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ABSTRACT
Incentivizing the existing participants to invite new participants

to join an auction, matching or cooperative game have been ex-

tensively studied recently. One common challenge to design such

incentive in these games is that the invitees and inviters are com-

petitors. To have such an incentive, we normally have to sacrifice

some of the traditional properties. Especially, in a housing market

(one kind of one-sided matching), we cannot maintain the tradi-

tional stability and optimality. The previous studies proposed some

new matching mechanisms to have the invitation incentive (part

of the incentive compatibility), but did not have any guarantee on

stability and optimality.

In this paper, we propose new notions of stability and optimality

which are achievable with incentive compatibility. We weaken sta-

bility and optimality on a special structure (complete components)

on networks. We first prove that the weakened notions are the

best we can achieve with incentive compatibility. Then, we pro-

pose three mechanisms (Swap With Neighbors, Leave and Share,

and Connected Trading Cycles) to satisfy the desirable properties.

Connected Trading Cycles is the first mechanism to satisfy the best

stability and optimality compatible with incentive compatibility.
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1 INTRODUCTION
Housing market on networks studies an endowment exchange

problem with special consideration of the participants’ social con-

nections [9]. In this model, participants’ social connections are

private information and only a small group initiates the matching.

Those who are already in the game can decide whether or not to

invite their neighbors. Expanding the market via invitation can be

beneficial because more participants will provide more matching
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options, which opens the possibility of a more satisfactory match-

ing. Several real-world applications, like online housing markets

and second-hand goods exchange platforms, have utilized social

networks to promote their markets. On these platforms, existing

participants are encouraged to share the matching information on

their social media and invite their friends to form larger markets.

But sometimes participants may hesitate to invite because their

friends will compete with them and take away their favorite items

in the matching game. For this reason, the main obstacle is ensuring

that the inviters’ match is not getting worse after inviting others.

To solve the above problem, one way is to constrain participants’

selection space to remove potential competition caused by invita-

tion. For example, Kawasaki et al. [9] restricted the social network

between agents as trees and proposed Modified TTC which only

allows participants to choose from their parents and descendants. In

this paper, we aim to designmechanisms for general social networks

structures and design mechanisms to incentivize invitations. Our

first mechanism, SwapWith Neighbors (SWN) restricts participants

to choosing from their neighbors’ items. Under this restriction, in-

vitations can only bring matching opportunities not competitions,

thus naturally satisfying IC. The drawback of SWN is that there

is a very low probability that a participant can benefit from the

enlarged market, which contradicts the purpose of enlarging the

market for better matching. To improve the matching, we observed

that if a group of participants trade and leave the market, they do

not care about what happens next in the matching. Inspired by this,

our second mechanism, called Leave and Share (LS), uses SWN as a

base protocol but dynamically connects the remaining participants

when some are leaving the market (a sharing process). Due to the

sharing process, LS gives a more satisfying outcome.

All the above-mentionedmechanisms focused on the IC property,

but to properly evaluate a matching mechanism, optimality and

stability are the two key properties. The former characterizes how

efficient a matching is, i.e., whether participants can improve their

matching without making others’ matching worse, and the latter

depicts the robustness of a matching, i.e., whether participants have

incentives to deviate from the matching and exchange within a

smaller group. The Top Trading Cycles (TTC) presented by Shapley

and Scarf [14] is the only Pareto optimal and stable mechanism for

housing market problem [13]. However, Kumar et al. [10] show that

more than half of the participants prefer their matching given by

TTC in a smaller market than in a large integrated market. Hence, in

the network setting where participants can control the market size

through strategic invitations, TTC fails to be incentive compatible

(IC). Due to the uniqueness of TTC, stability and Pareto optimality

are not compatible with IC in housing market on networks.
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Table 1: Comparison on housing market mechanisms on
social networks. We propose SWN, LS and CTC in this paper.

Mechanism Stable-cc Optimal-cc IC IR

TTC [14] ✓ ✓ ✕ ✓

Modified TTC [9] ✓(Trees) ✕ ✓(Trees) ✓

SWN ✓ ✕ ✓ ✓

LS ✓ ✕ ✓ ✓

CTC ✓ ✓ ✓ ✓

To maintain invitation incentives, we weaken stability and opti-

mality notions with complete components (cc), called stable-cc and

optimal-cc, respectively. Stable-cc weakens stability in the sense

that only participants in a complete component can deviate from

the matching and exchange within the component. Optimal-cc

weakens optimality in the sense that a matching can only be im-

proved if all the participants whose allocation is improved have to

form a complete component. We then prove that both stable-cc and

optimal-cc are the tightest notions compatible with IC. Besides IC,

individual rationality (IR) is also a commonly considered property

that ensures participating in the game is not harmful, serving as a

base incentive for people to join the game. Finally, combining all

the properties together, we construct the theoretical boundaries for

housing market on networks.

The best properties we can achieve together for our setting are

stable-cc, optimal-cc, IC, and IR. The previously mentioned SWN

and LS detect all the cycles formed by neighbors, so they natu-

rally satisfy stable-cc. However, they both add restrictions to the

selection space and fail to satisfy optimal-cc. Hence, we further pro-

pose the third mechanism, called Connected Trading Cycles (CTC),

which does not add restrictions on the participant’s selection space

to satisfy all the properties. Similar to TTC, CTC detects the top

trading cycles (to ensure optimality). The key difference is that

CTC makes sure the trading cycles have to satisfy certain connect-

edness on networks (to ensure invitation incentives). Intuitively,

the connectedness guarantees that a group of participants can stay

together regardless of the others’ strategic invitations. Thus, in

the network setting, the trading cycles should build on a group of

connected participants.

To sum up, our contributions are threefold:

• We define the stability and optimality notions compatible

with IC for housing market on networks.

• We prove the best achievable stability and optimality in the

network setting.

• We propose three mechanisms: SwapWith Neighbors, Leave

and Share, and Connected Trading Cycles to meet the de-

sirable properties (Table 1 gives a quick overview of the

theoretical performance of each mechanism).

