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ABSTRACT
The generalization challenges faced by neural methods in solving
the Travelling Salesman Problem (TSP) have attracted substantial
attention. Current neural approaches predominantly rely on Deep
Neural Networks with global receptive fields to capture global
features, often overlooking the critical role of local topological
information. To address this limitation, we propose a Global &
Local Encoder (G&L-Encoder) that efficiently integrates local and
global information within the feature space. The G-Encoder, with
global receptive field, takes charge of capturing global features
and facilitating the fusion of global and local information, while
the L-Encoder, with its local neighborhood receptive field, extracts
finer-grained features specific to each node’s neighborhood, serv-
ing as an essential complement to the global one. Furthermore, we
propose a simple yet efficient supervised learning framework, lever-
aging the recursive optimality inherent in optimal solutions to dig
into their implicit knowledge. Extensive experiments on the TSP
demonstrate that our method significantly improves generalization
performance and achieves state-of-the-art results on medium-scale
TSP tasks. Our source code is available at https://github.com/bxx-
seu/GL-POMO.
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1 INTRODUCTION
The Travelling Salesman Problem (TSP) is a well-known NP-hard
problem with extensive applications across various domains. For
decades, researchers have devoted considerable effort to developing
more efficient solvers for TSP, with Concorde being one of the most
notable [8], employing exact algorithms based on cutting-plane
methods. Due to the NP-hardness of TSP, the exact algorithms suffer
from scalability issues [6]. Consequently, heuristic approaches, such
as the Lin-Kernighan heuristic (LKH) [13], have been adopted to
find near-optimal solutions within limited time. These heuristics
aim to strike a balance between solution quality and computational
cost to meet the growing demand for real-time conditions. Typically,
they still rely on substantial domain-specific expertise.

Recently, the neural methods based on Machine Learning (ML)
have been adapted to solve routing problems, including TSP, which
can learn or discover heuristics automatically instead of expertise
[1, 7, 24, 26, 27, 34, 37, 43]. Compared to traditional algorithms,
neural method can greatly reduce computational costs and devel-
opment expenses while delivering desirable solutions, making this
a promising avenue for further research.

While neural methods demonstrate promising results, existing
neural methods generally suffer from the generalization issue [28].
Numerous studies have attempted to address this problem by intro-
ducing various techniques, such as meta-learning [33, 48], knowl-
edge distillation [2], and hierarchical architecture [46]. These frame-
works have significantly improved the generalization capabilities
of models, both in terms of cross-distribution or cross-size. How-
ever, an intriguing phenomenon has emerged: models, specifically
trained to enhance generalization often perform distinctly worse
on smaller and simpler instances compared to their baseline models.
This observation prompts a critical reassessment of whether cur-
rent mainstream model architectures contain sufficient information
to support a generalizable neural method.

Existing neural methods heavily rely on the representation ca-
pabilities of Deep Neural Networks with global receptive fields, e.g.
Transformer [24, 38], Graph Neural Network [4, 21]. Many studies
have demonstrated that global features are capable of helping the
policy escape local optima [21, 22, 24, 25]. However, the lack of local
topological information forces the model to memorize all details
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of the instance via global receptive field. This, at least in part, may
explain why the neural methods for routing problems struggle with
generalization. They tend to overfit to the training distributions,
and even slight perturbations to the global characteristics of in-
stances can degrade performance. Notably, the policy relying solely
on local information without the global receptive fields may easily
degenerate into a greedy strategy. Therefore, a more reasonable
approach is to treat local information as the complement to global
one.

On the other hand, the sparse reward issue in REINFORCE learn-
ing [41], increases the computational cost of model training. For
certain routing problem, like TSP, it is affordable to pre-compute an
adequate number of high-quality solutions for small-scale instances
using traditional algorithms. These solutions, meticulously picked
from the exponential discrete solution space, encompass abundant
information about instance distribution representations and heuris-
tic strategies. By effectively leveraging these pre-computed solu-
tions, we can mitigate the sparse reward issue and enable more
efficient model training.

In this paper, we introduce the local topological information as
a crucial complement to global features by designing a Global &
Local Encoder architecture, termed G&L-Encoder, which efficiently
integrates local and global information within the feature space.
The G-Encoder, with global receptive field, takes charge of captur-
ing global features, similar to most existing methods [22, 24, 25, 43],
while facilitating the fusion of global and local information. The
L-Encoder, with its local neighborhood receptive field identified by
K-Nearest Neighbor (KNN), extracts fine-grained features specific
to each node’s neighborhood, serving as an essential complement
to the global one. In order to leverage the limited high-quality
solutions, we design Sampled Steps Supervised Learning (SSSL),
which estimates the gradients by sampling several decision steps
(each step representing the selection of the next node based on the
current partial tour) from the trajectories of high-quality solutions.
The SSSL avoids the need to construct the entire tour during train-
ing, reducing computational resource expenditure. The underlying
principle is that each decision contributing to the optimal solution
is itself optimal. Therefore, learning from these individual decisions
is effective for model training and also significantly expands the
training labels. Besides, symmetry-based augmentation methods,
inspired by both the solution and problem symmetries [22], are
employed to further improve the utilization of limited high-quality
solutions.

Our contributions are summarized as follows:

• We reveal the significance of local topological information
in designing a generalizable neural method for TSP. To ac-
complish this, we propose a G&L-Encoder architecture that
adeptly integrates global and local information by embed-
ding our local policies within a global Transformer-based
encoder.
• We design a simple yet efficient training framework, Sam-
pled Steps Supervised Learning (SSSL) that enables themodel
to learn from individual decisions within high-quality solu-
tions.
• Extensive experiments demonstrate that our method signif-
icantly improves the generalization against the backbone

models as well as other existing generalization methods on
TSP across various distributions and sizes, achieving state-
of-the-art results on medium-scale TSP tasks.

