
On Some Fundamental Problems for Multi-Agent Systems Over
Multilayer Networks

Daniel J. Rosenkrantz

University of Virginia

Charlottesville, VA, USA

drosenkrantz@gmail.com

Madhav V. Marathe

University of Virginia

Charlottesville, VA, USA

marathe@virginia.edu

Zirou Qiu

University of Virginia

Charlottesville, VA, USA

zq5au@virginia.edu

S. S. Ravi

University of Virginia

Charlottesville, VA, USA

ssravi0@gmail.com

Richard E. Stearns

University of Virginia

Charlottesville, VA, USA

thestearns2@gmail.com

ABSTRACT
Many researchers have considered multi-agent systems over single-

layer networks as models for studying diffusion phenomena. Since

real-world networks involve connections between agents with dif-

ferent semantics (e.g., family member, friend, colleague), the study

of multi-agent systems over multilayer networks has assumed in-

creased importance. Our focus is on one class of multi-agent system

models over multilayer networks, namely multilayer synchronous

dynamical systems (MSyDSs). We study several fundamental prob-

lems for this model. We establish properties of the phase spaces of

MSyDSs and bring out interesting differences between single-layer

and multilayer dynamical systems. We show that, in general, the

problem of determining whether two given MSyDSs are inequiv-

alent is NP-complete. This hardness result holds even when the

only difference between the two systems is the local function at

just one node in one layer. We also present efficient algorithms for

the equivalence problem for restricted versions of MSyDSs (e.g.,

systems where each local function is a bounded-threshold function,

and systems where the number of layers is fixed and each local

function is symmetric). In addition, we investigate the expressive

power of MSyDSs based on the number of layers. In particular, we

examine conditions under which a system with 𝑘 ≥ 2 layers has an

equivalent system with 𝑘 − 1 or fewer layers.
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1 INTRODUCTION
1.1 Background and Motivation
Motivated by the spread of epidemics, information and social be-

havior in populations, the topic of contagion propagation over

networks has been studied extensively in the literature (see e.g.,

[13, 16, 29, 41, 42]). When the contagion represents information

about a product produced by an organization, the propagation mod-

els enable the organization to develop strategies for maximizing

the spread of the information (see e.g., [21]). When the contagion is

an epidemic, the propagation models enable public health officials

to take appropriate actions to contain the spread of the epidemic

(see e.g., [2, 23]). Such studies typically use networked dynami-

cal systems models, where nodes represent individuals and edges

represent relationships that enable a contagion to spread in the

underlying network (see e.g., [1, 3, 5]). Each node has an active or

inactive state which indicates whether or not the node has acquired

the contagion. The configuration of the system at any time is

the vector of state values of nodes at that time. The interaction

between a node and its neighbors is based on an appropriate local

function, and this interaction may change the state of the node.

Throughout this paper, we will assume that nodes compute and up-

date their states synchronously. The time evolution of the system is

represented by a sequence of successive configurations. The global

behavior of a dynamical system is captured by its phase space,
which is a directed graph in which each node is a configuration

and each directed edge indicates a single step transition from one

configuration to another.

This work has generally assumed that the underlying network

consists of a single layer; that is, there is only one type of rela-

tionship between entities for contagion propagation. A number of

fundamental questions have been studied over the years for syn-

chronous dynamical systems over single-layer networks. Following

the literature (see e.g., [1]), we refer to these single-layer systems

as SyDSs. Papers on SyDSs have addressed questions concerning

reachability of configurations (i.e., does a given SyDS starting from

a configuration C reach a configuration C′
?), equivalence (i.e., are

two given SyDSs equivalent in terms of their phase space?), exis-

tence of fixed points (i.e., configurations in which none of the

nodes changes its state), etc.; see e.g., [3, 8, 30, 34, 36] and the

references cited therein.
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A number of papers have pointed out that single-layer net-

works are inadequate to capture complex real-world contagion

phenomena. The reason is that single-layer networks model just

one type of relationship among individuals. Instead, one needs to

consider multilayer
1
networks (also known as multiplex networks

[22, 31, 45]) that capture multi-relational structures (e.g., family

member, friend, colleague, contact in a social network) among indi-

viduals to effectively model contagion propagation [17, 22, 29]. As

a simple example, information that an individual obtains through

a social network such as Facebook or Twitter may play a role in

deciding whether the individual decides to wear a mask or get vac-

cinated. Thus, it is important to study dynamical systems where the

underlying graph has multiple layers. In standard models of multi-

layer networks, there is just one set of nodes; each layer may have

a different set of edges modeling different types of relationships

(see, e.g., [10–12, 29, 31]). The model for a dynamical system over

a multilayer network is a simple extension of the corresponding

model over a single-layer network. In such a system, each node

has a single state value but a possibly different interaction function

for each layer. At each time instant, after computing the value of

the interaction function of the node in each layer, a master func-
tion uses these values to compute the next state of that node. As

mentioned earlier, we focus on the synchronous update scheme

where all the nodes compute their next states and update their

states simultaneously. For consistency with previous work [32],

we refer to this model as a multilayer synchronous dynamical
system (MSyDS). The notions of configuration and phase space

for a MSyDS are the same as those for a dynamical system over a

single-layer network. Algorithmic work on multilayer networks

has centered around defining and computing appropriate centrality

measures (see e.g., [11, 29, 31]). There has also been some work on

estimating the sizes of cascades under certain contagion models

(e.g., susceptible-infected-recovered or SIR model) through analysis

and simulation in multilayer networks (see e.g., [12, 29] and the

references cited therein). Additional discussion regarding work on

multilayer systems appears in Section 1.4. For multilayer dynamical

systems, there has been some work [32] on learning the local inter-

action functions under the probably approximately correct (PAC)

model [40]. However, to our knowledge, fundamental issues such

as the structure of phase spaces and the equivalence of multilayer

dynamical systems have not been studied.

1.2 Contributions
Our work takes the first step towards exploring some fundamental

aspects of multilayer synchronous dynamical systems (MSyDSs). A

summary of our contributions is provided below.

(1) Phase Space Properties: We present MSyDSs whose local func-

tions are threshold functions but whose phase spaces include

long cycles in contrast to the phase spaces of single-layer SyDSs.