2 RELATEDWORK
Li et al. [12] initiate the line of research on mechanism design on

social networks. They utilize social networks to incentivize par-

ticipants to invite their friends to form a larger market so that

participants can receive better outcomes [17]. However, the partici-

pants are competitors and may not want to invite all their friends

without proper incentives. Many classic solutions fail to provide

such incentives, so we cannot directly apply them for this pur-

pose. To combat this, in auctions, we can pay the harmed inviters

some rewards [11]. In cooperative games, we can let the inviters

share their invitees’ contributions [16]. However, in matching, we

face a greater challenge since the mechanism cannot compensate

participants for the loss caused by invitation through payments.

Existing solutions for matching on networks restricts partici-

pants’ selection space and the social network structures. Kawasaki

et al. [9] and You et al. [15] model the social network as a directed

graph where neighborhood relationships can be asymmetric (i.e., A

is B’s neighbor does not necessarily mean B is A’s neighbor). They

focus on trees and modify the classic mechanisms to incentivize

invitations for housing market as well as its variant [1]. Specifically,

they add limits on the selection space of the participants in a tree

to prevent an invitee competing with her inviters. For two-sided

matching, Cho et al. [5] model the school choice problem on net-

works and design invitation incentives for the student side only.

Another thread of work also takes into account the social network

and its influence, but in their setting, the social network is priorly

known and it constrains possible allocations [7, 8].

Optimality and stability are two an well-concerned property for

matching mechanisms [2]. The celebrated TTC is the only Pareto

optimal and stable solution in the traditional housing market prob-

lem [13]. Abraham et al. [3] study various ways to evaluate the

optimality of a house allocation mechanism and illustrate why

TTC gives the Pareto optimal allocation. Fleischer and Wang [6]

point out the transitions between different optimal allocations in

the house allocation problem. Brandt and Wilczynski [4] analyze

whether different types of dynamic pairwise swaps converge to

Pareto optimal allocations for matching markets. In the network

setting, no previous work has investigated the theoretical bound-

aries. We propose tight stability and optimality notions for this new

setting and design mechanisms to reach them.

3 THE MODEL
We consider a housing market problem on a social network denoted

by an undirected graph 𝐺 = (𝑁, 𝐸), which contains 𝑛 agents 𝑁 =

{1, . . . , 𝑛}. Each agent 𝑖 ∈ 𝑁 is endowed with an indivisible item ℎ𝑖 ,

usually referred to as a house. Let 𝐻 = {ℎ1, . . . , ℎ𝑛} be the set of all
agents’ items. Considering the nature of the exchange economy, we

formulate agents’ social relationships as symmetric in this model,

i.e., 𝑖 has connections with 𝑗 in the social network indicates 𝑗 has

connections with 𝑖 . We define agent 𝑖 as 𝑗 ’s neighbor if there is an

edge 𝑒 ∈ 𝐸 between agent 𝑖 and 𝑗 , let 𝑟𝑖 ⊆ 𝑁 be 𝑖’s neighbor set.

Despite social relationship, each agent 𝑖 ∈ 𝑁 has a strict prefer-

ence ≻𝑖 over 𝐻 . ℎ ≻𝑖 ℎ′ means 𝑖 prefers ℎ to ℎ′ and we use ⪰𝑖 to
represent the weak preference. Thus, we denote agent 𝑖’s private

type as 𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ) and 𝜃 = (𝜃1, · · · , 𝜃𝑛) as the type profile of all
agents. Let 𝜃−𝑖 be the type profile of all agents except for agent 𝑖 ,
then 𝜃 can be written as (𝜃𝑖 , 𝜃−𝑖 ). Let Θ be the type profile space

of all agents. Similarly, we have Θ = (Θ𝑖 ,Θ−𝑖 ).
In the housing market problem, the goal is to construct a match-

ing following the principle that each agent will exchange their

endowments to get better allocations. Assume there is a trusted

center to enforce the execution of a matching mechanism, each
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agent is required to report her type (reporting neighbor set is treated

as inviting neighbors in practice). We denote agent 𝑖’s reported type

as 𝜃 ′
𝑖
= (≻′

𝑖
, 𝑟 ′
𝑖
), where ≻′

𝑖
is the reported preference and 𝑟 ′

𝑖
⊆ 𝑟𝑖

is the reported neighbor set. Let 𝜃 ′ = (𝜃 ′
1
, · · · , 𝜃 ′𝑛) be the reported

type profile of all agents.

Definition 3.1. In a housing market problem, a matching mech-

anism is defined by an allocation policy 𝜋 = (𝜋𝑖 )𝑖∈𝑁 , where 𝜋𝑖 :

Θ → 𝐻 satisfies for all 𝜃 ∈ Θ, 𝜋𝑖 (𝜃 ) ∈ 𝐻 , and 𝜋𝑖 (𝜃 ) ≠ 𝜋 𝑗≠𝑖 (𝜃 ).

In the networked setting, we assume only a subset of the agents

are initially in the game and the matching mechanism can incen-

tivize agents to diffuse the information thus enlarging the matching.

Without loss of generality, suppose an agent set 𝑁0 ⊆ 𝑁 contains

the initial participants in the market. The others need the existing

participants’ invitation to join the game. Since the invitation is mod-

eled as reporting neighbors, we define the qualified participants by

their reported types.

For a given reported type profile 𝜃 ′, we generate a directed graph
𝐺 (𝜃 ′) = (𝑁 (𝜃 ′), 𝐸 (𝜃 ′)), where edge ⟨𝑖, 𝑗⟩ ∈ 𝐸 (𝜃 ′) if and only if

𝑗 ∈ 𝑟 ′
𝑖
. Under 𝜃 ′, we say agent 𝑖 is qualified if and only if there is

a path from any agent in 𝑁0 to 𝑖 in 𝐺 (𝜃 ′). That is, 𝑖 can connect

to the agent set 𝑁0 by an invitation chain. Let 𝑄 (𝜃 ′) be the set

of all qualified agents under 𝜃 ′. In the networked housing market

problem, diffusion matching mechanisms can only use 𝑄 (𝜃 ′).

Definition 3.2. In a networked housing market problem, a diffu-

sion matching mechanism is a matching mechanism 𝜋 = (𝜋𝑖 )𝑖∈𝑁 ,

such that for all reported type profile 𝜃 ′, it satisfies:

(1) for all unqualified agents 𝑖 ∉ 𝑄 (𝜃 ′), 𝜋𝑖 (𝜃 ′) = ℎ𝑖 .