2 RELATEDWORKS
Neural Methods There have been a soaring number of studies
trying to solve routing problems using ML algorithms. According
to the way of constructing the solution, most of the neural methods
could be divided into two categories: 1) Construction Heuristics:
The solution is generated by sequentially appending an accessible
node to the current partial tour until satisfying all constraints and
demands. Vinyals et al. [39] proposed a Pointer Network to solve
TSP with supervised learning. Bello et al. [1] then brought REIN-
FORCE algorithm [41] to this field. Kool et al. [24] proposed the
attention model (AM) adapted from the Transformer architecture
[38] to solve a wide range of Combinatorial Optimization Problems
(COPs), which achieved a great improvement on various tasks. The
AM has become the de-facto standard method. Kwon et al. [25]
proposed the policy optimization with multiple optima (POMO) re-
lying on problem-specific solution symmetries for COPs to further
improve upon AM. Extended from POMO, Kim et al. [22] designed
a general-purpose symmetric learning scheme (Sym-NCO), which
could leverage universal symmetries in various COPs and solu-
tions. Besides, Graph neural networks are also utilized to solve TSP
[17, 21, 31, 34]. There have been other works proposed to improve
upon the above [19, 45]. 2) Improvement Heuristics: An initial com-
plete solution is iteratively refined by the learned heuristics until
the termination condition is met. In this line of research, the learned
heuristics are usually used to control the classical local search meth-
ods [5, 7, 29, 32, 42] or to provide critical information for traditional
meta-search methods [15, 23]. Generally, improvement methods
are able to achieve a better solution than construction ones, but at
the expense of much longer inference time. In this paper, we focus
on the construction method.

Generalization issue The generalization issue has attracted
more andmore attention, which severely hinders the practical appli-
cation of the neural methods [20, 28]. Recently, many preliminary
attempts have been made to tackle this issue. Among the early
attempts, Xin et al.[44] exploited the generative adversarial net-
work to adaptively generate hard-to-solve instances for training
the model. Wang et al.[40] introduced the game theory to learn the
trainable solver and instance generators simultaneously. Zhang et
al.[47] also tried to design an adaptive instance generator, which
could dynamically adjust the hardness of instances according to
the current model. Other than data perspective, many works are
devoted to introducing or devising suitable training frameworks
to assist the trainable model in learning generic strategies. Jiang et
al.[18] and Bi et al.[2] introduced group DRO (Distributionally Ro-
bust Optimization) [36] and knowledge distillation [14] separately
to enhance model robustness. Manchanda et al.[33] and Zhou et
al.[48] exploited meta-learning techniques to learn the model on
a variety of tasks with various distributions and sizes. Different
from above, Luo et al.[30] designed a Light Encoder and Heavy
Decoder (LEHD) architecture for cross-size generalization, which
could adapt to the situation of changeable size of available nodes
in the decoding phase. Gao et al. [11] proposed an ensemble model
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comprised of global policy and local policy, which integrates the
two policies by adding up the action scores computed by global and
local policy respectively. Ye et al. [46] designed a unified hierarchi-
cal framework that could decompose large routing problems into
several Shortest Hamiltonian Path Problems to achieve the one-size-
fits-all solver. Fang et al. [10] designed a new architecture (INViT)
to address the generalization issue, which takes invariant nested
views of the instance irrespective of its distribution or problem size.

Our method is motivated by Gao et al. [11], but there are some
key differences, which make our policy superior. First and foremost,
our local and global features are not treated as independent compo-
nents. Instead, they are complementary, preventing the local policy
from devolving into greedy strategies. In addition, our local policy
is integrated within the global encoder, allowing for a seamless
fusion of global and local features in the final node embeddings.

3 PROBLEM FORMULATION
We define TSP over a complete graph G = {V, E}, where 𝑣𝑖 ∈ V
represents the node (a.k.a. city or customer), 𝑒𝑖, 𝑗 ∈ E represents
the edge between 𝑣𝑖 and 𝑣 𝑗 . A tour 𝜏 (a.k.a. solution) is defined as a
permutation of nodes, which is feasible if and only if it starts from
and ends at depot while traversing all other nodes exactly once. We
focus on the 2D Euclidean TSP in this paper. Given a tour 𝜏 , its total
cost can be calculated as

𝐿(𝜏) = 𝑐𝑜𝑠𝑡 (𝑒𝜏𝑁 ,𝜏1 ) +
𝑁−1∑︁
𝑖=1

𝑐𝑜𝑠𝑡 (𝑒𝜏𝑖 ,𝜏𝑖+1 ) (1)

where 𝜏𝑖 denotes the 𝑖-th node on the tour, 𝑁 = |V| is the nodes
number of instance and 𝑐𝑜𝑠𝑡 (𝑒𝜏𝑖 ,𝜏𝑖+1 ) = ∥𝑣𝜏𝑖 − 𝑣𝜏𝑖+1 ∥2 denotes the
Euclidean distance between 𝑣𝜏𝑖 and 𝑣𝜏𝑖+1 . The objective is to find
the optimal tour 𝜏∗ with the least total cost among all feasible tours.

