar return.
Pareto front algorithm. We include Pareto Conditioned Networks
(PCN), which were speci#cally designed to learn the Pareto front of
deterministic policies in deterministic MOMDPs [25]. PCN trains a
network to generalise across the full Pareto front by predicting the
“return-to-go” for any state and selecting the action that best aligns
with the desired trade-o".

7.3 Results
Deep Sea Treasure (𝑀 = 2). Deep Sea Treasure (DST) is a de-
terministic environment where a submarine seeks treasure while
minimising fuel consumption. DST has a Pareto front with solu-
tions in concave regions [30], making it impossible for the convex
hull algorithms to recover all Pareto optimal solutions. This lim-
itation is evident in Section 7.2 and Figure 3a where GPI-LS and
EQL exhibit signi#cantly inferior performance compared to IPRO
and PCN. Notably, IPRO and PCN recover the complete Pareto
front in the majority of runs; however, IPRO tends to require more
samples. This discrepancy can be attributed to the fact that IPRO
learns only one Pareto optimal solution per iteration, whereas PCN
concurrently learns multiple policies. Nonetheless, this concurrent
learning approach for PCN comes at the expense of theoretical guar-
antees. When comparing the 𝑉 metric (Table 1), we observe that
IPRO learns high-quality approximations and consistently learns
the complete Pareto front when paired with PPO and DQN. The
convex hull methods naturally have poorer approximations.
Minecart (𝑀 = 3). Minecart is a stochastic environment where the
agent collects two types of ore while minimising fuel consumption
[2]. Since this environment was designed to induce a convex Pareto
front, GPI-LS and EQL are expected to perform optimally. We#nd
that IPRO achieves comparable hypervolume results and demon-
strates superior maximum utility loss (MUL) compared to all other
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(a) Deep Sea Treasure (b) Minecart (c) MO-Reacher

Figure 3: The mean hypervolume (top) and maximum utility loss (bottom) scaled between zero and one with 95-percentile
interval on a log-log scale. Stars indicate when each algorithm! nishes. The pretraining phase of IPRO is not shown.

Table 1: The minimum 𝑉 shift necessary to obtain any undis-
covered Pareto optimal solution.

E+0A’1,*2%/3 𝑍

IPRO (PPO) 0.0 ± 0.0
IPRO (A2C) 0.2 ± 0.4

DST IPRO (DQN) 0.0 ± 0.0
PCN 0.0 ± 0.0
GPI4LS 5.2 ± 2.71
E+0&’,"& 28.6 ± 46.77

IPRO (PPO) 0.66 ± 0.07
IPRO (A2C) 0.54 ± 0.11

M2+&($*% IPRO (DQN) 1.11 ± 0.01
PCN 0.67 ± 0.2
GPI4LS 0.42 ± 0.0
E+0&’,"& 0.42 ± 0.01

IPRO (PPO) 5.75 ± 1.22
IPRO (A2C) 2.84 ± 0.39

MO4R&$(/&* IPRO (DQN) 15.02 ± 1.42
PCN 18.95 ± 1.76
GPI4LS 8.5 ± 0.12
E+0&’,"& 11.41 ± 0.62

baselines when using policy gradient oracles. The anytime property
of IPRO is particularly evident in the MUL results, as its Pareto front
continues to improve up to 107 steps. In Table 1, the 𝑉 distances for
the policy gradient methods are shown to be competitive. However,
we observe that the DQN variant struggles to learn a qualitative
Pareto front, which may be attributed to the algorithm’s ad-hoc
nature. This suggests that future research focusing on value-based
oracles could provide signi#cant bene#ts.
MO-Reacher (𝑀 = 4). MO-Reacher is a deterministic environment
where four balls are arranged in a circle and the goal is to minimise

the distance to each ball. Since it is deterministic and has a mostly
convex Pareto front, it suits all baselines. In Figure 3c, we# nd that
IPRO obtains a hypervolume and maximum utility loss competitive
to the baselines. Additionally, the policy gradient oracles result
in the best approximations to the Pareto front according to the 𝑉
metric in Table 1. Due to IPRO’s iterative mechanism, this comes
at the price of increased sample complexity, while the baselines
bene#t from learning multiple policies concurrently.

These results demonstrate IPRO’s competitiveness to the base-
lines in all environments, an impressive feat given that all baselines
perform signi#cantly worse in one of the environments. Moreover,
IPRO stands out without requiring domain knowledge for proper
application, unlike its competitors.

8 CONCLUSION
We introduce IPRO to provably learn a Pareto front in MOMDPs.
IPRO iteratively proposes referents to a Pareto oracle and uses the
returned solution to trim sections from the search space. We for-
mally de#ne Pareto oracles and derive principled implementations.
We show that IPRO converges to a Pareto front and comes with
strong guarantees with respect to the approximation error. Our
empirical analysis# nds that IPRO learns high-quality Pareto fronts
while requiring less domain knowledge than baselines. For future
work, we aim to extend IPRO to learn multiple policies concurrently
and explore alternative Pareto oracle implementations.
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