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ABSTRACT

Successful collaboration requires team members to stay aligned,
especially in complex sequential tasks. Team members must dy-
namically coordinate which subtasks to perform and in what order.
However, real-world constraints like partial observability and lim-
ited communication bandwidth often lead to suboptimal collabo-
ration. Even among expert teams, the same task can be executed
in multiple ways. To develop multi-agent systems and human-AI
teams for such tasks, we are interested in data-driven learning
of multimodal team behaviors. Multi-Agent Imitation Learning
(MAIL) provides a promising framework for data-driven learning
of team behavior from demonstrations, but existing methods strug-
gle with heterogeneous demonstrations, as they assume that all
demonstrations originate from a single team policy. Hence, in this
work, we introduce DTIL: a hierarchical MAIL algorithm designed
to learn multimodal team behaviors in complex sequential tasks.
DTIL represents each team member with a hierarchical policy and
learns these policies from heterogeneous team demonstrations in a
factored manner. By employing a distribution-matching approach,
DTIL mitigates compounding errors and scales effectively to long
horizons and continuous state representations. Experimental re-
sults show that DTIL outperforms MAIL baselines and accurately
models team behavior across a variety of collaborative scenarios.
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1 INTRODUCTION

Imitation learning (IL) is a paradigm for training agent behaviors
using demonstrations [1]. IL typically assumes that the demonstra-
tions are generated by an expert following a single, optimal policy.

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Under this assumption, IL algorithms learn an estimate of the ex-
pert’s policy. Compared to reinforcement learning (RL), another
popular framework for training agents, IL offers a key advantage
in many practical applications: it does not require hand-engineered
rewards. Designing rewards often requires extensive domain ex-
pertise, and in many cases, informative rewards can be challenging
for end-users to engineer. Moreover, even with hand-engineered
rewards, the agent can learn suboptimal or reward hacking behav-
iors [3, 40]. In contrast, often end-users can more easily provide
demonstrations of desirable agent behavior [4, 8, 27].

Despite this advantage, traditional IL algorithms face challenges
while learning complex behaviors from demonstration collected by
human end-users. A key challenge is that conventional IL methods
consider a single agent that has full observability of the environment.
In reality, human end-users often perform complex tasks as teams
rather than individually. As a result, demonstrations available for
learning often involve multiple agents interacting with one another
and their environment. Since the dynamics of the environment
depend on these interactions, specialized IL algorithms are needed
to learn multi-agent behaviors.

To address this challenge, recent approaches have extended imi-
tation learning to multi-agent settings [6, 38, 44, 46]. These Multi-
agent IL (MAIL) methods typically assume that demonstrations
are generated by a single, well-defined multi-agent policy [23].
However, due to practical challenges, this assumption is difficult to
satisfy in complex multi-agent tasks encountered in the real world.
As illustrated in Fig. 1a, complex multi-agent tasks often consist of
multiple subtasks. Demonstrations of such tasks frequently involve
a variety of subtask allocations, including suboptimal ones. Subop-
timality can arise from various factors, including the decentralized
nature of multi-agent task execution and the partial observabil-
ity that individual agents have of the task environment and other
agents [29, 32, 34]. Consequently, real-world demonstrations inher-
ently exhibit multiple modes of multi-agent behavior, diverging
from the assumptions of most existing MAIL methods.

In single-agent settings, hierarchical imitation learning meth-
ods that explicitly impose a hierarchical structure on an expert’s
decision-making have been employed to address the challenge of
modeling multimodal behaviors [15, 16, 26, 36, 37, 42]. However,
little work has been done to extend these methods to multi-agent
settings. To our knowledge, Bayesian Team Imitation Learner (BTIL)
is the only approach that applies hierarchical imitation learning in
a multi-agent context [35]. However, BTIL is built on variational
inference and tabular representations, making it difficult to scale to
tasks with high-dimensional states and long horizons.

An extended version of this paper, which includes supplementary material mentioned
in the text, is available at http://tiny.cc/dtil-appendix
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(a) Multiple Near-Optimal Strategies (b) Suboptimal Teamwork (c) Partial Observability

Figure 1: Motivating Example: Consider a teamwhosemembers must coordinate on the fly to complete subtasks at two conveyor

belts. Each member has limited observability, perceiving only their immediate surroundings. For example, the unshaded area

for the blue person in (c). As shown in (a), this task allows multiple near-optimal strategies, enabling teams to execute it in

different ways based on their shared preferences. However, practical constraints – such as partial observability – can lead to

suboptimal coordination and team performance. For instance, if multiple members gather at the same subtask location, it

results in inefficient task allocation, where one subtask remains unattended while two members redundantly perform the

same task (b). Like many real-world scenarios, this task engenders heterogeneous and potentially suboptimal demonstrations

of teamwork. This paper focuses on learning models of team behavior in this challenging setting from demonstrations.

To enable MAIL for more complex tasks, this paper introduces
Deep Team Imitation Learner (DTIL), a multi-agent hierarchical im-
itation learning algorithm. DTIL rigorously extends single-agent
hierarchical imitation learning to collaborative tasks conducted in
partially observable environments, enabling the learning of multi-
modal team behaviors from heterogeneous demonstrations, even
in tasks with long horizons and continuous state representations.
At its core, DTIL leverages the state-action distribution matching
framework, a mainstay of state-of-the-art IL methods due to its
performance and scalability [10, 14].

While recent hierarchical IL methods have applied distribution
matching in single-agent settings [16, 36], its extension to learning
multimodal team behavior under partial observability remains un-
explored. Notably, key theoretical results in distribution-matching-
based hierarchical imitation learning, such as Theorem 1 (Bijection)
in [16] and Theorem 2.4 (Convergence) in [36], have only been
proven under full observability. Thus, additional theoretical justifi-
cation is required for learningmultimodal team behavior in partially
observable settings. Hence, we first extend these theoretical results
to the partially observable multi-agent hierarchical imitation learn-
ing setting. Next, leveraging these theoretical results, we derive
DTIL to effectively learn the hierarchical team policies. Finally, we
evaluate DTIL on a suite of collaborative tasks, demonstrating that
it outperforms MAIL baselines in modeling team behavior across
multiple scenarios.