A feasible tour can be constructed by sequentially selecting the
next node from the rest available nodes. As with many present
works, this process can be seen as a Markov Decision Process [24,
25]. The policy 𝑝 (𝜏 |G) is defined by the deep neural network to
predict the probability of the optimal next node based on the current
situation. It is factorized and parameterized by 𝜃 as

𝑝𝜃 (𝜏 |G) =
𝑁−2∏
𝑖=2

𝑝𝜃 (𝜏𝑖 |G, 𝜏1:𝑖−1) (2)

where G denotes a TSP instance and 𝜏1:𝑖−1 is the partial tour before
the 𝑖-th step. Due to solution symmetry [25], it is equivalent to
selecting a random node to start the tour (also as depot), so in
Equation.(2), 𝑖 begins with the second step. Additionally, since only
one available node left at the 𝑁 − 1 step, no prediction is required.
This is referred to Neural Construction Method, which constructs
the sequential solution in an auto-regressive way [9, 22, 24, 25].

4 MODEL
This section details our G&L-Encoder, which integrates the local
policy into the global Transformer encoder, capturing local topo-
logical information around each node as a critical complement to
global features. The architecture of our entire encoder is illustrated
in Figure 1. Following this, an auto-regressive decoder takes the
nodes embedding (outputs of the encoder) as inputs to construct
the valid tours 𝜏 , similar to [24, 25].

4.1 Transformer Encoder (G-Encoder)
Consistent with most present construction methods, we employ the
encoder of AM [24] as the cornerstone, called as G-Encoder, which
is a primary part of our encoder to capture the global information
of the instance by its global graph receptive fields.

Specifically, G-Encoder adopts Transformer without positional
embedding [38]. It consists of multiple attention layers (MAL)
including multi-head self-attention (MHA), feed-forward layers
(FF) and skip-connection [12]. Each MAL takes as input the 𝑑ℎ-

dimensional nodes embedding
{
ℎ
(𝑙−1)
𝑖

}𝑁
𝑖=1

, then executes global
message passing between the nodes using MHA, as:

ℎ̂𝑖 = MHA𝑙
(
ℎ
(𝑙−1)
1 , . . . , ℎ

(𝑙−1)
𝑁

)
(3)

where 𝑙 indicates the index of MAL and these layers do not share

parameters. The input of first MAL,
{
ℎ
(0)
𝑖

}𝑁
𝑖=1

, is obtained by a
shared linear projection𝑊𝑔𝑙𝑜𝑏𝑎𝑙 , which takes as input each node’s
coordinates {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1.

The node-wise fully connected feed-forward by the FF layer is
conducted after the combination of the global and local features
(see Section 4.2).

4.2 Local Policy (L-Encoder)
It has been proved that G-Encoder captures global information
effectively by aggregating messages from the global scope to each
node. However, it lacks a mechanism to take advantage of local
topological information surrounding each node. It is significant
because the optimal decision for selecting the next node usually
comes from the neighborhood of the current node. The deficiency
of local information has to make the global policy exhaust itself
comprehending ormemorizing all details of the instance, potentially
contributing to weaker generalization in learnable policies. On the
other hand, local features are more stable and independent of global
distribution since they contain only the information from their
immediate neighborhood. As a result, the possible peculiar nodes
within an instance have minimal impact on their distant nodes,
enabling local features to better resist global distribution shifts.
More analysis can be seen in the Appendix C.

Specifically, we firstly get neighboring nodes for each node using
traditional KNN algorithm (set 𝐾 = 20), as N(𝑣𝑖 ) = {𝑣 ′𝑖 ( 𝑗 ) | 𝑗 ∈
N𝐾 (𝑣𝑖 )}. In order to focus on the local topological structures, we
use polar coordinates to represent the neighboring nodes of each
node, and take itself as the pole of polar coordinates and the x-axis
direction as the polar axis.

𝑣 ′
𝑖 ( 𝑗 ) =

(
𝜌𝑖 ( 𝑗 ) , 𝜌𝑚𝑎𝑥𝑖 , 𝜃𝑖 ( 𝑗 )

)
𝜌𝑖 ( 𝑗 ) =

𝑐𝑜𝑠𝑡 (𝑒𝑖, 𝑗 )
𝜌𝑚𝑎𝑥𝑖

𝜌𝑚𝑎𝑥𝑖 = max({𝑐𝑜𝑠𝑡 (𝑒𝑖, 𝑗 ) | 𝑗 ∈ N𝐾 (𝑣𝑖 )})

𝜃𝑖 ( 𝑗 ) = arctan(𝑣 𝑗 − 𝑣𝑖 )

(4)

where 𝑣 ′
𝑖 ( 𝑗 ) denotes the raw features of node 𝑣 𝑗 as a neighboring

node of 𝑣𝑖 . We normalize the radius of neighboring nodes to [0, 1]
and add corresponding scale factor 𝜌𝑚𝑎𝑥𝑖 as an additional feature
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Figure 1: Architecture of the G&L-Encoder, where the L-Encoder takes the local features as keys to aggregate information from
neighboring nodes.

to prevent information loss. The neighboring nodes of a single node
can be viewed as a small instance consisting of 𝐾 nodes.

The raw features of neighboring nodes are mapped into 𝑑𝑒 -
dimension embedding by a shared linear projection 𝑊 (𝑙−1)

𝑙𝑜𝑐𝑎𝑙
, as{

ℎ̃
(𝑙 )
𝑖 ( 𝑗 ) | 𝑗 ∈ N𝐾 (𝑣𝑖 )

}𝑁
𝑖=1

, whose parameters are not shared among
L-Encoder layers. Then, we aggregate the local information from
corresponding neighboring nodes using the Multi-Head Attention
(MHA). The keys come from the neighboring nodes embedding
ℎ̃
(𝑙 )
𝑖 ( 𝑗 ) , but the queries and values come from the nodes embedding

ℎ
(𝑙−1)
𝑖

, which are the synthesis of global and local features.