(2) for all qualified agents 𝑖 ∈ 𝑄 (𝜃 ′), 𝜋𝑖 (𝜃 ′) is independent of
the reports of all unqualified agents.

Different from Definition 3.1, in a diffusion matching, the par-

ticipants can affect the qualification of other participants. If a par-

ticipant changes her reported neighbor set, the qualified agent set

may change. This is the challenge of this setting.

Next, we define two desirable properties for diffusion match-

ing mechanisms: individual rationality and incentive compatibility.

Intuitively, individual rationality requires that for each agent, re-

porting her type truthfully guarantees that she gets an item no

worse than her own. For incentive compatibility, it means reporting

type truthfully is a dominant strategy for each agent.

Definition 3.3 (Individual Rationality (IR)). A mechanism 𝜋 is

individually rational if for all 𝑖 ∈ 𝑁 , all 𝜃𝑖 ∈ Θ𝑖 , and all 𝜃 ′−𝑖 ∈ Θ−𝑖 ,
we have 𝜋𝑖 (𝜃𝑖 , 𝜃 ′−𝑖 ) ⪰𝑖 ℎ𝑖 .

Definition 3.4 (Incentive Compatibility (IC)). A mechanism 𝜋 is

incentive compatible if for all 𝑖 ∈ 𝑁 , all 𝜃 ′−𝑖 ∈ Θ−𝑖 and all 𝜃𝑖 , 𝜃 ′𝑖 ∈ Θ𝑖 ,

we have 𝜋𝑖 (𝜃𝑖 , 𝜃 ′−𝑖 ) ⪰𝑖 𝜋𝑖 (𝜃
′
𝑖
, 𝜃 ′−𝑖 ).

To evaluate the performance of a matching mechanism, an im-

portant metric is Pareto optimality. It requires that no agent can

improve her matching without others’ allocation getting worse.

Definition 3.5 (Pareto Optimality (PO)). A mechanism 𝜋 is Pareto

optimal if for all type profile 𝜃 , there is no other allocation 𝜋 ′ (𝜃 )
such that for each qualified agent 𝑖 ∈ 𝑄 (𝜃 ), 𝜋 ′

𝑖
(𝜃 ) ⪰𝑖 𝜋𝑖 (𝜃 ), and

there exists at least one qualified agent 𝑗 ∈ 𝑄 (𝜃 ), 𝜋 ′
𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ).

Table 2: Desirable properties for diffusion matching mecha-
nisms. IC, IR, stable-cc and optimal-cc are the boundaries.The
implications between properties are proved in Section 4.3.

IR IC Stability Optimality

IR IC Stable PO

↓ ↓
Stable-wcc Optimal-wcc

↓ ↓
Stable-cc Optimal-cc

Another metric is stability. It requires no group of agents can

deviate from the matching and match among themselves to make

no one in the group worse off and at least one better off.

Definition 3.6 (Stability). A mechanism 𝜋 is stable if for all type

profile 𝜃 , there is no other allocation 𝜋 ′ (𝜃 ) such that there exists a

group 𝑆 ⊆ 𝑄 (𝜃 ) that satisfies ∀𝑖 ∈ 𝑆, 𝜋 ′
𝑖
(𝜃 ) ∈ 𝐻𝑆 , and ∀𝑖 ∈ 𝑆, 𝜋 ′

𝑖
⪰𝑖

𝜋𝑖 (𝜃 ) with at least one 𝑗 ∈ 𝑆, 𝜋 ′
𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ).

In summary, our model is a practical variant of the networked

housing market model proposed in [9]. In their paper, the authors

designed matching on an asymmetric social network and proved

the impossibility results of the compatibility of IC, PO and stability.

In the next section, we will prove the impossibilities in our model

and further construct the theoretical boundaries.

4 THE BOUNDARIES
In this section, we first prove that a diffusion matching mechanism

cannot achieve Pareto optimality or stability together with IC. Next,

we define the best optimality and stability notion compatible with

IC and then construct the theoretical boundaries.

4.1 Impossibility Results
Theorem 4.1 (Impossibility for PO, IC and IR). No diffusion

matching mechanism is PO, IC and IR.

Proof. In the example shown in Figure 1, suppose 𝑁0 = {1, 2},
the Pareto optimal and IR allocations are 𝜋1 = (ℎ3, ℎ2, ℎ1) and
𝜋2 = (ℎ2, ℎ1, ℎ3). If a mechanism allocates 𝜋1, agent 2 can misreport

her neighbor set as 𝑟 ′
2
= {1}. Under agent 2’s misreport, agent 3

cannot join the game and the only PO and IR allocation will be

𝜋2 = (ℎ2, ℎ1, ℎ3), and 2 gets a better allocation compared to that in

𝜋1. However, if the mechanism allocates 𝜋2, agent 1 can misreport

her preference as ℎ3 ≻′
1
ℎ1 ≻′

1
ℎ2. In this way, the only PO and IR

allocation is 𝜋1 = (ℎ3, ℎ2, ℎ1), and agent 1 reaches a better allocation.
Hence, no diffusion matching mechanism is PO, IC and IR. □

1 2

3

Figure 1: A social network example. Preferences are ℎ3 ≻1

ℎ2 ≻1 ℎ1, ℎ1 ≻2 ℎ2 ≻2 ℎ3, ℎ1 ≻3 ℎ3 ≻3 ℎ2.
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Theorem 4.2 (Impossibility for stability and IC). No diffusion
matching mechanism is stable and IC.

Proof. Consider the example in Figure 1, suppose 𝑁0 = {1}, the
only stable allocations is 𝜋1 = (ℎ3, ℎ2, ℎ1). However, agent 2 can
misreport her neighbor set as 𝑟 ′

2
= {1}, so agent 3 cannot join the

game. In this way, the only stable allocation is 𝜋2 = (ℎ2, ℎ1, ℎ3).
This means agent 2 can misreport to improve her matching result,

so stability is incompatible with IC. □

To seek achievable optimality and stability notions for IC diffu-

sion matching mechanisms, we focus on a special graph structure:

complete components, i.e., the agents are neighbors of each other.

For Pareto optimality, we restrict that only fully connected agents

can improve their matching. For stability, we constrain the agents

who can deviate from the matching and swap among themselves

to be fully connected.