2 RELATEDWORKS

We begin with a brief overview of related research.

2.1 Imitation Learning of Multimodal Behavior

Extensive research has been conducted on learning multimodal be-
haviors from demonstrations. In works such as [13, 21], the authors
extend Generative Adversarial Imitation Learning (GAIL) to learn
a policy that depends on a learned latent state. This learned latent
state effectively encodes different modes of the behavior. However,
these methods assume the latent states remain static during a task

execution; thus, their methods are unsuitable for modeling agent
behavior whose latent states can change during the tasks. Other
approaches, such as [30], use Conditional Variational Autoencoders
(CVAE) to capture multimodal human behavior, but the learned
latent space responsible for generating multimodality lacks ground-
ing and difficult to associate with specific subtasks.

Informed by the Option framework [41], another line of research
leverages hierarchical policies to model multimodal behavior. Hier-
archical policies typically consider two levels: high-level policies
that govern decision-making over extended temporal intervals, and
low-level policies responsible for executing specific actions within
shorter time frames [16, 18]. To learn such policies from demon-
strations, various approaches have been explored; e.g., variational
inference [26, 42], hierarchical behavior cloning [17, 18, 47], and
hierarchical variants of GAIL [7, 16, 20, 37]. Most recently, [36] pro-
pose a factored distribution-matching approach to train hierarchical
policies. While all these methods show remarkable performance
in single-agent tasks, their extension to multi-agent scenarios has
been rarely explored and often lacks theoretical grounds.

2.2 Multi-agent Imitation Learning

Learning team behavior from demonstration can be framed as a
multi-agent imitation learning problem. Since [38] introduced the
multi-agent variant of generative adversarial imitation learning
(called MA-GAIL), several extensions have been proposed to en-
hance its training efficiency and scalability [5, 6, 24, 31, 44, 46].
However, these methods generally assume that the demonstrations
originate from a single multi-agent policy, limiting their ability
to capture diverse team behaviors. Despite the importance of ac-
counting for multimodality when modeling team behavior, only a
few approaches have incorporated latent states into MAIL. Among
these, [19] model agent roles as latent variables, while [43] repre-
sent strategies as latent features. However, both methods assume
static latent states and do not consider their dynamics. To address
this gap, [35] propose Bayesian Team Imitation Learner (BTIL), a
multi-agent extension of [42], which can learn hierarchical policies
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of all team members from team demonstrations. Nonetheless, BTIL
struggles with large, complex tasks and suffers from compounding
errors. In contrast, DTIL overcomes these limitations by utilizing
function approximators (e.g., neural networks) and augmenting
demonstrations with online samples collected during training.

3 BACKGROUND

In this section, we present preliminaries on distribution-matching-
based imitation learning and introduce the mathematical model of
team behavior.

3.1 Imitation Learning via

Distribution Matching

Using the Markov Decision Process (MDP) framework, an agent’s
behavior is defined by a policy 𝜋 (𝑎 |𝑠), which represents the prob-
ability distribution of an action 𝑎 given a state 𝑠 . The goal of im-
itation learning is to minimize the discrepancy (represented as
a loss 𝐿) between the learner’s policy 𝜋 and the expert’s policy
𝜋𝐸 : min𝜋 𝐿(𝜋, 𝜋𝐸 ). However, due to the inaccessibility of 𝜋𝐸 , this
objective is often ill-defined and highly challenging to solve.

To address this, Ho and Ermon [14] reformulate imitation learn-
ing as a problem of matching the occupancy measures of the learner
and the expert. The (normalized) occupancy measure of a policy
𝜋 is defined as 𝜌𝜋 (𝑠, 𝑎) � (1 − 𝛾)∑∞

𝑡=0 𝛾
𝑡𝑝 (𝑠𝑡 =𝑠, 𝑎𝑡 =𝑎 |𝜋), imply-

ing the stationary distribution over states 𝑠 and actions 𝑎 induced
by 𝜋 . Thanks to the one-to-one correspondence between a policy
𝜋 (𝑠 |𝑎) and its occupancy measure 𝜌𝜋 (𝑠, 𝑎) [28], matching the oc-
cupancy measures is equivalent to matching the policies. This can
be formalized as:

arg min
𝜋

𝐷 𝑓

(
𝜌𝜋 (𝑠, 𝑎)

����𝜌𝜋𝐸 (𝑠, 𝑎))
where 𝜌𝜋 is the learner’s occupancy measure, 𝜌𝐸 is the expert’s
occupancy measure, and 𝐷 𝑓 denotes the 𝑓 -divergence [11]. While
direct access to 𝜌𝐸 is still infeasible, it can be approximated using
the empirical distribution calculated from expert demonstrations 𝐷 .
Due to its performance and scalability, since its introduction, the dis-
tribution matching approach has become a mainstream technique
in imitation learning, giving rise to numerous variants, including
the following multi-agent and hierarchical ones.

Multi-Agent Variants. Assuming a unique equilibrium in multi-
agent behaviors, Song et al. [38] formulate an occupancy measure
matching problem in multi-agent settings:

arg min
𝜋

𝑛∑︁
𝑖=1

𝐷 𝑓

(
𝜌𝜋𝑖 ,𝜋−𝑖 (𝑠, 𝑎𝑖 )

����𝜌𝜋𝐸 (𝑠, 𝑎𝑖 )) (1)

where 𝜋−𝑖 is joint policies except the 𝑖-th agent’s policy, 𝜋𝐸 de-
notes multi-agent expert policy at equilibrium, and 𝜌𝜋𝑖 ,𝜋−𝑖 (𝑠, 𝑎𝑖 ) �
(1 − 𝛾)∑∞

𝑡=0 𝛾
𝑡𝑝 (𝑠𝑡 =𝑠, 𝑎𝑖 𝑡 =𝑎𝑖 |𝜋𝑖 , 𝜋−𝑖 ). This objective function im-

plies that we can iteratively minimize the objective with respect
to individual policies 𝜋1, · · · , 𝜋𝑛 , and the updates can be calculated
similarly to the single-agent problem by considering other agents’
policies as part of the environment dynamics.