𝑞𝑖 =𝑊
𝑄

𝑙𝑜𝑐𝑎𝑙
ℎ
(𝑙−1)
𝑖

, 𝑘𝑖 ( 𝑗 ) =𝑊
𝐾
𝑙𝑜𝑐𝑎𝑙

ℎ̃
(𝑙 )
𝑖 ( 𝑗 ) , 𝑣𝑖 =𝑊

𝑉
𝑙𝑜𝑐𝑎𝑙

ℎ
(𝑙−1)
𝑖

(5)

We compute the compatibility of the queries with their corre-
sponding neighboring nodes, and the vector ℎ̃𝑖 that is received by
node 𝑖 is the combination of messages 𝑣 𝑗 .

𝑢𝑖 𝑗 =
𝑞𝑇
𝑖
𝑘𝑖 ( 𝑗 )√
𝑑𝑒

, 𝑎𝑖 𝑗 =
𝑒𝑢𝑖 𝑗∑
𝑗 ′ 𝑒

𝑢𝑖 𝑗 ′
, 𝑗 ∈ N𝐾 (𝑣𝑖 ) (6)

ℎ̃𝑖 =𝑊
𝐶
𝑙𝑜𝑐𝑎𝑙

∑︁
𝑗

𝑎𝑖 𝑗𝑣 𝑗 (7)

where 𝑣 𝑗 is in the neighborhood of 𝑣𝑖 and ℎ̃𝑖 can be regarded as the
representation of the local topological information around the 𝑣𝑖 .

Before batch normalization (BN) [16] and FF layer, local features
are integrated into global features with a learnable factor.

ℎ̆𝑖 = ℎ̂𝑖 + 𝛼𝑤ℎ̃𝑖 (8)

ℎ
(𝑙 )
𝑖

= BN𝑙 (BN𝑙 (ℎ (𝑙−1)
𝑖

+ ℎ̆𝑖 ) + FF𝑙 (ℎ̆𝑖 )) (9)

4.3 Auto-regressive Decoder
Decoder constructs a solution sequentially based on the node em-
beddings from the encoder and a special context embedding. The
context embedding represents the decoding context, which consists
of the embedding of the graph ℎ̄ (𝐿) , the current node ℎ (𝐿)𝜏𝑡−1 and the
destination node ℎ (𝐿)𝜏1 :

ℎ
(𝐿)
(𝑐 ) = 𝑓𝑐

(
ℎ̄ (𝐿) , ℎ (𝐿)𝜏𝑡−1 , ℎ

(𝐿)
𝜏1

)
(10)

where 𝑓𝑐 can be viewed as a linear projection to context embedding.
During the decoding phase, an obvious intuition is that the demand
of visited nodes has been changed, and for TSP, they should no
longer influence subsequent decisions. Accordingly, the context
embedding need exclude these interference from visited nodes.

Thereby, unlike the POMO, we update the graph embedding
after each decision, allowing the model to adapt to the evolving
conditions and produce more accurate predictions for subsequent
actions.

ℎ̄
(𝐿)
𝑡 =

1
𝑁 − 𝑡 + 1

∑︁
𝑗∉𝜏1:𝑡−1

ℎ
(𝐿)
𝑗

(11)
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Algorithm 1 Sampled Steps Supervised Learning

Input: Training set D = {(𝑠, 𝜏∗)}, Multi-start𝑀 , Multi-decision
𝑇

Output: Model 𝜃
1: Initialize model’s params 𝜃
2: for 𝑒 = 1 to 𝐸 do
3: Set problem size: 𝑁
4: 𝑠𝑖 ∼ 𝑆𝑎𝑚𝑝𝑙𝑒𝐷𝑎𝑡𝑎(D, 𝑁 ) for 𝑖 ∈ {1, . . . , 𝐵}

⊲ Data batch
5: 𝑠𝑖, 𝑗 ∼ 𝑆𝑎𝑚𝑝𝑙𝑒𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 (𝑠𝑖 ) for 𝑗 ∈ {1, . . . , 𝑀}

⊲ Sample𝑀 trajectories for each instance
6: T ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑡𝑒𝑝𝑠 (𝑇, 𝑁 )

⊲ Pick 𝑇 decision steps
7: for 𝑡 in T do
8: P𝑖, 𝑗,𝑡 ← 𝑝𝜃 (𝑠𝑖, 𝑗 , 𝜏∗1:𝑡−1)
9: end for
10: L𝜃 ← 1

𝐵∗𝑀
∑
𝑖, 𝑗

∑
𝑡 ∈T 𝐻 (P𝑖, 𝑗,𝑡 ,P∗𝑖, 𝑗,𝑡 )
⊲ The function 𝐻 indicates cross entropy

11: 𝜃 ← 𝐴𝑑𝑎𝑚(𝜃,∇𝜃L𝜃 )
12: end for

where 𝑡 indicates the 𝑡-th decision step and 𝜏1:𝑡−1 is corresponding
partial solution. The prediction of next node is computed as follows:

ℎ̂ (𝑐 ) = 𝑀𝐻𝐴𝑐

({
ℎ
(𝐿)
𝑖

}𝑁
𝑖=1

, ℎ
(𝐿)
(𝑐 )

)
(12)

𝑢1, . . . , 𝑢𝑁 = 𝑆𝐻𝐴𝑐

({
ℎ
(𝐿)
𝑖

}𝑁
𝑖=1

, ℎ̂ (𝑐 )

)
(13)

𝑝𝜃 (𝜏𝑡 = 𝑖 |G, 𝜏1:𝑡−1) =
𝑒𝑢𝑖∑
𝑗 𝑒
𝑢 𝑗

(14)

where the decoder computes a multi-head attention on top of the
encoder, but with messages only to the context embedding. Then,
the final probabilities of optimal next node are computed using
a single head attention with clipping and the unsatisfied nodes
masked. The detailed structure of𝑀𝐻𝐴𝑐 and 𝑆𝐻𝐴𝑐 can be found
in [24, 25].