For example, we show (see Section 3) that there is a MSyDS

with two layers such that all its local functions are threshold

functions and its phase space contains a cycle whose length

is exponential in the number of nodes. We also give another

construction of a MSyDS with 𝑛 nodes and 2𝑛 − 1 layers such

1
In much of the literature, the word “multilayer” is not hyphenated. We follow the

same practice here.

that all local functions are threshold functions and the phase

space is a cycle of length 2
𝑛
. In contrast, it is known that for

single-layer SyDSs where each local function is a threshold

function, the maximum possible length of a phase space cycle

is two [15]. Our constructions of MSyDSs with threshold local

functions also show that their phase spaces may contain simple

directed paths whose length is exponential in the number of

nodes. (These paths are part of an exponentially long cycle.) For

single-layer SyDSs with 𝑛 nodes and threshold local functions,

it is known that the length of any simple path in the phase space

is 𝑂 (𝑛2) [4, 15].
(2) Equivalence Problem for MSyDSs: Given two MSyDSs S and

S′
on the same set of nodes, we say that they are equivalent if

their phase spaces (as directed graphs) are identical. We show

(see Section 4) that the equivalence problem for MSyDSs is

NP-hard even for highly restricted versions of the MSyDSs.

Specifically, our reduction from 3SAT (see [14] for a definition)

produces two MSyDSs S and S′
over a set of nodes with the fol-

lowing properties: (i) in each layer, the graphs of S and S′
are

identical; (ii) the graph in each layer is a star graph with zero or

more isolated nodes; (iii) all local functions are threshold func-

tions; and (iv) the MSyDSs S and S′
differ in only the threshold

of one node in one layer. Thus, a minor difference between two

MSyDSs is sufficient to obtain computational intractability for

the equivalence problem for MSyDSs with threshold local func-

tions. In contrast, it is known that for two single-layer SyDSs

where the underlying graphs are the same and the local func-

tions are threshold functions, the equivalence problem can be

solved efficiently [3].

(3) Efficient Algorithms for the Equivalence Problem for
Restricted Classes of MSyDSs:We provide efficient algorithms

(see Section 5) for the equivalence problem for several special

classes of MSyDSs. These special classes include the follow-

ing: (i) the number of layers in the two MSyDSs is fixed and

each local function is symmetric
2
; (ii) each local function is a

threshold function, the maximum node degree in each layer is

bounded and each master function is OR or each master function

is AND. These algorithms are obtained by reducing the equiva-

lence problem for the two systems to a form of equivalence with

respect to each node and showing that the node equivalence

problem can be solved efficiently.

(4) Expressive Power of MSyDSs: We initiate the study of the ex-

pressive power of MSyDSs (see Section 6) based on the number

of layers. We observe that for any MSyDS over 𝑘 ≥ 2 layers,

there is an equivalent single-layer SyDS with more complex

local functions. However, if one also restricts the class of local

functions, we show that there are MSyDSs with 𝑘 layers for

which there is no equivalent MSyDS with fewer layers.

We also observe that many analysis problems (e.g., existence of

fixed points) that are computationally intractable for single-layer

dynamical systems remain so for multilayer systems as well.

2
Symmetric functions (which are a proper superset of threshold functions) are defined

in Section 2.
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1.3 Additional Remarks
Long cycles (and paths) in the phase space are indicative of the com-

plexity of the reachability problem for the underlying dynamical

system (i.e., given a multilayer SyDSS and configurations C and C′
,

can S reach C′
starting from C?). As mentioned in Section 1.2, in

any single layer system with 𝑛 nodes and threshold local functions,

the length of any phase space path is 𝑂 (𝑛2), and any such path

ends in a limit cycle of length at most 2. So, the reachability prob-

lem for such a system is efficiently solvable. However, when the

phase space of a system contains exponentially long cycles/paths,

the reachability problem may be computationally intractable; such

complexity results have appeared in several references (e.g., [4, 8]).

The novelty in our work is that with just two layers, one can con-

struct multilayer systems with threshold functions whose phase

spaces contain exponentially long cycles (and hence exponentially

long paths). To our knowledge, this is the first work that formally

establishes phase space properties of multilayer systems.

Our hardness result for the equivalence problem for multilayer

systems with threshold functions holds even when there is a very

minor difference between the two systems. (As will be seen from

the proof in Section 4, the only difference between the two systems

constructed through a reduction from the 3SAT problem is in the

threshold value of just one node in one layer.) We highlight this

to point out that while the equivalence problem for single layer

systems with threshold functions is efficiently solvable [3], a very

minor difference suffices to make the problem computationally

intractable for multilayer systems.

Finally, we note that when the number of layers is fixed, our
efficient algorithm for the MSyDS equivalence problem allows sym-
metric local functions, a proper superset of threshold functions.

Note: For space reasons, only proof sketches are included for some

results. Complete proofs for those results can be found in [35].

1.4 Related Work
Networked dynamical systems provide a systematic formal frame-

work for agent-based models (ABM) and to capture interactions

among agents in a network. Wellman [43] discusses the relation-

ships between ABM and multi-agent systems. Networked dynam-

ical system models have been used by the multi-agent systems

community to study a variety of topics, including contagion propa-

gation, graphical games and migration due to catastrophic events

(see e.g., [18, 20, 24, 26]). Researchers have also studied formal as-

pects of various computational problems for networked dynamical

systems (see e.g., [4, 8, 34, 36]). While this work has been in the

context of single-layer systems, various research issues in the con-

text of multilayer networks are also being actively pursued by the

research community (see [45] and the references cited therein). For

example, a number of papers have studied structural properties

of multilayer networks and the computation of various central-

ity measures for such networks (see [6, 27, 45] and the references

cited therein). In addition, there is work on other topics on mul-

tilayer networks, including reliability issues, analysis of cascades,

enabling cooperation, and applications in various domains (see e.g.,

[12, 17, 19, 22, 25, 33, 39]).

To our knowledge, the only reference which considers funda-

mental computational questions regarding multilayer dynamical

systems is [32]. As mentioned earlier, this work considers learning

the local functions of MSyDSs under the PAC model but does not

address the research questions studied in this paper.

2 PRELIMINARIES
2.1 Multilayer Synchronous Dynamical Systems
In this section, we present the definitions associated with multi-

layer synchronous dynamical systems. The notation and terminol-

ogy used in this section are based on the presentation in [32].