Definition 4.3 (Complete Component). A connected directed graph

𝐺 = (𝑉 , 𝐸) is a complete component if for any two nodes 𝑖, 𝑗 ∈ 𝑉 ,

we have ⟨𝑖, 𝑗⟩ ∈ 𝐸.

The idea of the limitation comes from the reality that only a

group of people who know each other have a higher possibility to

communicate and negotiate for a better matching/trade. Besides,

in the traditional housing market problem, since there are no con-

straints on social connections, agents can be viewed as fully con-

nected. Then, any group of agents is a fully connected component.

Following this idea, we define optimality and stability under

complete components: optimal-cc and stable-cc.

Definition 4.4 (Optimality under Complete Components (Opti-
mal-cc)). A diffusion matching mechanism 𝜋 is optimal under com-

plete components if for all type profiles 𝜃 and the allocation 𝜋 (𝜃 ),
there is no other allocation 𝜋 ′ (𝜃 ) such that ∀𝑖 ∈ 𝑁, 𝜋 ′

𝑖
(𝜃 ) ⪰𝑖 𝜋𝑖 (𝜃 )

and ∃ 𝑗 ∈ 𝑁, 𝜋 ′
𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ) and agents {𝑖 ∈ 𝑁 |𝜋𝑖 (𝜃 ) ≠ 𝜋 ′

𝑖
(𝜃 )}

forms a complete component in 𝐺 (𝜃 ).
Definition 4.5 (Stability under Complete Components (Stable-cc)).

A diffusion matching mechanism 𝜋 is stable under complete com-

ponents if for all type profiles 𝜃 and the allocation 𝜋 (𝜃 ), there is no
agent set 𝑆 ⊆ 𝑁 (with item set𝐻𝑆 ⊆ 𝐻 ) that forms a complete com-
ponent in 𝐺 (𝜃 ), and another allocation 𝜋 ′ (𝜃 ) with ∀𝑖 ∈ 𝑆, 𝜋 ′

𝑖
(𝜃 ) ∈

𝐻𝑆 such that ∀𝑖 ∈ 𝑆, 𝜋 ′
𝑖
(𝜃 ) ⪰𝑖 𝜋𝑖 (𝜃 ) and ∃ 𝑗 ∈ 𝑆, 𝜋 ′

𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ).

4.2 Stable-cc and Optimal-cc are the Boundaries
Stable-cc and optimal-cc pose strict constraints on the agents who

can improve by exchanging internally. Hence, it is worth investigat-

ing whether we can relax this limitation to get stronger notions. For

instance, can we allow any connected group (no need to be a com-

plete component) to improve their matching? Following this idea,

we define stronger notions based on weakly complete components,

but they are not compatible with IC.

Definition 4.6 (Weakly Complete Component). A connected di-

rected graph 𝐺 = (𝑉 , 𝐸) is a weakly complete component if there

exists at most one pair of nodes 𝑖, 𝑗 ∈ 𝑉 such that ⟨𝑖, 𝑗⟩ ∉ 𝐸.

Definition 4.7 (Optimality under Weakly Complete Components
(Optimal-wcc)). A diffusion matching mechanism 𝜋 is optimal un-

der weakly complete components if for all type profiles 𝜃 and the

1 2

3

4

(a)

1 2

3

4

(b)

1 2

3

4

(c)

Example Optimal-wcc Allocation

(a) 𝜋𝑎 = (ℎ4, ℎ2, ℎ3, ℎ1 ) , 𝜋𝑏 = (ℎ2, ℎ3, ℎ1, ℎ4 )
(b) 𝜋𝑐 = (ℎ2, ℎ3, ℎ1, ℎ4 )
(c) 𝜋𝑑 = (ℎ4, ℎ2, ℎ3, ℎ1 )

Figure 2: A counterexample for the coexistence of optimal-
wcc, IR, and IC. Preferences are ℎ4 ≻1 ℎ2 ≻1 ℎ1, ℎ3 ≻2

ℎ2, ℎ1 ≻3 ℎ3, ℎ1 ≻4 ℎ4. Agents 1,2 are initial players in
the matching. The red solid arrows represent favorite point-
ing. The red dashed arrows represent the second favorite
pointing. The dashed agents are unqualified, so they are allo-
cated their endowments.

allocation 𝜋 (𝜃 ), there is no other 𝜋 ′ (𝜃 ) such that ∀𝑖 ∈ 𝑁, 𝜋 ′
𝑖
(𝜃 ) ⪰𝑖

𝜋𝑖 (𝜃 ) and ∃ 𝑗 ∈ 𝑁, 𝜋 ′
𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ) and agents {𝑖 ∈ 𝑁 |𝜋𝑖 (𝜃 ) ≠

𝜋 ′
𝑖
(𝜃 )} forms a weakly complete component in 𝐺 (𝜃 ).

Next, we prove that no IC and IR diffusion mechanisms can be

optimal-wcc.

Theorem 4.8. No IC and IR diffusion one-sided matching mecha-
nism is optimal-wcc.

Proof. Let’s consider the example given in Figure 2. In figure

(a), IR and optimal-wcc solutions are 𝜋𝑎, 𝜋𝑏 . If we choose 𝜋𝑎 , agent

2 cannot get ℎ3. So, agent 2 has the incentive to misreport and not

invite agent 4. In this way, figure (a) transforms to figure (b) where

the only IR and optimal-wcc solution is 𝜋𝑐 . Then, agent 2 can get

her favorite item ℎ3. To ensure IC, we should allocate ℎ3 to agent

2 when she truthfully reports (i.e., allocate 𝜋𝑏 in figure (a)). Next,

we consider agent 1’s incentive to misreport when we choose 𝜋𝑏 in

figure (a). If agent 1 does not invite agent 3, figure (a) transforms to

figure (c) where the only IR and optimal-wcc solution is 𝜋𝑑 . Here,

agent 1 can get her favorite item ℎ4. To ensure IC in figure (a),

we should allocate ℎ4 to agent 1 when she truthfully reports (i.e.,

allocate 𝜋𝑎 in figure (a)). This is a contradiction, so optimal-wcc

is not compatible with IC. Hence, the tightest optimality notion

compatible with IC is optimal-cc. □

Similarly, for stability, we define a stronger notion called stable-

wcc and prove that stable-wcc is not compatible with IC and IR.