5 SAMPLED STEPS SUPERVISED LEARNING
In this section, we present our training framework based on the
supervised learning. The optimal solutions of COPs are selected
from exponential discrete space, which cover abundant information
bound to the heuristic strategies and node distribution characteris-
tics (local and global). A desired supervised learning method should
be capable of rationally uncovering this implicit information and
efficiently guiding the model to converge on a generalized policy,
rather than overfitting to specific distributions [21].

We design Sampled Steps Supervised Learning (SSSL) which
estimates the gradients of model parameters by predicting sev-
eral sampled steps instead of all steps during the decoding phase.
The fundamental principle is that the complete optimal tour is
compounded from a series of optimal decision steps. Thus, it is
equivalent for training to learn from the complete tour or several
sampled steps in the supervised framework, the latter can save lots
of computational resources and significantly expand the limited
training labels.

Algorithm 1 presents the SSSL training framework with a mini-
batch. Inspired by [25], we firstly choose 𝑀 trajectories with dif-
ferent starting nodes and exploratory directions from optimal tour
𝜏∗. Then, randomly pick 𝑇 different decision steps T = {𝑡}𝑇 (a.k.a.
lengths of partial tours) to predict. The model computes the proba-
bilities 𝑝𝜃 (𝜏𝑡 |𝑠, 𝜏∗1:𝑡−1) for available nodes. The cross-entropy loss
is employed to measure the gap between the prediction and opti-
mal distribution. We minimize the sum of the cross-entropy loss of
different decisions on the same trajectory over mini-batches.

L𝜃 = E𝑠,𝜏∗∼DE𝑡∼𝜏∗
∑︁
𝑡 ∈T

𝐻 (𝑝𝜃 (𝜏𝑡 = 𝜏∗𝑡 |𝑠, 𝜏∗1:𝑡−1), 1) (15)

The computational complexity analysis, an improved SSSL, and
more discussion can be seen in Appendix A.6, B.2.1, and B.4.2.

6 EXPERIMENTS
In this section, we empirically evaluate the effectiveness of our
method on synthetic and benchmark of TSP with various sizes and
distributions. And we intentionally compare the effects of training
distributions on the final model’s generalization.

Problem settingWe generate 3 different training sets, respec-
tively termed U, UCM, UCM-CSize. The U follows the standard
data generation procedure of the previous work [24] with uni-
form distribution and fixed problem size 𝑁 = 100. The UCM fol-
lows the generation method of [2] including uniform, cluster and
mixed distributions with fixed size 𝑁 = 100. The UCM-CSize in-
cludes the same distributions as the UCM, but various problem
sizes 𝑁 ∈ {69, 83, 100, 120, 144}. These training sets consist of 1M
instances for training respectively.

In order to sufficiently evaluate the model performance under
the cross-size and cross-distribution conditions, we design 24 test
tasks with diverse sizes 𝑁 ∈ {100, 150, 200, 300} and six node dis-
tributions, i.e. uniform, cluster, mixed [2], explosion, expansion,
rotation [3], while each test task includes 1K instances.

The optimal solutions of all datasets are obtained by Concorde
[8] designed specifically for TSP.

Baselines For the non-learning solver, we take the results from
Concorde as the optimal. For learning-based solver, we choose
to compare with representative construction methods, which is
convenient to set the same sampling strategy, including POMO
[25], Sym-NCO [22], ELG [11], AMDKD-POMO [2], Omini-POMO
[48] and INViT-3V [10].

Unless otherwise stated, all learning-based solvers perform in-
ference using multi-start greedy rollout with ×8 instance augmen-
tations sampling proposed by [25] on a single NVIDIA RTX 3090
during the evaluation. It is fairly that we can focus on contrasting
models’ performance. For the comparison methods, we use the pre-
trained models published by their authors. We report the average
gap to the optimal solutions and the total inference time on each
test task.

Hyper-parameters All our models are trained for 2010 epochs
and every epoch processes 100K instances with 𝐵 = 64 batch size
and 2 augment factor (about 1563 batches in each epoch). We em-
pirically set𝑀 = 100 and𝑇 = 3 regardless of the problem sizes. The
dimension of local embedding 𝑑𝑒 is set to 32 and the others keep
the same with [25]. Each training epoch takes about 2.0 minutes
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Table 1: Empirical results on all test tasks with various distributions and problem sizes. Each task includes 1K instances.

TSP-100 TSP-150 TSP-200 TSP-300 TSP-100 TSP-150 TSP-200 TSP-300
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Uniform Cluster

Concorde 0.00% 4.4m 0.00% 12m 0.00% 23m 0.00% 1.2h 0.00% 5.0m 0.00% 12m 0.00% 20m 0.00% 1h

POMO 0.15% 6.1s 0.58% 19s 1.60% 37s 6.15% 2.0m 1.72% 5.6s 3.41% 19s 6.12% 37s 12.97% 2.0m
Sym-NCO 0.15% 6.2s 0.55% 19s 1.60% 37s 6.52% 2.0m 1.70% 5.7s 3.10% 19s 5.56% 37s 12.44% 2.0m
INViT-V3 1.23% - 1.91% - 2.46% - 3.13% - 1.79% - 2.53% - 3.06% - 3.86% -
ELG 0.24% 17s 0.71% 50s 1.50% 1.7m 3.48% 4.9m 1.33% 17s 2.35% 49s 3.51% 1.7m 5.73% 4.8m
Our(U) 0.01% 7.0s 0.12% 21s 0.83% 40s 4.94% 2.0m 0.41% 6.6s 1.37% 21s 3.37% 41s 8.90% 2.1m