Unless otherwise mentioned, the networks considered in our

paper are undirected. We begin with the definition and notation

for multilayer networks. Amultilayer network [22] with 𝑘 ≥ 1

layers is a set of graphs 𝑀 = {𝐺𝑖 : 1 ≤ 𝑖 ≤ 𝑘}, where 𝐺𝑖 = (𝑉 , 𝐸𝑖 )
is the graph in the 𝑖th layer. Thus, all of the graphs have the same

node set 𝑉 with 𝑛 nodes, but the edge sets in different layers may

be different. The definition of a discrete dynamical system over a

multilayer network is a generalization of the corresponding defi-

nition for a single-layer system which has been studied by many

researchers (see e.g., [3, 4, 28]). Our focus is on networked dynami-

cal systems over the domain B = {0,1}. Amultilayer synchronous
dynamical system (MSyDS) S over the domain B has the follow-

ing components.

(a) A multilayer network𝑀 = {𝐺𝑖 (𝑉 , 𝐸𝑖 ) : 1 ≤ 𝑖 ≤ 𝑘} with 𝑘 ≥ 1

layers. Each node 𝑣 ∈ 𝑉 has a state from B.
(b) A collection F = {𝑓𝑖,𝑣 : 1 ≤ 𝑖 ≤ 𝑘, 𝑣 ∈ 𝑉 } of functions, with
𝑓𝑖,𝑣 denoting the local interaction function for node 𝑣 in layer 𝑖 .

(c) A collection Ψ = {𝜓𝑣 : 𝑣 ∈ 𝑉 } of functions, with 𝜓𝑣 denoting
the master function of node 𝑣 .

Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. At any time, the configuration C of

the system is an 𝑛-vector (𝑠1, 𝑠2, . . . , 𝑠𝑛), where 𝑠𝑖 ∈ B is the state

of node 𝑣𝑖 at that time, 1 ≤ 𝑖 ≤ 𝑛. Given the configuration at time 𝑡 ,

the configuration of the system at time 𝑡 + 1 is computed as follows.

(1) In each layer 𝑖 , each node 𝑣 computes the value of its local

function 𝑓𝑖,𝑣 . The inputs to the function 𝑓𝑖,𝑣 are the state of 𝑣

and those of its neighbors in𝐺𝑖 , and the output of 𝑓𝑖,𝑣 is a value

in B. We use𝑊𝑣 (𝑖) to denote this output value. Since there are

𝑘 layers, the local functions provide a vector W𝑣 of 𝑘 values

(𝑊𝑣 (1),𝑊𝑣 (2), . . . ,𝑊𝑣 (𝑘)) for each node 𝑣 ∈ 𝑉 .
(2) Then, for each node 𝑣 , its master function𝜓𝑣 is evaluated. The

input to 𝜓𝑣 is W𝑣 and the output of 𝜓𝑣 is a value in B. This
value becomes the state of 𝑣 in time step 𝑡 + 1.

(3) All the nodes carry out the above computations and update

their states synchronously.
Let C𝑡 and C𝑡+1 denote the configurations of a MSyDSS at times

𝑡 and 𝑡 + 1 respectively. We refer to C𝑡+1 as the successor of C𝑡

and C𝑡 as the predecessor of C𝑡+1. Since we restrict our attention
to deterministic local and master functions, each configuration of a

MSyDS has a unique successor; however, a configuration may have

zero or more predecessors [32].

A Note About the Graph Model: In real-world applications, mul-

tilayer systems may have a different set of nodes and edges in each

layer. When this happens, one can merge all the node sets into a sin-

gle set and have different sets of edges in each layer. Hence, the com-

monly used model for multilayer systems (e.g., [10, 11, 17, 19, 22])

assumes one set of nodes for all the layers but (possibly) different
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One Time Step

Figure 1: An example of a small MSyDS, where state-1 nodes
are highlighted in blue. The master function at each node is
OR. The thresholds of the nodes (same for the two layers) are:
𝑣1 : 2, 𝑣2 : 2, 𝑣3 : 3, 𝑣4 : 1 and 𝑣5 : 3.

sets of edges in different layers. Our results also use this single node

set model.

Graph Theoretic Terminology: Let 𝑀 denote the underlying

multilayer graph of a MSyDS S. Recall that 𝐺𝑖 (𝑉 , 𝐸𝑖 ) denotes the
graph in layer 𝑖 of 𝑀 . The degree of a node 𝑣 in layer 𝑖 is the

number of neighbors of 𝑣 in that layer. For a node 𝑣 in layer 𝑖 , the

closed neighborhood of 𝑣 in that layer includes 𝑣 and each node

𝑢 such that {𝑢, 𝑣} ∈ 𝐸𝑖 . To discuss the structure of phase spaces of

networked dynamical systems, we will also need some terminology

for directed graphs. In a directed graph, the outdegree of a node
𝑥 is the number of outgoing edges from 𝑥 . The phase space may

also contain self loops, that is, directed edges of the form (𝑥, 𝑥).
A simple path in a directed graph is a directed path in which all

nodes are distinct. Similarly, a simple cycle in a directed graph is

a directed cycle in which all nodes are distinct.

Local and Master Functions: Since the domain under considera-

tion is B = {0,1}, we consider several classes of Boolean functions

as local and master functions. The definitions provided below are

available in many standard references such as [9]. An important

class of Boolean functions studied in the literature on the spread of

social contagions is that of threshold functions (see e.g., [7, 16, 42]).

For any integer 𝜏 ≥ 0, the 𝜏-threshold function has the value 1 iff

at least 𝜏 of its inputs have the value 1. We note that the 1-threshold

function is the OR function. Also, the AND function with 𝑞 inputs is

the 𝑞-threshold function. When the local function 𝑓𝑖,𝑣 of a node 𝑣

is the 𝜏-threshold function, we say that its threshold condition is

satisfied if at least 𝜏 of the nodes in the closed neighborhood of 𝑣 in

𝐺𝑖 are in state 1. Symmetric Boolean functions are a superset of the

class of threshold functions. The value of a symmetric Boolean
function depends only on the number of 1’s in the input. Thus,

each threshold function is also a symmetric function. Likewise, the

XOR function is symmetric. Each symmetric Boolean function with

𝑞 inputs can be specified by a table with 𝑞 + 1 rows, with row 𝑖

specifying the value of the function when the number of 1’s in the

input is exactly 𝑖 , 0 ≤ 𝑖 ≤ 𝑞. We refer to this as the symmetry table
for the (symmetric) function. We consider threshold and symmetric

Boolean functions for local and master functions.

An Example for a MSyDS: To illustrate the above definitions, we

present a simple example of a 2-layer MSyDS in Figure 1. One can

think of the edges in each of the two layers as representing different

relationships (e.g., family member, friend) between pairs of nodes.