Definition 4.9 (Stability under Complete Components (Stable-wcc)).
A diffusion matching mechanism 𝜋 is stable under weakly complete

components if for all type profiles 𝜃 and the allocation 𝜋 (𝜃 ), there
is no agent set 𝑆 ⊆ 𝑁 (with item set 𝐻𝑆 ⊆ 𝐻 ) that forms a weakly
complete component in 𝐺 (𝜃 ), and another allocation 𝜋 ′ (𝜃 ) with
∀𝑖 ∈ 𝑆, 𝜋 ′

𝑖
(𝜃 ) ∈ 𝐻𝑆 such that ∀𝑖 ∈ 𝑆, 𝜋 ′

𝑖
(𝜃 ) ⪰𝑖 𝜋𝑖 (𝜃 ) and ∃ 𝑗 ∈

𝑆, 𝜋 ′
𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ).
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Theorem 4.10. No IC and IR diffusion one-sided matching mech-
anism is stable-wcc.

Proof. Consider the example in Figure 1, suppose 𝑁0 = {1}, the
only stable-wcc allocations is 𝜋1 = (ℎ3, ℎ2, ℎ1). However, agent 2
can misreport her neighbor set as 𝑟 ′

2
= {1}, so that agent 3 can-

not join the game. In this way, the only stable-wcc allocation is

𝜋2 = (ℎ2, ℎ1, ℎ3). This means agent 2 can misreport to improve her

matching result, thus, stable-wcc is incompatible with IC. □

Combining Theorem 4.8 and Theorem 4.10, we conclude that the

best stability and optimality we can aim for an IC and IR diffusion

matching mechanism are stable-cc and optimal-cc respectively.

4.3 Implications between Properties
In this section, we study the relationships between different stability

and optimality notions. By definition, Pareto optimality implies

optimal-wcc and further implies optimal-cc. Stability implies stable-

wcc and further implies stable-cc. In the traditional setting, a stable

matching mechanism naturally satisfies Pareto optimal.

Theorem 4.11. A mechanism 𝜋 is stable implies that 𝜋 is PO.

Proof. For all type profiles 𝜃 , if a stable mechanism 𝜋 is not

Pareto optimal, there exists a 𝜋 ′ such that ∀𝑖 ∈ 𝑁 , 𝜋 ′
𝑖
(𝜃 ) ⪰𝑖 𝜋𝑖 (𝜃 )

and ∃ 𝑗 ∈ 𝑁 , 𝜋 ′
𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 ). In this case, we can construct a

group of agents 𝑆 starting from { 𝑗 ∈ 𝑁 |𝜋 ′
𝑗
(𝜃 ) ≻𝑗 𝜋 𝑗 (𝜃 )} and

consecutively add other agents so that ∀𝑖 ∈ 𝑆 , 𝜋 ′
𝑖
(𝜃 ) ∈ 𝐻𝑆 . So, 𝑆

can deviate from the matching together which violates stability.

Thus, 𝜋 is stable implies that 𝜋 is Pareto optimal. □

Thus, when designing mechanisms, we can only focus on stabil-

ity, and the optimality condition will be satisfied at the same time.

However, in the networked setting, a similar implication relation-

ship does not exist between the redefined notions.

Theorem 4.12. A mechanism 𝜋 is stable-cc does not imply that 𝜋
is optimal-cc.

Proof. See the example in Figure 3, allocation𝜋 = (ℎ2, ℎ1, ℎ4, ℎ3)
is stable under complete components. However, there exists another

allocation 𝜋 ′ = (ℎ2, ℎ4, ℎ1, ℎ3) where {2, 3} is a strictly better off

group. Thus, 𝜋 is stable-cc does not imply that 𝜋 is optimal-cc. □

1 2 3 4

Figure 3: Preferences are ℎ3 ≻1 ℎ2 ≻1 ℎ1, ℎ4 ≻2 ℎ1 ≻2

ℎ2, ℎ1 ≻3 ℎ4 ≻3 ℎ3, ℎ2 ≻4 ℎ3 ≻4 ℎ4.

This vanish of implication also poses a greater challenge in

designing a mechanism that reaches the new boundaries.

5 THE MECHANISMS
In this section, we introduce three IC mechanisms, Swap With

Neighbors (SWN), Leave and Share (LS) and Connected Trading Cy-

cles (CTC). By different techniques, they all guarantee that inviting

more agents to join in only potentially improves one’s matching
1
.

1
Refer to our arXiv version for the omitted proofs and simulation results.

CTC
LS

SWN

IC, IR

stable-ccoptimal-cc

Figure 4: The properties of our three mechanisms. LS and
SWN are stable-cc, IC and IR. CTC reaches the boundaries.

5.1 Swap With Neighbors
First, we present SWN which is an intuitive extension of Top Trad-

ing Cycles. SWN only allows agents to choose favorite items from

neighbors to achieve invitation incentives.

Definition 5.1 (Swap With Neighbors). For a given 𝐺 (𝜃 ′), con-
struct a directed graph by letting each agent point to her favorite

item among herself and her neighbors remaining in the matching.

There is at least one cycle. For each cycle, allocate the item to the

agent who points to it and remove the cycle. Repeat the process

until there is no agent left.

In SWN, agents’ allocation is determined by trading cycles, which

makes it strategy-proof for the preference report. Also, each agent

can only get allocated a house from her neighbors, which means

misreporting on one’s neighbor set is not beneficial, so SWN sat-

isfies IC. Besides, a trading cycle within neighbors can always be

allocated by SWN, so SWN satisfies stable-cc.

However, SWN achieves IC and stable-cc at the cost of efficiency,

as it limits the matching options for agents. To improve the match-

ing, we should provide more matching opportunities. But this also

brings agents’ strategic report aiming for a better match. Thus, we

need a strategy-proof order to help with the mechanism design and

ensure that truthfully reporting one’s type is a dominant strategy

for every agent. Our order is based on the shortest path length from

the initial agent set to each agent. The reason is that non-initial

agents require other agents’ permission to join the matching, the

layer structure of the social network should be kept properly for

incentive compatibility. This order is applied in both LS and CTC.