AMDKD-
POMO 0.36% 4.8s 1.16% 17s 2.82% 33s 7.83% 1.8m 0.38% 4.8s 1.24% 17s 2.98% 33s 8.17% 1.8m

ELG# 0.31% 18s 0.84% 51s 1.68% 1.7m 3.61% 5.0m 0.41% 18s 1.08% 51s 1.98% 1.7m 3.98% 5.0m
Our(UCM) 0.01% 7.0s 0.15% 21s 0.78% 40s 4.79% 2.1m 0.03% 6.6s 0.25% 21s 1.08% 40s 5.07% 2.1m

Omni-POMO 1.26% 5.5s 1.52% 19s 1.95% 37s 3.23% 2.0m 1.38% 5.5s 1.73% 19s 2.30% 37s 3.93% 2.0m
ELG## 0.41% 18s 0.93% 51s 1.62% 1.7m 3.08% 5.0m 0.53% 18s 1.22% 51s 1.96% 1.7m 3.52% 5.0m
Our(UCM-
CSize) 0.01% 7.0s 0.09% 20s 0.27% 40s 0.99% 2.1m 0.03% 6.5s 0.15% 21s 0.45% 40s 1.63% 2.1m

Mixed Explosion

Concorde 0.00% 5.0m 0.00% 11m 0.00% 21m 0.00% 52m 0.00% 4.2m 0.00% 9.8m 0.00% 21m 0.00% 58m

POMO 0.84% 5.6s 2.16% 19s 4.11% 37s 9.15% 2.0m 0.19% 5.6s 0.77% 19s 2.29% 37s 7.62% 2.0m
Sym-NCO 0.71% 5.7s 1.97% 19s 3.92% 37s 9.25% 2.0m 0.14% 5.7s 0.62% 19s 2.03% 37s 7.61% 2.0m
INViT-V3 1.66% - 2.34% - 2.79% - 3.36% - 1.19% - 2.06% - 2.69% - 3.68% -
ELG 0.96% 17s 1.82% 50s 2.75% 1.7m 4.71% 4.9m 0.22% 17s 0.73% 50s 1.65% 1.7m 3.71% 4.8m
Our(U) 0.21% 7.0s 0.83% 21s 2.04% 40s 6.10% 2.1m 0.01% 6.4s 0.17% 20s 1.07% 40s 5.87% 2.1m

AMDKD-
POMO 0.41% 4.8s 1.17% 17s 2.63% 33s 7.23% 1.8m 0.28% 4.8s 1.01% 17s 2.65% 33s 7.66% 1.8m

ELG# 0.41% 18s 0.97% 51s 1.72% 1.7m 3.49% 5.0m 0.20% 18s 0.68% 51s 1.52% 1.7m 3.48% 5.0m
Our(UCM) 0.03% 6.6s 0.21% 21s 0.81% 40s 4.20% 2.2m 0.01% 6.6s 0.14% 21s 0.84% 40s 5.53% 2.1m

Omni-POMO 2.19% 5.5s 2.69% 19s 3.15% 37s 4.63% 2.0m 0.96% 5.5s 1.29% 19s 1.76% 37s 3.17% 2.0m
ELG## 0.54% 18s 1.10% 51s 1.74% 1.7m 3.05% 5.0m 0.28% 18s 0.79% 51s 1.56% 1.7m 3.14% 5.0m
Our(UCM
-CSize) 0.04% 6.5s 0.17% 21s 0.39% 40s 1.16% 2.1m 0.01% 6.5s 0.09% 21s 0.31% 40s 1.42% 2.1m

Expansion Rotation

Concorde 0.00% 8.0m 0.00% 17m 0.00% 29m 0.00% 1.1h 0.00% 3.9m 0.00% 9.6m 0.00% 21m 0.00% 1h

POMO 0.58% 5.6s 1.87% 19s 4.17% 37s 10.31% 2.0m 0.55% 5.6s 1.33% 19s 3.02% 37s 8.61% 2.0m
Sym-NCO 0.50% 5.7s 1.67% 19s 3.91% 37s 10.40% 2.0m 0.54% 5.7s 1.20% 19s 2.77% 37s 8.68% 2.0m
INViT-V3 2.28% - 3.28% - 3.87% - 4.75% - 1.25% - 1.96% - 2.44% - 3.12% -
ELG 0.60% 17s 1.50% 49s 2.61% 1.7m 4.73% 4.8m 0.52% 17s 1.14% 49s 2.11% 1.7m 4.16% 4.9m
Our(U) 0.34% 6.6s 1.41% 21s 3.68% 40s 9.72% 2.1m 0.03% 6.6s 0.27% 21s 1.34% 40s 6.17% 2.1m

AMDKD-
POMO 0.64% 4.8s 1.81% 17s 3.72% 33s 8.79% 1.8m 0.30% 4.8s 0.99% 17s 2.60% 33s 7.50% 1.8m

ELG# 0.51% 18s 1.23% 51s 2.10% 1.7m 4.01% 5.0m 0.31% 18s 0.86% 51s 1.75% 1.7m 3.75% 5.0m
Our(UCM) 0.18% 6.6s 0.73% 21s 2.06% 40s 7.28% 2.2m 0.02% 6.6s 0.15% 21s 0.83% 40s 4.93% 2.1m

Omni-POMO 1.43% 5.5s 1.79% 19s 2.24% 37s 3.67% 2.0m 1.22% 5.5s 1.53% 19s 2.04% 37s 3.54% 2.0m
ELG## 0.28% 18s 0.79% 51s 1.56% 1.7m 3.14% 5.0m 0.42% 18s 1.01% 51s 1.75% 1.7m 3.34% 5.0m
Our(UCM
-CSize) 0.15% 6.5s 0.58% 21s 1.17% 40s 2.79% 2.1m 0.02% 6.5s 0.09% 21s 0.29% 40s 1.15% 2.1m
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on a single NVIDIA RTX 3090 (about 3 days for the entire train-
ing, compared with 2 weeks on NVIDIA A100 GPU of the original
method [22]). More detailed settings can be found in Appendix A.