There are 5 nodes in the system and the local function for each

node in each layer is a threshold function. These threshold values

are indicated in the caption of Figure 1. For simplicity, we have

chosen the same threshold value for each node in the two layers.

The master function at each node is OR. The initial configuration
of the system is shown in the left panel of Figure 1), where nodes

in state-1 are highlighted in blue. Thus, in the initial configuration,

nodes 𝑣2, 𝑣4 and 𝑣5 are in state-1 while nodes 𝑣1 and 𝑣3 are in state 0.

This configuration C is represented by (0, 1, 0, 1, 1).
We now explain how the system transitions from one configura-

tion to the next. As mentioned above, let C = (0, 1, 0, 1, 1) denote the
current configuration. Consider node 𝑣1 which is in state 0 in C. In
Layer 1, 𝑣1 has only neighbor (namely 𝑣5) in state 1. In Layer 2, 𝑣1
has two neighbors (namely 𝑣2 and 𝑣4) in state 1. Since the threshold

of 𝑣1 is 2 in each layer, the local functions of 𝑣1 in layers 1 and 2

have values 0 and 1 respectively. Since the master function is OR,
the next state of 𝑣1 is 1. In a similar manner, one can verify that the

next states of 𝑣2, 𝑣3, 𝑣4 and 𝑣5 are 0, 0, 1 and 0 respectively. Thus, C′
,

the successor of C, is given by (1, 0, 0, 1, 0), as shown in the right

panel of Figure 1. It can also be verified that the successor of C′
is

C′
itself; that is, once the system reaches the configuration C′

=

(1, 0, 0, 1, 0), no more state changes occur, and the system stays in

that configuration for ever. Thus, C′
is a fixed point. □

Additional terminology regarding dynamical systems: We re-

view some necessary terminology regarding networked dynamical

systems from the literature (see e.g., [1, 4, 28]). Suppose the node

set of the underlying multilayer graph of a MSyDS S over B has 𝑛

nodes. Thus, the total number of distinct configurations is 2
𝑛
. The

phase space of S, denoted by P(S), is directed graph with a node

for each possible configuration; for each pair of nodes 𝑥 and𝑦, there

is a directed edge (𝑥,𝑦) in P(S) iff node 𝑦 represents the configura-

tion which is the successor of the configuration represented by the

node 𝑥 . A transient in the phase space is a directed path leading

to a cycle. Since our MSyDSs are deterministic, each configuration

has a unique successor. In other words, the outdegree of each phase

space node is 1. Thus, the phase space has 2
𝑛
nodes and 2

𝑛
edges.

2.2 Problem formulations
We study several fundamental questions concerning MSyDSs. The

first of these questions involves the structure of the phase spaces

of MSyDSs. In particular, we study how the (directed) paths and

cycles in the phase spaces of MSyDSs can be significantly different

compared to those of single-layer SyDSs, even when the local func-

tions used by the dynamical systems are threshold functions. In

fact, our results show that one can construct MSyDSs on two-layer

networks whose phase spaces have significantly longer cycles and

paths compared to single-layer SyDSs.

The second question involves the equivalence of two MSyDSs.

Let S and S′
be a pair of MSyDSs with the same node set 𝑉 . We

say that S and S′
are equivalent if their phase spaces (considered

as directed graphs) are identical. We formulate the corresponding

decision problem as the inequivalence problem as follows.

Inequivalence of MSyDSs:
Given: Two MSyDSs S and S′

on the same set 𝑉 of nodes.

Question: Are the phase spaces of S and S′ different?
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The reason for considering the Inequivalence problem is that the

problem belongs to the class NP. To see this, define an inequiva-
lence witness as a configuration C over𝑉 , such that the successors

of C under S and S′
are different. The Inequivalence problem is in

NP since one can guess an inequivalence witness C, and efficiently

verify that the successors of C under S and S′
are different. We

show that the Inequivalence problem is NP-complete even when

there is only a minor difference between the given MSyDSs. We

also present efficient algorithms for restricted versions of the In-

equivalence problem.

The last fundamental question that we address concerns the

expressive power of MSyDSs in terms of the number of layers.

Specifically, we investigate whether for a given MSyDS with 𝑘

layers, one can obtain an equivalent MSyDS with fewer layers.

Our results point out that while this can be done if more complex

local functions are permitted, it may not be possible if there are

additional restrictions on the local functions.

3 PHASE SPACE PROPERTIES OF
MULTILAYER SYSTEMS

Here, we examine phase space properties of multilayer systems.

We identify some interesting differences between the phase space

properties of single-layer and multilayer systems. We begin with a

lemma that is useful in showing that phase spaces of MSyDSs with

two layers may have long cycles.

Lemma 3.1. For every 𝑛 ≥ 1, there is a MSyDS S𝑛 with two layers
and 𝑛 nodes, where every local function is a threshold function, and
every master function is symmetric, with the following properties: the
phase space of S𝑛 contains exactly one cycle, the length of this cycle
is 𝑛 + 1, and every transient is of length one.

Proof. Let the nodes of S𝑛 be denoted as 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛. The

graph in both layers is a complete graph. In layer 1, the threshold of

each node is 𝑛. In layer 2, the threshold of each node 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛, is
𝑖 − 1. Every master function is XOR, which is a symmetric function.

Now, consider the phase space of S𝑛 . For each 𝑗 , 0 ≤ 𝑗 ≤ 𝑛, let
C 𝑗 denote the configuration of S𝑛 such that for each 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛,
if 𝑖 ≤ 𝑗 then C 𝑗 [𝑣𝑖 ] = 1, and if 𝑖 > 𝑗 then C 𝑗 [𝑣𝑖 ] = 0. Note that the

successor configuration of each C 𝑗 is C 𝑗+1mod (𝑛+1) . Thus, the𝑛+1
configurations C 𝑗 , 0 ≤ 𝑗 ≤ 𝑛, form a phase space cycle of length

𝑛 + 1. Moreover, for any configuration C, let |C| denote the number

of 1’s in C, i.e., the Hammingweight of C. Let 𝑗 ′ = |C|+1mod (𝑛+1).
Then, the successor configuration of C is C 𝑗 ′ , a configuration in

the above phase space cycle. □

The next result shows that the cycles in the phase spaces of

MSyDSs with just two layers and threshold local functions can

be exponentially large in the number of nodes of the system. We

note that such cycles are much larger than the ones possible in

single-layer SyDSs with threshold local functions.