Hierarchical Variants. Jing et al. [16] extend occupancy mea-
sure matching approach to hierarchical imitation learning. They
model an agent behavior as an option policy �̃� = (𝜋𝐿, 𝜋𝐻 ), where

𝜋𝐿 (𝑎 |𝑠, 𝑥) and 𝜋𝐻 (𝑥 |𝑠, 𝑥−) are referred to as a low- and high-level
policies, respectively, with 𝑥 being an option. Additionally, they
define an option-occupancy measure corresponding to �̃� as

𝜌�̃� (𝑠, 𝑎, 𝑥, 𝑥−) � (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡𝑝 (𝑠𝑡 =𝑠, 𝑎𝑡 =𝑎, 𝑥𝑡 =𝑥, 𝑥𝑡−1=𝑥− |�̃�)

and prove the one-to-one correspondence between �̃� and 𝜌�̃� . Thus,
hierarchical imitation learning can also be cast as distribution
matching between two option-occupancy measures 𝜌�̃� and 𝜌𝐸 :

arg min
�̃�

𝐷 𝑓

(
𝜌�̃� (𝑠, 𝑎, 𝑥, 𝑥−)

����𝜌𝜋𝐸 (𝑠, 𝑎, 𝑥, 𝑥−)) (2)

3.2 Model of Team Behavior

We borrow a model of team behavior introduced in [33] to repre-
sent our multi-agent behavior in sequential team tasks. The model
consists of a decentralized partially observable MDP (Dec-POMDP)
to capture the task dynamics and an Agent Markov models (AMM)
to represent agents’ multimodal behavior [25, 42].

Dec-POMDP. Dec-POMDP is a probabilistic model representing
the dynamics of the partially observable sequential multi-agent
tasks. It is expressed as a tuple M = (𝑛, 𝑆,×𝐴𝑖 ,𝑇 , 𝜇0,×Ω𝑖 , {𝑂𝑖 }, 𝛾),
where 𝑛 is the number of agents, 𝑆 is the set of states 𝑠 , 𝐴𝑖 is the
set of the 𝑖-th agent’s actions 𝑎𝑖 , Ω𝑖 is the set of the 𝑖-th agent’s
observations 𝑜𝑖 , 𝑇 (𝑠′ |𝑠, 𝑎) denotes the probability of a state 𝑠′ tran-
sitioning from a state 𝑠 and a joint action 𝑎= (𝑎1, · · · , 𝑎𝑛), 𝜇0 (𝑠) is
an initial state distribution, and 𝛾 is a discount factor. We define an
extended action set as 𝐴+

𝑖
= 𝐴𝑖 ∪ {#}, where the symbol # denotes

“Not Available”.𝑂𝑖 : 𝑆 ×𝐴+ → Ω𝑖 is an observation function for the
𝑖-th agent, which maps a pair of state 𝑠 and previous joint action
𝑎− to an individual observation 𝑜𝑖 ∈ Ω𝑖 . The values of previous
actions 𝑎−

𝑖
at time 𝑡 =0 are set as #. We denote capital letters without

subscripts as joint spaces or joint functions, e.g.,𝐴 = ×𝐴𝑖 for a joint
action space and 𝑂 =

∏
𝑖 𝑂𝑖 for a joint observation function.

Agent Markov Model (AMM). When faced with complex team
tasks, humans typically break them down into subtasks and dynam-
ically adjust their plan regarding which subtasks to perform and
in what order. Once they decide on the next subtask, they execute
the necessary actions to complete it. AMM is designed to account
for this hierarchical human behavior, and thus, is equivalent to
hierarchical policies of Option framework with a one-step option
[16, 41]. Given a task model M, AMM defines the behavior model
of the 𝑖-th agent as a tuple (𝑋𝑖 , 𝜋𝑖 , 𝜁𝑖 ;M), where 𝑋𝑖 is the set of
the possible subtasks, 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 , 𝑥𝑖 ) denotes a subtask-driven pol-
icy, and 𝜁𝑖 (𝑥𝑖 |𝑜𝑖 , 𝑥−𝑖 ) is the probability of an agent choosing their
next subtask 𝑥𝑖 based on an observation 𝑜𝑖 and the current subtask
𝑥−
𝑖
1. Following [16], we define the value of the previous subtask

at time 𝑡 =0 as # and express the initial distribution of subtasks as
𝜁𝑖 (𝑥𝑖 |𝑜𝑖 , 𝑥−𝑖 =#). Similar to previous works [16, 35], we assume the
set of possible subtasks, 𝑋 , is finite and given as prior knowledge.
We then represent the AMM for the 𝑖-th agent simply as (𝜋𝑖 , 𝜁𝑖 ),
omitting the non-learnable components 𝑋𝑖 and M.

1In the following sections, we will omit the subscript 𝑖 from the function inputs,
e.g., 𝜋𝑖 (𝑎 |𝑜, 𝑥 ) � 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 , 𝑥𝑖 ) , when it is clear the functions pertain to individual
observations, actions, and subtasks.
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4 PROBLEM FORMULATION

While Seo et al. [33] emphasize the need for modeling team be-
havior under partial observability and propose a corresponding
mathematical model, few multi-agent imitation learning methods
have been developed to address such complex teamwork models. To
our knowledge, BTIL is the only approach to learning multi-model
team behavior from demonstrations [35]. However, BTIL does not
account for partial observability, and its applicability is limited to
small, discrete domains, as both high- and low-level policies are
constrained to categorical distributions. Thus, a practical method
for learning team behavior models that addresses multimodality,
partial observability, and scalability is still lacking. To derive such
a method, we first formulate the problem of multi-agent imitation
learning from heterogeneous demonstrations.