Performance Metrics For each comparison method, we report
the average gap to the optimal solution from Concorde and the
total inference time on each test task. The gap corresponding to a
instance 𝑠 is calculated as follows [10]:

𝑔𝑎𝑝 =
D𝑠 (𝐹𝑚𝑜𝑑𝑒𝑙 ) − D𝑠 (𝐹𝑜𝑝𝑡 )

D𝑠 (𝐹𝑜𝑝𝑡 )
× 100% (16)

where D𝑠 (𝐹𝑚𝑜𝑑𝑒𝑙 ) represents the length of solutions from neural
models, and D𝑠 (𝐹𝑜𝑝𝑡 ) represents the length of the optimal solu-
tions.

6.1 Results on Synthetic Instances
Table 1 demonstrates the results on all test tasks and partial results
for some non-learning heuristics are attached in the Appendix
B.1 due to the limited space. We group the results of the neural
methods into three groups according to their training distributions
(stated on their papers). The POMO, Sym-NCO, INViT-V3 and ELG
are trained on uniform. The AMDKD-POMO is trained on three
distributions, including uniform, cluster, mixed, which is the same
as UCM. Both above keep the problem size fixed 𝑁 = 100. The
Omni-POMO is trained on more complex distributions including
uniform and gaussian mixture with diverse sizes 𝑁 ∈ [50, 200]. We
retrain the ELG using the instance generator of UCM and UCM-
CSize, denoted as ELG# and ELG##. All neural methods, except
INViT-V3, utilize multi-start rollout sampling with ×8 instance
augmentation. INViT-V3 employs ×128 instance augmentation in
place of multi-start rollout sampling, and its inference time cannot
be directly compared to other methods as it does not implement
parallelized evaluation.

In the following, we conduct a detailed analysis of the models’
performance on synthetic test tasks.

Generalization issue is still a significant challenge. As
shown in Table 1, the POMO and Sym-NCO suffer from huge
degeneration under cross-distribution and cross-size conditions,
particularly with cluster distributions. Creating more complex train-
ing environments has proven beneficial in helping models acquire
generalizable knowledge, as evidenced by the substantial improve-
ments of AMDKD-POMO and Omni-POMO over POMO. However,
an intriguing phenomenon should be noted: models trained in such
complex environments fail to demonstrate reasonable performance
on some small and simple test tasks, e.g. TSP-100(Uniform, Explo-
sion, Expansion). Notably, Omni-POMO exhibits significant perfor-
mance deterioration on TSP-100 and TSP-150 tasks compared to
POMO. This raises legitimate concerns about whether the current
model architectures or the information they encode are sufficient
to effectively support stronger generalization capabilities.

Local topological information improve the learning capa-
bilities of models. Unlike POMO and Sym-NCO, the INViT-V3,
ELG and our models all incorporate local topological information,
where INViT-V3 removes global features to accommodate large-
scale instances. We retrain the ELG using the instance generator
of UCM and UCM-CSize, separately. As shown in Table 1, when
the training distribution is consistent, both ELG and our models

Table 2: Optimality gap on TSPLIB (1 ≤ 𝑁 ≤ 500).

TSPLIB 1 ∼ 100 101 ∼ 300 300 ∼ 500

POMO 1.16% 4.44% 17.24%
Sym-NCO 1.04% 3.82% 19.84%
INViT-V3 1.14% 3.26% 5.85%
ELG 0.55% 1.89% 6.00%
Our(U) 0.30% 2.93% 15.84%

AMDKD-POMO 0.45% 2.89% 12.17%
ELG# 0.46% 1.42% 5.34%
Our(UCM) 0.27% 2.48% 14.63%

Sym-NCO* 0.34% 2.37% 11.88%
Omni-POMO 1.66% 1.99% 6.65%
ELG## 0.45% 1.49% 4.80%
Our(UCM-CSize) 0.27% 1.38% 7.76%

outperform AMDKD-POMO and Omni-POMO, even without in-
troducing additional training techniques, like meta-learning. This
demonstrates that incorporating local topological information can
effectively enhance the model’s learning capabilities.

Training distributions show substantial effects on gener-
alization. We constructed three progressively complex training
distributions, as U, UCM and UCM-CSize, to examine how training
distributions impact model performance. In both U and UCM, the
problem size is fixed at 𝑁 = 100, with UCM featuring more diverse
node distributions. As shown in Table 1, ELG# achieves notable
improvements over ELG in most tasks, except for the Uniform dis-
tribution. Our(U) and Our(UCM) also exhibit similar phenomena;
however, in the Uniform task, Our(UCM) achieves performance
comparable to that of Our(U), with a partial enhancement in cross-
size capabilities. The UCM-CSize introduces instances of varying
sizes, enabling the model to learn more cross-size knowledge. With
the exception of the Expansion distribution, ELG## demonstrates
an overall decline in performance compared to ELG# on the TSP100-
150 tasks, while exhibiting improvements on the TSP200-300 tasks.
Unlike ELG##, Our(UCM-CSize) exhibits enhanced cross-size ca-
pabilities compared to Our(UCM), while simultaneously retaining
the original performance for smaller-scale instances. By comparing
the performance of Our(U), Our(UCM) and Our(UCM-CSize) across
various test tasks, it can be concluded that a rich and complex
training environment is essential for model training, as it effec-
tively mitigates generalization issues. Meanwhile, Our(UCM-CSize)
significantly surpasses Omni-POMO, even though the latter was
trained in a more complex environment than UCM-CSize. This
indicates that model architectures focused solely on global features
are insufficient for effectively addressing distribution shifts, further
emphasizing the critical role of local topological information in
enhancing model generalization.