Definition 5.2. An ordering of agents is a one-to-one function

O : N+ → 𝑁 , where agent O(𝑡) is the 𝑡𝑡ℎ agent in the ordering.

For simplicity, we denote agent 𝑖’s order as O−1 (𝑖). Agents in O are

sorted in ascending order by the length of the shortest path from

agent set 𝑁0 to them. Especially, for any agent 𝑖 ∈ 𝑁0, its shortest

path length from agent set 𝑁0 is 0. When multiple agents have the

same length of the shortest path, we use a random tie-breaking.

5.2 Leave and Share
Leave and Share uses SWN as a base and adds a natural sharing

process to enlarge agents’ selection space, trying to provide a better

allocation. The mechanism consists of two steps: first, agents are

matched and left by rounds in a protocol that resembles SWN under

a strategy-proof order. This guarantees that inviters are not worse

off. Second, we share the neighbors of the left agents in this round

by connecting their neighbors to each other, thus their neighbors

can have new neighbors in the next round. This dynamic neighbor

set update comes naturally because a matched cycle does not care
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how the remaining neighbors will bematched. Also, their remaining

neighbors and other agents cannot prevent this sharing.

1 2 3 4

Figure 5: Preferences are ℎ4 ≻1 ℎ1 ≻1 · · · , ℎ3 ≻2 ℎ2 ≻2

· · · , ℎ2 ≻3 ℎ3 ≻3 · · · , ℎ1 ≻4 ℎ4 ≻4 · · · .

To see the value of our mechanism, consider the example given

in Figure 5, where only agents 2 and 3 can exchange with each other

in SWN. The rest of the agents will end up with their own items.

However, agents 2 and 3 will not block the exchange for agents

1 and 4 once they get their preferred items. After agents 2 and 3

are matched and Leave, we Share their remaining neighbors then

agents 1 and 4 can swap. The process of Leave and Share is the name

and core of our mechanism. Before formalizing our mechanism, we

introduce two notations to simplify our description.

Definition 5.3. Given a set 𝐴 ⊆ 𝑁 , we say 𝑓𝑖 (𝐴) = 𝑗 ∈ 𝐴 is 𝑖’s

favorite agent in 𝐴 if for any agent 𝑘 ∈ 𝐴,ℎ 𝑗 ⪰′
𝑖
ℎ𝑘 .

Leave and Share (LS)
(1) Initialize 𝑁𝑜𝑢𝑡 = ∅ and an empty stack 𝑆 . Define the

top and bottom of 𝑆 as 𝑆𝑡𝑜𝑝 and 𝑆𝑏𝑜𝑡𝑡𝑜𝑚 respectively,

and let 𝑅𝑖 = 𝑟 ′
𝑖
∪ {𝑆𝑏𝑜𝑡𝑡𝑜𝑚, 𝑖}.

(2) While 𝑁𝑜𝑢𝑡 ≠ 𝑁 :

(a) Find the minimum 𝑡 such that O(𝑡) ∉ 𝑁𝑜𝑢𝑡 . Push

O(𝑡) into 𝑆 .
(b) While 𝑆 is not empty:

(i) While 𝑓𝑆𝑡𝑜𝑝 (𝑅𝑆𝑡𝑜𝑝 ) ∉ 𝑆 , push 𝑓𝑆𝑡𝑜𝑝 (𝑅𝑆𝑡𝑜𝑝 ) into 𝑆 .
(ii) Pop off all agents from 𝑆𝑡𝑜𝑝 to 𝑓𝑆𝑡𝑜𝑝 (𝑅𝑆𝑡𝑜𝑝 ), who

already formed a trading cycle 𝐶 following their

favorite agents. Allocate each agent 𝑖 ∈ 𝐶 the item

ℎ𝑓𝑖 (𝑅𝑖 ) . Add 𝐶 to 𝑁 𝑡
𝑜𝑢𝑡 .

(iii) Update the neighbor set of 𝐶’s remaining neigh-

bors by removing𝐶 , i.e., for all 𝑗 ∈ ⋃
𝑖∈𝐶 𝑟 ′

𝑖
\𝑁 𝑡

𝑜𝑢𝑡 ,

set 𝑟 ′
𝑗
= 𝑟 ′

𝑗
\𝐶 .

(c) Add 𝑁 𝑡
𝑜𝑢𝑡 to 𝑁𝑜𝑢𝑡 . Let all remaining neighbors of

𝑁 𝑡
𝑜𝑢𝑡 connect with each other, i.e., they become neigh-

bors of each other. That is, let 𝑋 =
⋃

𝑖∈𝑁 𝑡
𝑜𝑢𝑡

𝑟 ′
𝑖
\𝑁 𝑡

𝑜𝑢𝑡

and for all 𝑗 ∈ 𝑋 , set 𝑟 ′
𝑗
= 𝑟 ′

𝑗
∪ 𝑋 .

In LS, we first define an order O which depends on each agent’s

shortest distance to the initial agent set. Under this order, the first

while loop (step 2) guarantees that the agent pushed into the stack

is the remaining agent with the smallest order, and all agents are

matched (including self-match) in the end. A new round begins

each time the stack empties.

In the Leave stage, each agent that is pushed into the stack

pushes her (current) favorite neighbor into the stack (step (a)). If

her favorite is already in the stack, we pop all the agents between

herself and her favorite to form a trading cycle. Specially, we allow

agents to choose the agent at the bottom of the stack as favorite,

which leads to popping off all the agents in the stack (step (b)).

Once the stack is empty, the mechanism enters the Share stage

and updates the neighbor set of the remaining agents (step (c)). All

neighbors of the left agents become new neighbors to each other.

In the next Leave stage, they can choose in a larger neighbor set.

5.3 Connected Trading Cycles
In this section, we present ourmechanism called Connected Trading

Cycles (CTC) which takes both the trading cycles and agents’ con-

nections into consideration. CTC is IR, IC, optimal-cc, and stable-cc,

which is the best we can get in the network setting. To begin with,

we give a few definitions to serve the description of our mechanism.