Theorem 3.2. For MSyDSs with two layers, threshold local func-
tions, and XOR master functions, a phase space cycle can be exponen-
tially large in the number of nodes.

Proof. For an integer 𝑞 ≥ 1, let 𝑝1, 𝑝2, . . . , 𝑝𝑞 be the first 𝑞

primes, where we assume that 2 is the first prime. Let Σ𝑞 be the

two-layer MSyDS obtained as the union of the 𝑞 two-layer MSyDSs

S𝑝1−1,S𝑝2−1, . . . ,S𝑝𝑞−1, each of which is constructed as described

in the proof of Lemma 3.1. More precisely, the node set of Σ𝑞 is

the union of the node sets of the 𝑞 constituent MSyDSs, the edge

set in each layer is the union of the edge sets on that layer of the

constituent MSyDSs, and each node has the samemaster function as

in its constituent MSyDS. Note that neither layer of Σ𝑞 has an edge

between nodes occurring in two distinct constituent MSyDSs. Since

each constituent MsyDS S𝑝 𝑗−1, 1 ≤ 𝑗 ≤ 𝑞, has a phase space cycle
of length 𝑝 𝑗 , Σ𝑞 has a phase space cycle of length Π

𝑞

𝑗=1
𝑝 𝑗 . In this

construction, the number of nodes in the MSyDS is

∑𝑞

𝑗=1
𝑝 𝑗 −𝑞. It is

known that

∑𝑞

𝑗=1
𝑝 𝑗 is asymptoticallyΘ(𝑞2 log𝑞) [38]. As explained

above, the length of a cycle in the phase space is

∏𝑞

𝑗=1
𝑝 𝑗 , which

is asymptotically Ω(𝑒𝑞 log𝑞) [44]. Thus, the length of this cycle is

exponential in the number of nodes in the system. □

The next result shows that there are MSyDSs where all the 2
𝑛

nodes in the phase space form a single simple cycle.

Theorem 3.3. For every 𝑛 ≥ 2, there is a MSyDS S𝑛 with 𝑛 nodes,
for which every local function is a threshold function, and everymaster
function is symmetric, whose phase space consists of a single cycle of
length 2

𝑛 .

Proof sketch: Let the nodes 𝑉 of S𝑛 be denoted as 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛.
For any configuration C of 𝑉 , let Ĉ denote the integer encoded

by C, with C[𝑣1] viewed as the low order bit. Let C′
denote the

successor configuration of C under S𝑛 . S𝑛 will be constructed to

have the property that Ĉ′
will equal Ĉ + 1mod 2

𝑛
. This property

ensures that the entire phase space of S𝑛 consists of a single cycle

of length 2
𝑛
.

For any node 𝑗 , 1 ≤ 𝑗 ≤ 𝑛, let 𝑉𝑗 denote the set of nodes

{𝑣1, 𝑣2, . . . , 𝑣 𝑗 }. Note that 𝑉𝑗 corresponds to bit 𝑗 and the lower

bits of Ĉ.
MSyDS S𝑛 is constructed as follows. There are 2𝑛−1 layers. The

layer 1 graph contains no edges. For each 𝑗 , 2 ≤ 𝑗 ≤ 𝑛, the two

layers 𝑗 and 𝑛 + 𝑗 − 1 contain the same graph. This graph contains

the 𝑗 − 1 edges {𝑣 𝑗 , 𝑣𝑖 }, 1 ≤ 𝑖 < 𝑗 , i.e., an edge between 𝑣 𝑗 and each

node in 𝑉𝑗−1.
In layer 1, every node has threshold 1. In layer 𝑗 , 2 ≤ 𝑗 ≤ 𝑛,

node 𝑣 𝑗 has threshold 𝑗 − 1, and every other local function is the

constant function 0, i.e. a threshold function with threshold equal

to the node degree plus two. In layer 𝑛 + 𝑗 − 1, 2 ≤ 𝑗 ≤ 𝑛, node

𝑣 𝑗 has threshold 𝑗 , and every other local function is the constant

function 0.

The master function for node 𝑣1 is NOR. For each node 𝑣 𝑗 , 2 ≤
𝑗 ≤ 𝑛, the master function is the symmetric function that is 1 iff

either exactly one or exactly two of its 2𝑛 − 1 inputs equal 1. It

can be shown that for any configuration C of 𝑉 , the successor

configuration C′
has the required property that Ĉ′ = Ĉ +1mod 2

𝑛
.

For details see [35]. □

4 COMPLEXITY OF EQUIVALENCE
In this section, we show that the Inequivalence problem is NP-
Complete, even when there is just a minor difference between

given pair of MSyDSs S and S′
.
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Theorem 4.1. The MSyDS Inequivalence problem is NP-complete,
even when (𝑖) all local functions are threshold functions, (𝑖𝑖) the two
multilayer networks are identical, (𝑖𝑖𝑖) the graph in each layer is a
star graph plus a set (possibly empty) of isolated nodes, (𝑖𝑣) all master
functions are OR, and (𝑣) the two given MSyDSs differ only in the
value of the threshold of one node in one layer.

Proof sketch: As mentioned in Section 2.2, the MSyDS Inequiv-

alence problem is in NP. For NP-hardness, a reduction from the

3SAT problem [14] proceeds as follows. Let 𝑓 be the given CNF

formula over a set 𝑋 of Boolean variables. Let 𝑛 be the number of

variables in𝑋 and𝑚 be the number of clauses in 𝑓 . The constructed

MSyDSs S and S′
have the same node set 𝑉 , consisting of 2𝑛 + 1

nodes, as follows. For each variable 𝑥𝑖 ∈ 𝑋 , 𝑉 contains the two

nodes 𝑦𝑖 and 𝑧𝑖 . Intuitively, node 𝑦𝑖 corresponds to the literal 𝑥𝑖 ,

and node 𝑧𝑖 corresponds to the literal 𝑥𝑖 . We refer to these 2𝑛 nodes

as literal nodes. There is also one additional node,𝑤 , which we

refer to as the center node.
The constructed pair of multilayer graphs each contains node

set𝑉 and 𝑛+𝑚+1 layers. We refer to the set of layers as Γ1∪Γ2∪Γ3.
Γ1 consists of a single graph 𝐺1. Γ2 consists of 𝑛 graphs, which we

refer to as𝐺𝑖
2
, 1 ≤ 𝑖 ≤ 𝑛. Γ3 consists of𝑚 graphs, which we refer to

as 𝐺
𝑗

3
, 1 ≤ 𝑗 ≤ 𝑚.