4.1 Formalizing Hierarchical Multi-Agent

Distribution Matching

Inspired by the recent success of distribution matching-based im-
itation learning, we aim to apply this method to learn the team
behavior model. Similar to the hierarchical variants for fully observ-
able single-agent scenarios in Sec. 3.1, we define oaxx-occupancy
measure for the 𝑖-th agent given a task modelM and joint agent
models N1:𝑛 as:

𝜌N𝑖 ,N−𝑖
(𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥−𝑖 )

� (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡𝑝 (𝑜𝑖 𝑡 =𝑜𝑖 , 𝑎𝑖 𝑡 =𝑎𝑖 , 𝑥𝑖 𝑡 =𝑥𝑖 , 𝑥𝑖 𝑡−1=𝑥−𝑖 |N1:𝑛,M)

The notation 𝜌N𝑖 ,N−𝑖 , borrowed from MA-GAIL [38], represents
the occupancy measure induced by the agent 𝑖’s policy N𝑖 and
other agents’ policy N−𝑖 . Unless ambiguous, we simply denote
𝜌𝑖 � 𝜌N𝑖 ,N−𝑖 .

By combining this occupancy measure with the multi-agent
variant of distribution matching introduced in Sec. 3.1, we can
formulate the distribution-matching problem for team behavior
with 𝑛 agents as follows:

arg min
N1:𝑛

𝑛∑︁
𝑖=1

𝐷 𝑓

(
𝜌𝑖 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥

−
𝑖 )

����𝜌𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥−𝑖 )) (3)

where 𝜌𝐸 denotes the oaxx-occupancy measure of the expert team
model (𝜋𝐸 , 𝜁𝐸 ). In Sec. 5, we provide theoretical justification for
using Eq. 3 as the imitation learning objective. While this exten-
sion seems natural, the theoretical results in the existing literature
are insufficient to guarantee that occupancy measure matching is
equivalent to policy matching in partially observable multi-agent
scenarios.

Additionally, informed by IDIL [36], we aim to adopt a factored
approach to minimize the objective above. This factored approach
enables us to leverage existing non-adversarial imitation learning
methods, such as IQLearn [10], which demonstrate more stable
training compared to generative adversarial approaches. However,
since the theoretical foundations for factored distribution matching
are also developed under the assumption of full observability, fur-
ther theoretical analysis is necessary to ensure its applicability in
partially observable multi-agent settings. We provide this analysis
in Sec. 5.

4.2 Problem Statement

Since we cannot know which subtasks each member has in mind
at the time of task execution, demonstrations contain only ob-
servations and actions. We define the set of 𝑑 demonstrations as
𝐷 = {𝜏𝑚}𝑑

𝑚=1, where 𝜏= (𝑜 , 𝑎 )
0:ℎ is a trajectory of a team’s task

execution. We denote an individual trajectory of the 𝑖-th agent and
the set of them as 𝜏𝑖 = (𝑜𝑖 , 𝑎𝑖 )0:ℎ and 𝐷𝑖 = {𝜏𝑚,𝑖 }𝑑𝑚=1, respectively,
adding a subscript 𝑖 . The sequence of expert’s subtasks correspond-
ing to the𝑚-th demonstration is defined as 𝜒𝑚 = (𝑥𝑚0:ℎ). Since
the labels of the subtasks are challenging to collect in practice, only
a small portion of them (e.g., for 𝑙 (≤ 𝑑) demonstrations) are option-
ally available. Thus, our goal is to learn agent models {(𝜋, 𝜁 )}1:𝑛
that exhibit the behaviors of 𝑛 team members from the following
inputs: a multi-agent task model M, the set of possible subtasks 𝑋 ,
heterogeneous demonstrations 𝐷 , and optionally partial labels of
subtasks {𝜒𝑚}𝑙

𝑚=1.

5 LEARNING MODEL OF TEAMWORK VIA

FACTORED DISTRIBUTION MATCHING

As mentioned in Sec. 4.1, matching occupancy measures does not
always guarantee matching the team behavior models unless a
one-to-one correspondence is established between the agent model
(i.e., partial observation-based hierarchical policy) N𝑖 = (𝜋𝑖 , 𝜁𝑖 )
and its oaxx-occupancy measure 𝜌𝑖 . Therefore, we first present this
one-to-one correspondence, which extends the Theorem 1 from [16]
to multi-agent partially-observable settings.

Theorem 5.1. For each agent 𝑖 , given a multi-agent task model
M and other agents’ models N−𝑖 , suppose 𝜌𝑖 is the oaxx-occupancy
measure for a stationary agent model N𝑖 = (𝜋𝑖 , 𝜁𝑖 ;M) where

𝜁𝑖 (𝑥 |𝑜, 𝑥−) =
∑
𝑎 𝜌𝑖 (𝑜, 𝑎, 𝑥, 𝑥

−)∑
𝑎,𝑥 𝜌𝑖 (𝑜, 𝑎, 𝑥, 𝑥−)

, 𝜋𝑖 (𝑎 |𝑜, 𝑥) =
∑
𝑥− 𝜌

𝑖
(𝑜, 𝑎, 𝑥, 𝑥−)∑

𝑥−,𝑎 𝜌𝑖 (𝑜, 𝑎, 𝑥, 𝑥−)
.

Then,N𝑖 = (𝜋𝑖 , 𝜁𝑖 ;M) is the only agent model whose oaxx-occupancy
measure is 𝜌𝑖 .

This can be proved similarly to Theorem 1 of [16] after deriving
the stationary distributions of policy �̃� (𝑤 |𝑣) and state transition
𝑇 (𝑣 ′ |𝑣,𝑤), where 𝑣 � (𝑜, 𝑥−) and𝑤 � (𝑥, 𝑎). The complete proof
is provided in the Appendix. This theorem implies that we can
consider the imitation learning of agent models N1:𝑛 as match-
ing the oaxx-occupancy measures between 𝜌N𝑖 ,𝐸−𝑖 and 𝜌𝐸 for all
𝑖 . Here, 𝜌N𝑖 ,𝐸−𝑖 denotes the oaxx-occupancy measure induced by
the 𝑖-th agent model N𝑖 with other agents’ models given as ex-
pert models 𝐸−𝑖 � (𝜋𝐸−𝑖 , 𝜁𝐸−𝑖 ). Thus, we can factorize the oc-
cupancy measure matching of the joint team model as follows:
arg minN1:𝑛

∑𝑛
𝑖=1 𝐷 𝑓

(
𝜌N𝑖 ,𝐸−𝑖 (·)

����𝜌𝐸 (·)) . Due to the one-to-one cor-
respondence, the following two problems lead to the same optimal
solution, N𝐸 :

arg min
N1:𝑛

𝑛∑︁
𝑖=1

𝐷 𝑓

(
𝜌N𝑖 ,𝐸−𝑖 (·)

����𝜌𝐸 (·))
= arg min

N1:𝑛

𝑛∑︁
𝑖=1

𝐷 𝑓

(
𝜌N𝑖 ,N−𝑖 (·)

����𝜌𝐸 (·)) = N𝐸 .