Definition 5.4. Given a reported type profile 𝜃 ′, we generate a
directed graph 𝐹 (𝜃 ′), in which each qualified agent has exactly one

outgoing edge pointing to a qualified agent in𝐺 (𝜃 ′). An edge ⟨𝑖, 𝑗⟩
in 𝐹 (𝜃 ′) means agent 𝑖 likes agent 𝑗 ’s item the most among all the

qualified agents’ items (𝑖, 𝑗 can be the same agent). We name 𝐹 (𝜃 ′)
as the favorite pointing graph for 𝜃 ′.

There is at least one cycle in 𝐹 (𝜃 ′), and we formalize the defini-

tion of a cycle as below.

Definition 5.5. A cycle in 𝐹 (𝜃 ′) is an agent sequence 𝐶𝑚 =

{𝑐1, . . . , 𝑐𝑚} such that ∀𝑖 ∈ {1, . . . ,𝑚 − 1}, 𝑐𝑖 points to 𝑐𝑖+1, and
𝑐𝑚 points to 𝑐1 in the favorite pointing graph 𝐹 (𝜃 ′).

Since the optimality and stability boundaries are constructed on

complete components, it is natural to let cycles build on complete

components to trade. However, if we only allow cycles formed by

complete components to get traded, the performance is not better

than SWN or LS (it meets stable-cc, but far from optimal-cc). Thus,

we also consider cycles formed by connected components. Given

that optimal-c is not compatible with IC, it is clear that not all such

cycles can get traded. Therefore, we should further distinguish these

cycles and identify the ones compatible with IC. This detection also

makes our CTC description complex.

4 2 1 3 5

3 does not invite 5

4 2 1 3 5

1 does not invite 2

4 2 1 3 5

Figure 6: Preferences are ℎ5 ≻1 ℎ2 ≻1 ℎ1, ℎ3 ≻2 ℎ2, ℎ4 ≻3

ℎ1 ≻3 ℎ3, ℎ1 ≻4 ℎ4, ℎ3 ≻5 ℎ5. The solid arrows represent fa-
vorite pointing. The dashed arrows represent second favorite
pointing. The dashed agents are unqualified agents.

Here comes a motivated example. The social network is shown

in Figure 6 and agent 1 is the initial agent. If agent 1 does not

invite agent 2, the connected component {1, 3, 5} will form the

blue cycle (𝐶3 = {1, 5, 3}). On the other hand, if agent 3 does not

invite agent 5, the connected component {4, 2, 1, 3} will form the

red cycle (𝐶4 = {1, 2, 3, 4}). If both cycles are allowed, IC cannot

hold since both agent 1 and agent 3 have the incentive to not invite

a neighbor and form the cycle in favor of herself. Thus, an IC

mechanism can only allow at most one of these two cycles to get
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traded. To distinguish the two cycles, we pay attention to each

agent’s pointing. In the blue cycle, each agent has an exclusive path

to reach her pointing: 1 → 3, 3 → 5, 5 → 3 → 1. However, in the

red cycle, 2 → 1 → 3 and 4 → 2 → 1 have a shared edge 2 → 1.

Similarly, 1 → 2 and 3 → 1 → 2 → 4 have a shared edge 1 → 2.

Recall that in the cycle formed by a complete component (which

is always allowed to get traded), each agent has an exclusive path

to her pointing. Intuitively, the exclusive path can be regarded as

an insurance for invitation incentives (no agent wants to influence

other’s pointing by not inviting a neighbor). Following this idea,

we design an algorithm to detect cycles in which each agent has an

exclusive path to her pointing.

We also needs a strategy-proof order of the agents to determine

who can be matched first.

Path Detection
Input: a cycle𝐶𝑚 , a reported type profile 𝜃 ′, a favorite pointing
graph 𝐹 (𝜃 ′) and social network 𝐺 (𝜃 ′).

a. Find a minimum connected component 𝑇 in 𝐺 (𝜃 ′)
where 𝐶𝑚 ⊆ 𝑇 and ∀𝑖 ∈ 𝑇 , let 𝑗 be 𝑖’s pointing in

𝐹 (𝜃 ′), we have 𝑗 ∈ 𝑇 . Note that if the cycle 𝐶𝑚 form a

connected component in 𝐺 (𝜃 ′), then 𝑇 = 𝐶𝑚 . If there

is no such 𝑇 let 𝑇 = ∅.
b. Construct a subgraph𝐺𝑇 with the reported type profile

of all agents in 𝑇 .

c. If agent 𝑖 ∈ 𝑇 points to herself in 𝐹 (𝜃 ′), add a mark 𝑖

on all the outgoing edges of 𝑖 in 𝐺𝑇 .

d. Construct a shortest path set 𝑆𝑃 = {𝑠𝑝𝑖 |𝑖 ∈ 𝑇 } in 𝐺𝑇 ,

where 𝑠𝑝𝑖 is the shortest path from agent 𝑖 ∈ 𝑇 to her

pointing in 𝐹 (𝜃 ′). While 𝑆𝑃 ≠ ∅, execute the following,
i. Sort 𝑆𝑃 by the ascending order of path length. If 𝑠𝑝𝑖
and 𝑠𝑝 𝑗 have the same length, sort them by the agents

ascending order O−1 (𝑖) and O−1 ( 𝑗).
ii. Remove the first 𝑠𝑝𝑖 in 𝑆𝑃 . Add a mark 𝑖 on every

edge on path 𝑠𝑝𝑖 in 𝐺𝑇 . If 𝑠𝑝𝑖 contains marks other

than 𝑖 , and 𝑖 has another path to her pointing, add

the next shortest path 𝑠𝑝′
𝑖
for 𝑖 to 𝑆𝑃 .

Output: an agent set 𝑇 and the marked subgraph 𝐺𝑇 .

We use a brief example to show how path detection works. As

shown in Figure 7(a), agents’ social connections (edges in𝐺 (𝜃 ′)) are
denoted by double arrows, and the red arrows represent edges in the

favorite pointing graph 𝐹 (𝜃 ′). Take cycle𝐶5 = {1, 5} as an example,

the minimum connected component for𝐶5 is𝑇 = {1, 2, 4, 5}. Agent
4 is involved to help agent 1 and 5 connect to each other, and

since ⟨4, 2⟩ ∈ 𝐹 (𝜃 ′), agent 2 should also be involved in 𝑇 (as in

Path Detection step a). Then we detect the shortest path set 𝑆𝑃 for

subgraph 𝐺𝑇 , the sorted path set is shown in Figure 7(c). Finally,

follow the instruction in Path Detection step d.ii, we mark the

subgraph 𝐺𝑇 to represents which directed edge by which agent.