Graph 𝐺1 contains 2𝑛 edges, and is a star graph with node𝑤 in

the center, and the other 2𝑛 nodes as leaves. Each graph𝐺𝑖
2
contains

the two edges {𝑤,𝑦𝑖 } and {𝑤, 𝑧𝑖 }. Each graph 𝐺
𝑗

3
contains an edge

for each literal in clause 𝑐 𝑗 . The endpoints of a given edge are 𝑤

and the literal node for the complement of the literal occurring in
the clause. For instance, if clause 𝑐 𝑗 is 𝑥3∨𝑥6∨𝑥9, then𝐺 𝑗

3
contains

the three edges {𝑤, 𝑧3}, {𝑤, 𝑧6} and {𝑤,𝑦9}.
The threshold of every node other than node 𝑤 is 0 in every

graph. The threshold of node𝑤 in each graph𝐺𝑖
2
is 2. The threshold

of node 𝑤 in each graph 𝐺
𝑗

3
is the number of literals in clause 𝑗 .

The threshold of node𝑤 in graph 𝐺1 is 𝑛 in S, and is 𝑛 + 1 in S′
.

The master function at each node is OR.
This completes the construction of S and S′

. Note that the only

difference between S and S′
is the value of the threshold of node

𝑤 in 𝐺1. It can be shown that 𝑓 is satisfiable iff S and S′
are

inequivalent. For details, see [35]. □

Remark. The equivalence problem for single-layer systems with

threshold local functions is known to be efficiently solvable [3].

Thus, from the complexity perspective, the above theorem points

out a significant difference between single-layer and multilayer

systems with threshold local functions.

5 EFFICIENT ALGORITHMS FOR
EQUIVALENCE FOR SPECIAL CLASSES OF
MSYDSS

We first introduce several key concepts which help us derive effi-

cient solutions for the equivalence problem for several restricted

classes of MSyDSs. Let S and S′
be a pair of MSyDSs with the

same node set 𝑉 . For a given node 𝑣 ∈ 𝑉 , we say that S and S′
are

𝑣-equivalent if for every configuration C of 𝑉 , the value of 𝑣 in the

successor of C under S and S′
are the same. Note that S and S′

are equivalent iff for every node 𝑣 ∈ 𝑉 , S and S′
are 𝑣-equivalent.

Thus, an efficient algorithm for node-equivalence would lead to an

efficient algorithm for MSyDS equivalence.

For a given threshold function, we use the term negative threshold
to mean the minimum number of 0’s that make the function equal

0. Thus, for a given node 𝑣 of a MySDS, if the local function for 𝑣

on a given layer is a threshold function with threshold 𝑡 , and the

node has degree 𝛿 in that layer, the negative threshold for that local

function is 𝛿 − 𝑡 + 2.

5.1 Fixed Number of Layers
Suppose that for a node 𝑣 of a given pair of MSyDSs S0 and S1 with

a common node set 𝑉 , we want to determine the 𝑣-equivalence of

S0 and S1. We could, for each of the 2
|𝑉 |

configurations C of 𝑉 ,

compare the value of 𝑣 in the successor configuration of C under

S0 and under S1. However, since the number of configurations is

exponential in the number of nodes, this straightforward approach

would take time exponential in the number of nodes.

In contrast, we show that when there is a bound on the number

of layers of the given MSyDSs, and each local function is symmetric,

𝑣-equivalence can be determined in time polynomial in the number

of nodes, where the degree of the polynomial depends on the bound

on the number of layers. Our algorithm for doing this is based on

constructing a partition Π𝑣 of the node set 𝑉 , such that Π𝑣 has the

following two key properties.

(1) The number of blocks in partitionΠ𝑣 is a function of the number

of layers in the givenMSyDSs, and is independent of the number

of nodes.

(2) For any configuration C of 𝑉 , the value of node 𝑣 in the succes-

sor configuration of C for each of the given MSyDSs is deter-

mined by how many of the nodes in each of the blocks of Π𝑣

equal 1 in C.
For any configuration C of 𝑉 , let the 𝑣-profile of C be a count

of how many of the nodes in each of the blocks of Π𝑣 are equal

to 1 in C. Since the number of blocks of Π𝑣 is polynomial, the

number of possible profiles is polynomial, and so the set of all pos-

sible 𝑣-profiles can be explored in polynomial time. The approach

of exploring all 𝑣-profiles yields a polynomial time algorithm, as

described by the following result.

Theorem 5.1. If the number of layers is bounded by a fixed value
for both dynamical systems, the MSyDS equivalence problem can be
solved in polynomial time when all local functions are symmetric
functions, even when each master function is arbitrary.

Proof. Let 𝐾 be the fixed bound on the number of layers. Let

S0 and S1 denote the given pair of MSyDSs, with common node set

𝑉 . Let 𝑘0 and 𝑘1 be the number of layers in S0 and S1, respectively.

Let 𝑘′ = 𝑘0 + 𝑘1. We represent a layer of S0 or S1 as a pair (𝑎, ℓ),
where 𝑎 ∈ B = {0, 1} specifies one of the two given MSyDSs, and ℓ

is a layer number of S𝑎 , i.e., 1 ≤ ℓ ≤ 𝑘𝑎 . We refer to such a pair as

an anchored-layer.
Let 𝐿 denote the set of 𝑘′ anchored layers. Let L denote the

power set of 𝐿, so that |L| = 2
𝑘 ′
. We define a profile to be a vector

with an element for each member ofL, where each element value is

an integer in the range 0 through |𝑉 |. Thus, a profile has an element

for each subset of 𝐿.
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Now, consider a given node 𝑣 ∈ 𝑉 . Let 𝜉𝑣 : 𝑉 → L denote the

function that maps each node𝑢 into the set of anchored layers (𝑎, ℓ)
such that 𝑢 and 𝑣 are generalized neighbors

3
in layer ℓ of S𝑎 . Note

that 𝜉𝑣 induces a partition of 𝑉 , with each block of the partition

consisting of those nodes that 𝜉𝑣 maps into the exact same set of

anchored layers. We refer to this partition as Π𝑣 . Thus, a pair of

nodes 𝑢 and 𝑤 are in the same block of Π𝑣 iff 𝜉𝑣 (𝑢) = 𝜉𝑣 (𝑤), i.e.,
for each layer of S0 and each layer of S1, 𝑢 and𝑤 are either both

generalized neighbors of 𝑣 in that layer or neither is a generalized

neighbor of 𝑣 .