This justifies our objective function, Eq 3, for learning the expert
team behavior model via distribution matching.
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Algorithm 1 DTIL: Deep Team Imitation Learner

1: Input: Data 𝐷 = {𝜏𝑚}𝑑
𝑚=1 and {𝜒𝑚}𝑙

𝑚=1.
2: Initialize: (𝜃𝑖 , 𝜙𝑖 ) for all 𝑖 = 1 : 𝑛 where N

𝜃𝑖 ,𝜙𝑖
= (𝜋

𝜃𝑖
, 𝜁
𝜙𝑖
)

3: repeat

4: E-step: Infer expert intents {𝜒𝑚}𝑑
𝑚=𝑙

with 𝐷 and (𝜋𝑘
𝜃
, 𝜁𝑘
𝜙
) for

all 𝑖 = 1 : 𝑛; and define �̃� � 𝐷 ∪ {𝜒𝑚}𝑑
𝑚=1

5: Collect rollouts 𝑅 = {(𝑜, 𝑥, 𝑎)0:ℎ} using (𝜋𝑘
𝜃
, 𝜁𝑘
𝜙
)

6: M-step: Update 𝜋𝑘+1
𝜃𝑖

via Eq. 5 and 𝜁𝑘+1
𝜙𝑖

via Eq. 6 using �̃�𝑖 , 𝑅𝑖

for all 𝑖 = 1 : 𝑛
7: until Convergence

Seo and Unhelkar [36] suggest that matching oaxx-occupancy
measure amounts to matching two factored occupancy measures,
𝜌 (𝑜, 𝑎, 𝑥 ) and 𝜌 (𝑜, 𝑥, 𝑥−), simultaneously with their expert coun-
terparts in the single-agent problem. We refer to these factored
occupancy measures as oax-occupancy measure and oxx-occupancy
measure, respectively, and define them for each agent 𝑖 as:

𝜌𝑖 (𝑜, 𝑎, 𝑥 ) = (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡𝑝 (𝑜𝑖 𝑡 =𝑜𝑖 , 𝑎𝑖 𝑡 =𝑎𝑖 , 𝑥𝑖 𝑡 =𝑥𝑖 |N1:𝑛,M)

𝜌𝑖 (𝑜, 𝑥, 𝑥
−) = (1 − 𝛾)

∞∑︁
𝑡=0

𝛾𝑡𝑝 (𝑜𝑖 𝑡 =𝑜𝑖 , 𝑥𝑖 𝑡 =𝑥𝑖 , 𝑥𝑖 𝑡−1=𝑥−𝑖 |N1:𝑛,M)

With the factored occupancy measures, we can further factorize Eq.
3 as follows:

arg min
N1:𝑛

𝑛∑︁
𝑖=1

(
𝐷 𝑓

(
𝜌𝑖 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 )

����𝜌𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 ))
+𝐷 𝑓

(
𝜌𝑖 (𝑜𝑖 , 𝑥𝑖 , 𝑥

−
𝑖 )

����𝜌𝐸 (𝑜𝑖 , 𝑥𝑖 , 𝑥−𝑖 )) ) (4)

The proof for Eq. 4, along with the adjusted theorems that formulate
this factored objective for the multi-agent scenario, is provided in
the Appendix.

6 DEEP TEAM IMITATION LEARNER

With the theoretical foundations established in the previous section,
we now present DTIL, a practical algorithm designed to minimize
Eq. 4. The distribution matching framework enables policies to be
represented using deep neural networks and efficiently learns them
by leveraging additional interactions with the environment. As a
result, DTIL is capable of learning team behavior models even in
highly complex tasks.

As mentioned in Sec. 3.1, the expert occupancy measure is typ-
ically estimated from expert demonstrations, i.e., 𝜌 (𝑜, 𝑎, 𝑥, 𝑥−) ≈
E𝐷 [1(𝑜, 𝑎, 𝑥, 𝑥−)]. However, as our demonstration 𝐷 does not con-
tain the labels of subtasks, we cannot compute this empirical distri-
bution. Thus, similar to [16], we take an expectation-maximization
(EM) approach to iteratively optimize Eq. 4. Alg. 1 outlines DTIL.
In line 4 (E-step), it predicts unknown expert intents from 𝐷 using
the current estimate of agent models (𝜋𝑘

𝜃𝑖
, 𝜁𝑘
𝜙𝑖
). In line 5, it collects

online samples by interacting with the environment. Then, in line
6 (M-step), it updates agent model parameters (𝜃, 𝜙) via occupancy
measure matching.

E-step. For each iteration 𝑘 , DTIL infers the unknown subtasks
of demonstration 𝜏 = (𝑜0:ℎ, 𝑎0:ℎ) based on the maximum a posteri-
ori (MAP) estimation. Given the current estimate of agent models
N𝑘
𝜃,𝜙

= (𝜋𝑘
𝜃
, 𝜁𝑘
𝜙
), we can express the MAP estimation as follows:

𝜒 = arg max𝑥 0:ℎ 𝑝 (𝑥0:ℎ |𝑜0:ℎ, 𝑎0:ℎ,N𝑘
𝜃,𝜙

). Similar to the Viterbi algo-
rithm, this can be effectively computed via dynamic programming
[16, 35]. Since its computation can be decentralized for each agent,
its time complexity is 𝑂 (𝑛ℎ |𝑋 |2) where |𝑋 | � max𝑖=1:𝑛 |𝑋𝑖 |. The
derivations are provided in the Appendix. With this estimate, we
can obtain subtask-augmented trajectories 𝜏 = (𝑜, 𝑎, 𝑥)0:ℎ . From
�̃� � 𝐷 ∪ {𝜒𝑚}𝑑

𝑚=1 = {(𝑜, 𝑎, 𝑥)0:ℎ} , we can compute the estimates
of the expert occupancy measures for the 𝑘-th iteration, denoted
by 𝜌𝑘

𝐸
(𝑜, 𝑎, 𝑥, 𝑥−), 𝜌𝑘

𝐸
(𝑜, 𝑎, 𝑥 ), and 𝜌𝑘

𝐸
(𝑜, 𝑥, 𝑥−), respectively.