The performance valuation on large scale instances is provided
in the Appendix B.5.

6.2 Results on TSPLIB Benchmark
We evaluate the generalization of ourmethod on TSPLIB [35], which
contains various instances of unknown distributions and problem
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Table 3: Ablation studies. All models are trained on the UCM-
CSize using SSSL framework. The results of all test tasks are
grouped into In-Distributions (ID), cross-distributions (CD),
cross-sizes (CS) and cross-distributions&cross-sizes (CD&CS).

Method GID
GOoD

GCD GCS GCD&CS

Sym-NCO* 0.23% 0.33% 1.56% 2.28%
Our (w/o L-Encoder) 0.21% 0.33% 1.50% 2.28%
Our (w/o new
graph embedding) 0.10% 0.20% 0.92% 1.37%

Our 0.08% 0.16% 0.82% 1.19%

sizes. As shown in Table 2, our models also show better generaliza-
tion on medium-sized instances.

However, it should be clarified that our method exhibits anoma-
lous performance degradation on certain instances compared to
similar approaches, specifically with gaps reaching 2.19%, 8.39%,
8.38% and 25.73% on pr144.tsp, ts225.tsp, pr226.tsp and fl417.tsp in-
stances, respectively, significantly exceeding the average gap for
their corresponding scales. For the other instances, our method
achieves optimal or near-optimal results among comparable meth-
ods. Detailed experimental results andmore discussion can be found
in Appendix B.2.

6.3 Ablation Studies
In this section, we perform ablation studies to evaluate the impact
of various components within our method. Since our model builds
upon the Sym-NCO [22], we utilize it as a fair baseline for com-
parison. Meanwhile, we retrain Sym-NCO on UCM-CSize using
the SSSL framework, denoted as Sym-NCO*, to eliminate the po-
tential influence of training scheme and training distributions. As
illustrated in Table 3, we divide all test tasks into four groups: In-
Distributions (ID) includes TSP-100,150(Uniform, Cluster, Mixed),
Cross-Distributions (CD) includes TSP-100,150(Explosion, Expan-
sion, Rotation), Cross-Size (CS) includes TSP-200,300(Uniform, Clus-
ter, Mixed) and CD&CS includes TSP-200,300(Explosion, Expan-
sion, Rotation). The results indicate that the L-Encoder significantly
enhances model performance across all task categories, with im-
provements of 56.52%, 39.39%, 41.03% and 39.91% in ID, CD, CS
and CD&CS, respectively. The L-Encoder serves as the primary
contributor to the performance enhancement, while the new graph
embedding offers comparatively modest improvements.

We examine the influence of the local neighboring node size 𝐾 .
The results show that when the 𝐾 is in a reasonable range, it does
not affect the performance significantly, aligning with the results
of [11]. Detailed results are provided in Appendix B.4.1.

6.4 Training Curve of 𝛼𝑤
The coefficient 𝛼𝑤 are the 𝑑ℎ-dimensional parameters within each
multi-attention layer (MAL) that adjusts the relative contributions
of global and local information. A larger 𝛼𝑤 value for a given di-
mension indicates that the node embeddings output by the MAL in
that dimension contain a greater amount of local information. We

initialize 𝛼𝑤 using 𝑡𝑜𝑟𝑐ℎ.𝑛𝑛.𝑖𝑛𝑖𝑡 .𝑜𝑛𝑒𝑠_ function. Figure 2 depicts
the evolution of the mean and variance of 𝛼𝑤 across their dimen-
sions during training. The overall downward trend suggests an
improvement in the model’s capacity to capture global information.
In the later stages of training, most of the 𝛼𝑤 values gradually con-
verge to values greater than 0.4, indicating that local information
continues to be indispensable in the problem-solving process. A
more detailed analysis is provided in the Appendix B.3.

We visualize the impact of the L-Encoder on the node embed-
dings and further discuss its role in alleviating the issue of over-
smoothing in node embeddings. Detailed analysis is provided in
Appendix B.6.
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Figure 2: Training curve of𝛼𝑤 , which illustrates the evolution
of the mean and variance of each 𝛼𝑤 across their dimensions
during the training of Our(UCM-CSize).

7 CONCLUSION
This paper studies the impact of local topological information on
the generalization of neural methods for solving TSP. We intro-
duce the G&L-Encoder, a novel architecture that integrates global
and local information by embedding our local policies within a
global Transformer-based encoder, enabling the model to capture
local topological information as an essential complement to global
features. In order to efficiently exploit the implicit knowledge inher-
ent in high-quality solutions, we design Sampled Steps Supervised
Learning, which estimates the gradients by sampling a subset of
decision steps, eliminating the need to construct complete tours
during training. To evaluate the effectiveness of our method, we
conduct comprehensive experiments on synthetic and real-world
instances of the TSP with various distributions and sizes. The exper-
imental results demonstrate that our method significantly improves
the generalization against baselines and achieves state-of-the-art
results on medium-scale TSP tasks. We hope our work can inspire
further research towards building the truly generic policies for
routing problems.
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