Based on partition Π𝑣 , for each set 𝜆 ∈ L, we let𝑉𝑣,𝜆 denote the

set of nodes in the block of the partition associated with 𝜆, i.e., the

set of nodes 𝑢 such that 𝜉𝑣 (𝑢) = 𝜆. Thus, 𝑉𝑣,𝜆 is the set of nodes

𝑢 such that 𝑣 and 𝑢 are generalized neighbors in every anchored

layer in 𝜆, and in no other anchored layer.

We say that a given profile 𝜃 is a 𝑣-profile if for every 𝜆 ∈ L,

𝜃 [𝜆] ≤ |𝑉𝑣,𝜆 |. Let Θ𝑣 denote the set of all 𝑣-profiles.

We now specify how a given 𝑣-profile 𝜃 specifies a value for

node 𝑣 for each of the two given MSyDSs S0 and S1. Let function

𝜌𝑣 : Θ𝑣 × B → B be defined as follows: Consider a given (𝜃, 𝑎) ∈
Θ𝑣 × B. For each anchored layer (𝑎, ℓ) of S𝑎 , let

𝑤𝑣 ((𝑎, ℓ)) =
∑︁

𝜆∈L | (𝑎,ℓ ) ∈𝜆
𝜃 [𝜆]

and let𝑊𝑣 ((𝑎, ℓ)) be the value of the symmetric local function 𝑓ℓ,𝑣
of S𝑎 when exactly𝑤𝑣 ((𝑎, ℓ)) of its inputs equal 1. This defines a
𝑘𝑎-vectorW𝑣,𝑎 of Boolean values, whereW𝑣 (ℓ) = 𝑤𝑣 ((𝑎, ℓ)). Then,
𝜌𝑣 (𝜃, 𝑎) is defined to be the value of the master function𝜓𝑣,𝑎 of S𝑎
when W𝑣,𝑎 is the input to𝜓𝑣,𝑎 .

Let 𝜇𝑣 denote the function that maps each configuration C over𝑉

into a 𝑣-profile, as follows. For each configuration C over 𝑉 , 𝜇𝑣 (C)
is the 𝑣-profile such that for each 𝜆 ∈ L, 𝜇𝑣 (𝜆) is the number of

nodes in𝑉𝑣,𝜆 that have value 1 in C. Note that 𝜇 is an onto function,

i.e., for every 𝑣-profile 𝜃 , there is at least one configuration C of

𝑉 such that 𝜇𝑣 (C) = 𝜃 . Such a configuration can be constructed

by setting, for each 𝜆 ⊆ 𝐿, exactly 𝜃 (𝜆) members of 𝑉𝑣,𝜆 to value 1,

and the other members of 𝑉𝑣,𝜆 to value 0.

Note that for each MSyDS S𝑎 and any configuration C of 𝑉 ,

the value of node 𝑣 in the successor configuration of C under S𝑎
equals the value of 𝜌𝑣 (𝜇𝑣 (C), 𝑎). Thus, we can determine the 𝑣-

equivalence of S0 and S1 by comparing the values of 𝜌 (𝜃, 0) and
𝜌 (𝜃, 1) for every 𝑣-profile 𝜃 .

While the number of configurations is exponential in the number

of nodes, the number of elements in any profile is bounded by a

function of 𝐾 , and the value of each component of any 𝑣-profile

is at most the number of nodes. Since 𝐾 is fixed, the number of

profiles is polynomial in the number of nodes. Thus, this approach

yields a polynomial time algorithm, as follows.

The algorithm. We now describe a polynomial time algorithm

for equivalence, utilizing the above concepts. Given S0 and S1, the

algorithm first constructs L. Then, for each node 𝑣 , the algorithm

determines whether S0 and S1 are 𝑣-equivalent, as follows. The

algorithm constructs partition Π𝑣 , and then constructs Θ𝑣 , the set

of all 𝑣-profiles. Next, for each 𝜃 ∈ Θ𝑣 , the algorithm computes

3
We use the term “generalized neighbors” to mean that 𝑢 and 𝑣 are in each other’s

closed neighborhood.

𝜌 (𝜃, 0) and 𝜌 (𝜃, 1). Note that S0 and S1 are 𝑣-equivalent iff for

every 𝜃 ∈ Θ𝑣 , 𝜌 (𝜃, 0) = 𝜌 (𝜃, 1).
Finally, S0 and S1 are equivalent iff for every node 𝑣 and every

𝜃 ∈ Θ𝑣 , 𝜌 (𝜃, 0) = 𝜌 (𝜃, 1). □

5.2 Bounded Threshold
We need a couple of lemmas to get an efficient algorithm for this

special case.

Lemma 5.2. Let S0 and S1 be a pair of MSyDSs with common
node set 𝑉 , such that every local function is a threshold function, and
all master functions are OR. Let 𝜏 denote the largest threshold value
occurring in S0 and S1. Then S0 and S1 are inequivalent iff there is
an inequivalence witness with at most 𝜏 1’s.

Proof sketch: Trivially, if there is an inequivalence witness with at

most 𝜏 1’s, then S0 and S1 are inequivalent. For the converse, it can

be shown that whenever there is an inequivalence witness, there is

one with at most 𝜏 1’s. The details of this proof appear in [35]. □
We now note that a dual lemma holds, with regard to maximum

negative threshold value. The proof is the dual to the proof of

Lemma 5.2.

Lemma 5.3. Let S0 and S1 be a pair of MSyDSs with common node
set 𝑉 , such that every local function is a threshold function, and all
master functions are AND. Let 𝜈 denote the largest negative threshold
value occurring in S0 and S1. Then S0 and S1 are inequivalent iff
there is an inequivalence witness with at most 𝜈 0’s.

We are now ready to prove the main result of this subsection.

Theorem 5.4. (a) If all local functions are threshold functions, the
maximum threshold value is bounded by a fixed value, and all master
functions are OR, the MSyDS equivalence problem can be solved in
polynomial time.

(b) If all local functions are threshold functions, the maximum
negative threshold value is bounded by a fixed value, and all master
functions are AND, the MSyDS equivalence problem can be solved in
polynomial time.

Proof. (a) Let 𝜏𝑚𝑎𝑥 denote the fixed bound on the maximum

threshold value. From Lemma 5.2, the two given MSyDSs are in-

equivalent iff there is an inequivalence witness with at most 𝜏𝑚𝑎𝑥

1’s. In polynomial time, all configurations with at most 𝜏𝑚𝑎𝑥 1’s

can be generated, and the successor configurations under the two

given MSyDSs can be found.