M-step. We incrementally update the agent model parameters
(𝜃, 𝜙) to minimize the difference between the learner’s occupancy
measure 𝜌N and the 𝑘-th estimate of expert occupancy measure 𝜌𝑘

𝐸
.

Similar to IDIL [36], DTIL takes a factored approach to minimize
Eq. 4. Specifically, when updating the low-level policy parameters
𝜃𝑖 , it assumes 𝜁𝑖 is fixed and minimizes only the first term of Eq. 4
with respect to 𝜋𝑖 :

arg min
𝜋𝑖

𝐷 𝑓

(
𝜌𝜋𝑖 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 )

������𝜌𝑘𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 )) (5)

If we introduce 𝑢 � (𝑜, 𝑥), this is the same as the occupancy-
measure matching of a conventional policy 𝜋 (𝑎 |𝑢) � 𝜋 (𝑎 |𝑜, 𝑥).

Similarly, DTIL updates the high-level policy parameters 𝜙𝑖 by
only minimizing the second term of Eq. 4 with respect to 𝜁𝑖 , fixing
𝜋𝑖 :

arg min
𝜁𝑖

𝐷 𝑓

(
𝜌
𝜁𝑖
(𝑜𝑖 , 𝑥𝑖 , 𝑥−𝑖 )

������𝜌𝑘𝐸 (𝑜𝑖 , 𝑥𝑖 , 𝑥−𝑖 )) (6)

This also reduces to conventional imitation learning of a policy
𝜋 (𝑥 |𝑣) � 𝜁 (𝑥 |𝑜, 𝑥−), if we define 𝑣 � (𝑜, 𝑥−). In this work, we opt
for IQ-Learn [10] for both Eq. 5 and Eq. 6 to compute the gradients
of 𝜃 and 𝜙 , respectively.

7 CONVERGENCE PROPERTIES

While the optimization of Eq. 4 will provide us with agent mod-
els whose occupancy measure is close to that of experts, it is not
guaranteed that our practical, factored approach of iteratively min-
imizing each term of Eq. 4 will converge. Although IDIL provides
theoretical analysis regarding the convergence of this factored dis-
tribution matching, their analysis is made under the assumption
of full observability, thereby inapplicable to our setting. Thus, we
provide a theoretical analysis regarding the convergence of DTIL
in this section.

We start the analysis by defining two approximations of the
expert oaxx-occupancy measure, 𝜌𝑘

𝐸
and 𝜌𝑘

𝐸
. These approximations

are computed from the estimates of the expert’s oax-occupancy and
oxx-occupancy measures, i.e., 𝜌𝑘

𝐸
(𝑜, 𝑎, 𝑥 ) and 𝜌𝑘

𝐸
(𝑜, 𝑥, 𝑥−), with the

estimate of expert models N𝑘 = (𝜋𝑘 , 𝜁𝑘 ):

𝜌𝑘𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥
−
𝑖 ) � 𝜌

𝑘
𝐸 (𝑜𝑖 , 𝑥𝑖 , 𝑥

−
𝑖 )𝜋

𝑘
𝑖 (𝑎𝑖 |𝑜𝑖 , 𝑥𝑖 )

𝜌𝑘𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥
−
𝑖 ) � 𝜌

𝑘
𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 )𝑝 (𝑥

−
𝑖 |𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 ,N𝑘 ) .
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(a)Movers (b) Flood (c) Protoss-5v5 (d) Terran-5v5

Figure 2: Snapshopts of Experimental Domains

We can draw a relationship between the oax− occupancy measure
matching and the oaxx− occupancy measure matching problems
as follows:

Lemma 7.1. Define Δ(𝜃, 𝜃𝑘 ) � 𝜖1 and Δ(𝜙, 𝜙𝑘 ) � 𝜖2. If 𝜋𝜃 is an
𝐾1-Lipschitz function of 𝜃 , 𝜁

𝜙
is an 𝐾2-Lipschitz function of 𝜙 , and

max(𝐾1, 𝐾2) ( |𝜖1 | + |𝜖2 |) is sufficiently small, then

𝐷 𝑓

(
𝜌
𝜋,𝜁

(𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 )
������𝜌𝑘𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 ))

= 𝐷 𝑓

(
𝜌
𝜋,𝜁

(𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥−𝑖 )
������𝜌𝑘𝐸 (𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥−𝑖 ))

The proof of Lemma 7.1 is based on the first-order approximation
of 𝑓 and provided in the Appendix. This implies that in reasonable
conditions (e.g., smoothness of neural networks and compactness
of parameter space), if we update 𝜃 only by a small amount via Eq.
5, our objective function, Eq. 3, also decreases.

Then, along with Lemma 2.3 from [36], we can derive the follow-
ing theorem for the convergence of DTIL.

Theorem 7.2. Let 𝐿𝑘 � 𝐷 𝑓

(
𝜌
𝑖
(𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥−𝑖 )

������𝜌𝑘
𝐸
(𝑜𝑖 , 𝑎𝑖 , 𝑥𝑖 , 𝑥−𝑖 )

)
,

and 𝑝𝐸 (𝑜𝑖 , 𝑎𝑖 ) denote the stationary distributions of 𝑜, 𝑎 computed
from the expert demonstrations 𝐷 . If (1) the conditions of lemma 7.1
is satisfied and (2) 𝜌𝑘

𝐸
≈ 𝜌𝑘

𝐸
≈ 𝑝 (𝑥𝑖 , 𝑥−𝑖 |𝑜𝑖 , 𝑎𝑖 ,N𝑘

1:𝑛)𝑝𝐸 (𝑜𝑖 , 𝑎𝑖 ), then
𝐿𝑘+1 ≤ 𝐿𝑘 .