(b) Let 𝜈𝑚𝑎𝑥 denote the fixed bound on the maximum negative

threshold value. From Lemma 5.3, the two given MSyDSs are in-

equivalent iff there is an inequivalence witness with at most 𝜈𝑚𝑎𝑥

0’s. In polynomial time, all configurations with at most 𝜈𝑚𝑎𝑥 0’s

can be generated, and the successor configurations under the two

given MSyDSs can be found. □

The corollary below follows immediately.

Corollary 5.5. If the maximum node degree of any graph in any
layer is bounded by a fixed value, the MSyDS equivalence problem can
be solved in polynomial time when all local functions are threshold
functions, and either every master function is OR or every master
function is AND.
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6 EXPRESSIVE POWER OF MSYDSS
In this section, we consider the expressive power of some classes

of MSyDSs, based on the number of network layers.

Proposition 6.1. Every MSyDS is equivalent to a single-layer
SyDS.

Proof. Given MSyDS S, there is an equivalent SyDS S′
whose

underlying graph is a complete graph. The local function of a given

node 𝑣 in S′
is the master function of S for 𝑣 , applied to the set of

local functions for 𝑣 on the layers of S. □

Example:We use the 2-layer system in Figure 1 to illustrate the

construction outlined in the proof of Proposition 6.1. The underly-

ing graph of an equivalent single-layer system is a complete graph

on 5 nodes. Let Thr(𝑉 ′, 𝑞), where 𝑉 ′
is a subset of nodes and 𝑞

is a non-negative integer, denote the Boolean function which has

the value 1 when at least 𝑞 of the nodes in 𝑉 ′
have the value 1.

Using this notation, the local function associated with node 𝑣1 in

the single-layer system is:

Thr({𝑣1, 𝑣3, 𝑣5}, 2) OR Thr({𝑣1, 𝑣2, 𝑣3, 𝑣4}, 2)

The local functions for the other nodes of the system in Figure 1

can be constructed in a similar manner. □
The next result shows that there is a hierarchy of expressive

power, based on the number of layers.

Theorem 6.2. (1) For every 𝑘 ≥ 2, there is a MSyDS S𝑘 that
contains𝑘 layers, for which every local function is a threshold function,
and every master function is OR, with the following properties: For
each S𝑘 , there is no equivalent MSyDS with fewer layers, for which
every local function is symmetric, and every master function is OR.
(2) However, there is an equivalent MSyDS with two layers, for which
every local function is a threshold function, and every master function
is AND.

Proof sketch: For Part (1), let S𝑘 be the following 𝑘 layer MSyDS.

Node set 𝑉 contains the 𝑘 + 1 nodes: {𝑎, 𝑏1, 𝑏2, . . . , 𝑏𝑘 }. Layer 𝑖 ,
1 ≤ 𝑖 ≤ 𝑘 , contains only one edge: {𝑎, 𝑏𝑖 }. In every layer, the local

function for node 𝑎 is a threshold function with threshold 2, and

every other local function is the constant function 0, i.e., a threshold

function with threshold value equal to two plus the node degree in

that layer. Every master function is OR.
It can be shown by contradiction that there does not exist a

MSyDS S′
with fewer than 𝑘 layers that is equivalent to S𝑘 , such

that every local function of S′
is symmetric, and every master

function is OR. The details of this proof appear in [35].

To prove Part (2) of the theorem, let S′′
be the following two

layer MSyDSwith node set𝑉 . Layer 1 contains no edges, and layer 2

contains the 𝑘 edges {𝑎, 𝑏𝑖 }, 1 ≤ 𝑖 ≤ 𝑘 . In layer 1, the local function

for node 𝑎 is a threshold function with threshold 1. In layer 2, the

local function for node 𝑎 is a threshold function with threshold 2.

In both layers, the local function for every node other than 𝑎 is the

constant function 0. Every master function is AND. It can be verified

that S𝑘 and S′′
are equivalent. □

7 ADDITIONAL REMARKS AND FUTURE
RESEARCH DIRECTIONS

We have studied some fundamental questions for MSyDSs, such as

the structure of their phase spaces, the complexity of equivalence

problems and their expressive power. Researchers have studied

several other fundamental questions for single layer dynamical

systems. Examples of such questions are fixed point existence
(i.e., does the given single-layer system have a fixed point?) and

predecessor existence (i.e., given a single-layer system and a

configuration C, is there a configuration C′
such that there is a one-

step transition from C′
to C?); see [4, 30, 37] and the references cited

therein. Many of these problems are known to be NP-complete for

single-layer systems. One can easily extend these hardness results

to MSyDSs using the following result.

Proposition 7.1. Let S be a given single-layer SyDS over the
domain B = {0,1}. For any 𝑘 ≥ 2, a 𝑘-layer MsyDS S′ over B whose
phase space is identical to that of S can be constructed.

Proof. Let𝐺 (𝑉 , 𝐸) denote the underlying graph ofS. TheMSyDS

S′
uses the same set of nodes𝑉 . For 1 ≤ 𝑖 ≤ 𝑘 , the graph𝐺𝑖 (𝑉 , 𝐸𝑖 )

in each layer 𝑖 is the same as 𝐺 . Further, in each layer, the local

function for a node 𝑣 ∈ 𝑉 is the same as the local function of 𝑣

in S. Finally, the master function for each node 𝑣 of S′
is the OR

function. It is straightforward to verify that for each configuration

C, the successor of C is the same in both S and S′
. Thus, the phase

spaces of S and S′
are identical. □

From Proposition 7.1, it is seen that hardness results for single-

layer systems yield similar results for multilayer systems as well.

We close by pointing out some directions for future research

concerning computational problems for multi-layer dynamical sys-

tems. First, it will be useful to examine whether other problems

that are efficiently solvable for single-layer systems remain so for

multilayer systems. For example, it is known that for single-layer

SyDSs where the treewidth of the underlying graph is bounded

and the local functions have certain properties, the existence of

certain subgraphs of the phase space can be checked efficiently [34].

It is of interest to study whether such algorithms can be extended

to the multilayer case. It is also of interest to investigate whether

results for single-layer SyDSs with stochastic local functions [5]

can be extended to MSyDSs. Our work on the expressive power

of MSyDSs has considered systems where the local functions are

threshold or symmetric functions. An interesting direction is to

extend the results on expressive power to multilayer systems with

other classes of Boolean local functions.
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