The proof is built on the convexity of the 𝑓 and the minimization
of 𝑓 -divergence. Its details are provided in the Appendix. With
Thm. 7.2, since the objective function, 𝐿 , is always positive, it will
eventually converge to a local optimum. Note that without any
information regarding the rules or labels of the subtasks, multiple
solutions can exist to exhibit the expert demonstrations 𝐷 . Our
approach allows for semi-supervision by incorporating expert sub-
task labels in the E-step. As the experimental results demonstrate,
semi-supervision can help disambiguate the models, finding one
closer to the actual expert team behavior.

8 EXPERIMENTS

Through numerical experiments, we now assess DTIL’s perfor-
mance against MAIL baselines across multiple domains.

8.1 Experimental Setup

8.1.1 Domains. We evaluate DTIL across multiple domains with
varying complexity, including the Multi-Jobs-𝑛 suite, Movers, Flood,

Table 1: Key Characteristics of Experimental Domains. “Sub-

task” refers to whether agents are subtask-driven. “Dim” de-

notes the dimension or cardinality of a space.

Experts

Observation

Space

Action

Space

Domain # agents Subtask Type 𝐷𝑖𝑚 Type 𝐷𝑖𝑚

MJ-2 2 Yes Cont. 6 Cont. 2
MJ-3 2 Yes Cont. 6 Cont. 2
Movers 2 Yes Disc. 45 Disc. 6
Flood 2 Yes Disc. 56 Disc. 6
Protoss 5 No Cont. 90 Disc. 11
Terran 5 No Cont. 80 Disc. 11

and the SMACv2 suite. The key characteristics of our experimental
domains are presented in Table 1. Our domains include both con-
tinuous and discrete observation and action spaces, with varying
numbers of agents (2-5) who are either subtask-agnostic or subtask-
driven. Please refer to Figs. 3–1 for illustrations of Multi-Jobs-𝑛
domains. Remaining domains are illustrated in Fig. 2.

TheMulti-Jobs-𝑛 simulates themotivating example introduced in
Fig. 1 in continuous observation and action spaces.Movers and Flood
are collaborative team tasks in partially observable environments
introduced by [33], considering only discrete states and actions.
These domains are designed to admit multiple near-optimal strate-
gies, allowing agents to exhibit multimodal behaviors. We create
synthetic agents exhibiting hierarchical behavior and generate 50
and 100 demonstrations for training and testing, respectively, for
each domain. SMACv2 is a challenging benchmark for multi-agent
reinforcement learning [9]. We consider two domains in this suite:
Protoss-5v5 and Terran-5v5, where a team of five agents is tasked
with defeating five enemies. We obtain a multi-agent policy via
MAPPO [45] and generate 50 trajectories per domain for training.
In all domains, team members must make decentralized decisions
in partially observable environments. For more details, please refer
to the Appendix.

Baselines. We compare our approachwith Behavior Cloning (BC),
MA-GAIL (MG) [38], Independent-IQL (IIQL), andMA-OptionGAIL
(MOG). BC is a supervised learning approach to learning policies,
which serves as a fundamental baseline for imitation learning [22].
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Table 2: Average cumulative task reward with multimodal

team behavior. MOG-s and DTIL-s represent the results with

20% supervision.

Method MJ -2 MJ -3 movers rescue

Expert 24.1±3.8 28.7±4.6 -99±32 4.6±2.0
BC 9.6±3.2 11.8±1.5 -150±0 0.0±0.0
MG 6.9±2.0 10.4±1.2 -150±0 4.5±0.5
IIQL 14.7±0.7 27.8±1.6 -107±9 5.6±0.2
MOG 6.1±1.3 7.4±2.0 -150±0 3.6±0.6
DTIL 16.8±5.9 27.0±1.0 -108±7 5.4±0.4
BTIL - - -150±0 0.6±0.4
MOG-s 11.8±1.3 10.2±2.0 -150±0 3.8±0.7
DTIL-s 21.6±1.7 27.3±1.3 -99±14 4.9±0.1

Table 3: Average cumulative task reward and the rate of wins

in SMACv2 domains.

Method

Protoss Terran

Reward Wins Reward Wins

Expert 18.0±4.8 0.55±0.50 11.9±3.2 0.60±0.49
BC 6.5±0.1 0.17±0.06 4.7±1.8 0.07±0.06
MG 7.8±1.0 0.27±0.06 7.2±1.3 0.27±0.6
IIQL 8.4±0.7 0.47±0.06 7.8±0.7 0.47±0.06
MOG 6.8±1.0 0.13±0.06 6.2±1.3 0.23±0.06
DTIL 9.9±1.2 0.47±0.06 8.2±1.3 0.47±0.06

MA-GAIL is a generative adversarial training-based MAIL algo-
rithm, which employs the centralized training with decentralized
execution (CTDE) approach [12]. Independent-IQL is a naivemulti-
agent extension of IQLearn [10], which applies IQLearn to each
agent independently. Since this baseline also takes non-adversarial
training, we can compare the effect of hierarchical structure in
modeling team behavior with this baseline. To our knowledge, no
approach exists for learning hierarchical policies in complex multi-
agent domains. Thus, we presentMA-OptionGAIL as a baseline,
which learns a hierarchical policy of each agent separately via
Option-GAIL [16]. For discrete domains,Movers and Flood, we also
report the performance of BTIL [35].

Metrics. Similar to other imitation learning algorithms [10, 38],
we use the cumulative task reward to evaluate the algorithms. In
SMACv2 domains, we also consider the win rate in battles. If the
learned multi-agent policy aligns with the expert team behavior, it
will achieve a task reward similar to the expert’s. However, a high
task reward does not necessarily indicate alignment with the expert
team model, as the algorithms might learn only one optimal policy,
resulting in unimodal rather than multimodal behavior. Therefore,
we also measure the accuracy of subtask inference. The closer the
learned model is to the expert model, the more accurately it can
predict expert subtasks from their demonstrations. We use the MAP
estimation (the E-step of Alg. 1) for subtask inference.

Table 4: Accuracy of Subtask Inference. We represents the

1-st agent of the MJ -2 domain as MJ -2-1, and similarly for

other agents.

Agent Random BTIL MOG-s DTIL-s

MJ-2-1 ≈ 0.50 - 0.61±0.09 0.75±0.04
MJ-2-2 ≈ 0.50 - 0.63±0.17 0.75±0.07
MJ-3-1 ≈ 0.33 - 0.49±0.04 0.78±0.07
MJ-3-2 ≈ 0.33 - 0.68±0.06 0.72±0.08
Movers-1 ≈ 0.25 0.90±0.01 0.35±0.15 0.78±0.02
Movers-2 ≈ 0.25 0.91±0.01 0.46±0.07 0.78±0.07
Flood-1 ≈ 0.25 0.53±0.04 0.31±0.06 0.61±0.08
Flood-2 ≈ 0.25 0.62±0.01 0.25±0.12 0.57±0.03

8.2 Results

8.2.1 DTIL achieves expert-level task performance. Table 2 shows
the task rewards averaged over three trials for Multi-Jobs-𝑛 (MJ-𝑛),
Movers, and Flood. We observe that IQLearn-based approaches,
IIQL and DTIL, generally perform better than approaches based on
generative adversarial imitation learning. Between MG andMOG,
MG performed better, likely because MG additionally utilizes other
agents’ information during training. In contrast, MOG and DTIL
take only individual observation-action trajectories and do not uti-
lize any other information that might break the partial observability
condition even during the training phase.

While DTIL outperformed IIQL in Multi-Jobs-2, it performed on
par in other domains. We believe this is due to the domains being
too simple, allowing subtask-agnostic approaches to extract one
optimal solution from demonstrations. In more complex domains,
we could observe an improvement in task performance due to the
hierarchical structure of our agent model. As shown in Table 3,DTIL
achieved the highest task reward and win rate in both the SMACv2
domains: Protoss-5v5 and Terran-5v5. Wewant to highlight that even
though IIQL often achieves high task rewards, it can neither learn
multimodal behavior nor utilize semi-supervision. On the other
hand, DTIL can improve its performance by augmenting subtask
labels. As shown in Table 2, DTIL achieved a task reward similar to
the expert task reward in all domains with 20% supervision.

8.2.2 DTIL accurately learns multimodal team behavior. As men-
tioned in Sec. 4, our goal is to learn the different team behaviors
generated by expert teams rather than a unimodal team policy. Ad-
ditionally, in human-AI teaming applications, an AI agent must ac-
curately interpret its human teammate’s high-level plan. To achieve
this, it is essential to learn a model that exhibits hierarchical be-
havior aligned with expert team members. Table. 4 presents the
accuracy of subtask inference computed with 20%-supervision mod-
els. Note that without any supervision, we cannot associate the
learned latent values with the actual subtasks. In all cases, DTIL
outperforms MOG and the random baselines.2

8.2.3 DTIL outperforms BTIL in more complex tasks. As demon-
strated in Table 2, DTIL outperformed BTIL in terms of task reward.

2Note that other DNN-based baselines cannot be utilized for subtask inference.
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(a) Expert (Agent 1) (b) Expert (Agent 2)

(c) DTIL (Agent 1) (d) DTIL (Agent 2)

(e) MA-OptionGAIL (Agent 1) (f)MA-OptionGAIL (Agent 2)

Figure 3: Visualization of individualMulti-Jobs-3 trajectories generated by the expert and learned models conditioned on a fixed

subtask. The directions of the triangles and arrows represent the actions of agents at each position. The three colors represent

the three fixed subtasks. Both learned models (DTIL and MA-OptionGAIL) are trained with 20 % supervision of subtask labels.

While BTIL’s overall performance was generally below that of on-
line methods such as MA-OptionGAIL and DTIL, it performed
slightly better than BC. We attribute this to BTIL’s offline nature,
which makes it prone to compounding errors. This implies that if
a BTIL agent encounters a state that was not present in the train-
ing dataset, it struggles to select the appropriate action, as it has
not learned anything about that state. On the other hand, BTIL’s
subtask inference performance was on par with, or even superior
to, DTIL. As shown in Table 4, BTIL achieved approximately 0.9
accuracy in subtask inference for Movers. However, we emphasize
that this level of performance is only feasible in small domains, as
BTIL cannot scale up to domains with larger state spaces.

8.2.4 Team models learned using DTIL generated behaviors that are

qualitatively similar to those generated by expert teams. To interpret
the learned behavior associated with each subtask (𝑥 ), we visualized
the paths generated by ten different seeds (seed=0:9) for each model
in Figure 3. For this visualization, we intentionally set the part of
an agent’s observation related to other agents to zero, eliminating
their influence on the behavior of the agent being inspected. Figure
3 shows that DTIL’s subtask-driven behavior closely resembles the
expert’s when trained with partial supervision of subtask labels.
In contrast, MA-OptionGAIL trajectories tend to be noisy and
unfocused on a specific subgoal, even with a fixed 𝑥 . We believe
the superior performance of DTIL stems from its factored struc-
ture, in which it learns separate Q-functions for 𝜋 and 𝜁 . Given
that Q-functions can be interpreted as reward functions [10], our

approach effectively learns a hierarchical reward corresponding to
each level of the policy. However, since MA-OptionGAIL does not
learn separate Q-functions, it is difficult to determine whether it
truly captures a hierarchical policy structure or merely optimizes
the joint policy 𝜋 (𝑎, 𝑥 |𝑜, 𝑥−).

9 CONCLUSION

This work introduces DTIL, an algorithm for learning generative
models of team behavior from heterogeneous demonstrations. Ex-
periments show that DTIL outperforms state-of-the-art multi-agent
imitation learning baselines and captures expert team behavior
across six diverse teamwork domains. Additionally, DTIL can gen-
erate a wide range of expert team behaviors. DTIL also motivates
future research directions. First, DTIL assumes a known, finite set
of subtasks, though real-world subtasks may be difficult to define a
prior or represent as scalars. Future MAIL methods should explore
more expressive hierarchical representations. Second, by enabling
generative models of team behavior, DTIL can enable novel human-
AI teaming applications, such as AI-enabled team coaching [32, 34]
and end-user programming ofmulti-agent systems [2, 39].We invite
developers of these and other impactful applications to utilize DTIL
and make additional details available at http://tiny.cc/dtil-appendix
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