In cycles like 𝐶4 = {1, 2, 3, 4} or 𝐶5 = {1, 5}, not all agents have
an exclusive path to their pointing, so some have to switch their

pointing in 𝐹 (𝜃 ′) to a less preferred one. We define a next favorite

function to adjust 𝐹 (𝜃 ′) based on agents’ preferences.

Definition 5.6. Given a reported type profile 𝜃 ′, the qualified

agent set is 𝑄 (𝜃 ′). Suppose agent 𝑖 points to agent 𝑗 in the favorite

5 4 6

2 1 3

(a)

5 4 6

2 1 3

(b)

𝑠𝑝1 1 4 5

𝑠𝑝2 · · ·
𝑠𝑝4

𝑠𝑝5 5 4 1

(c)

5 4

2 1

4,5 2,1

2

4

5

1

(d)

Figure 7: Path Detection process for cycle 𝐶5 = {1, 5}. The red
arrow is agents’ pointing in the favorite pointing graph. The
dashed box shows the minimum connected component 𝑇 .

pointing graph 𝐹 (𝜃 ′), we have ≻𝑛𝑒𝑥𝑡
𝑖

(𝐹 (𝜃 ′)) = 𝑗 ′ if 𝑗 ′ owns 𝑖’s
favorite item in 𝑄 (𝜃 ′) \ {𝑘 ∈ 𝑄 (𝜃 ′) |𝑘 ⪰𝑖 𝑗}.

Now we are ready to introduce our mechanism.

Connected Trading Cycles (CTC)
Given a reported type profile 𝜃 ′, construct the reported social

network 𝐺 (𝜃 ′) and favorite pointing graph 𝐹 (𝜃 ′). Initiate a
settled agent set 𝑉 = ∅. Execute the following until 𝑉 = 𝑁 .

a. Find the agent 𝑝1 ∈ 𝑁 \ 𝑉 with the minimum or-

der O−1 (𝑝1). Start from agent 𝑝1, detect a node se-

quence 𝑃𝑚 = {𝑝1, . . . , 𝑝𝑙 , . . . , 𝑝𝑚} in 𝐹 (𝜃 ′) such that

∀𝑖 ∈ {1, . . . ,𝑚 − 1}, 𝑝𝑖 points to 𝑝𝑖+1, and {𝑝𝑙 , . . . , 𝑝𝑚}
is a cycle 𝐶𝑚 .

b. Run Path Detection algorithm with input 𝐶𝑚 , 𝜃 ′,
𝐺 (𝜃 ′) and 𝐹 (𝜃 ′). Get an agent set 𝑇 and marked sub-

graph 𝐺𝑇 as output.

c. Find every agent 𝑖 ∈ 𝑇 such that no path in 𝐺𝑇 from

𝑖 to her pointing is exclusively marked by 𝑖 , and 𝑖’s

outgoing edges are marked only by 𝑖 . Denote the set of

such agents as 𝑆 ⊂ 𝑇 .

i. If 𝑇 = ∅, find the last agent 𝑖 on 𝐶𝑚 who cannot

connect to her pointing in 𝐺 (𝜃 ′), let 𝑖 switch her

pointing to ≻𝑛𝑒𝑥𝑡
𝑖

(𝐹 (𝜃 ′)).
ii. If 𝑆 = ∅ and 𝐶𝑚 = 𝑇 , add all agents in 𝑇 into the

settled agent set 𝑉 . While an agent 𝑖 ∈ 𝑁 \𝑉 points

to an agent in 𝑉 , let 𝑖 point to ≻𝑛𝑒𝑥𝑡
𝑖

(𝐹 (𝜃 ′)).
iii. If 𝑆 = ∅ and 𝐶𝑚 ⊂ 𝑇 , find the agent 𝑗 ∈ 𝑇 \ 𝐶𝑚

with minimum order O−1 ( 𝑗). Start from agent 𝑗 ’s

pointing, find the last agent 𝑖 ∈ 𝐶𝑚 such that 𝑖’s path

to its pointing passes at least one agent in 𝑇 \𝐶𝑚 . If

no such 𝑖 , start from agent 𝑗 ’s pointing, find the last

agent 𝑖 ∈ (𝑇 \𝐶𝑚) such that 𝑖’s path to its pointing

passes at least one agent in 𝐶𝑚 . Let 𝑖 point to ≻𝑛𝑒𝑥𝑡
𝑖

(𝐹 (𝜃 ′)).
iv. If (𝑇 \𝐶𝑚)∩𝑆 ≠ ∅, find the agent 𝑖 ∈ (𝑇 \𝐶𝑚)∩𝑆 with

minimum order O−1 (𝑖). Let 𝑖 point to ≻𝑛𝑒𝑥𝑡
𝑖

(𝐹 (𝜃 ′)).
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v. If (𝑇 \ 𝐶𝑚) ∩ 𝑆 = ∅, find the agent 𝑖 ∈ 𝑆 with the

minimum order O−1 (𝑖) such that 𝑖’s path to its point-
ing covers another agent’s path to her pointing. If

no such 𝑖 , find agent 𝑖 ∈ 𝑆 with the minimum order

O−1 (𝑖). Let 𝑖 point to ≻𝑛𝑒𝑥𝑡
𝑖

(𝐹 (𝜃 ′)).

Our mechanism first detects cycles in the favorite pointing graph

because these cycles can ensure optimality. Thus, agents will not

misreport their preferences to get a better allocation (also why TTC

is IC in the traditional setting). However, in the network setting,

trading cycles formed by agents who cannot connect to each other

are fragile. The reason is that others can misreport neighbor set to

break the cycle (for instance, disqualify some agents on the cycle).

Hence, we construct a minimum connected component 𝑇 for each

cycle where they can stay connected.

Recall the example in Figure 6, we can see that if every agent

on the cycle has an exclusive path to her pointing (e.g. 1-3-5), the

cycle can get traded. For cycles that do not meet this condition,

we identify a special agent set 𝑆 . each agent in 𝑆 does not have an

exclusive path to her pointing, and her outgoing edges are only

marked by herself. These agents cannot misreport to avoid path

overlap because the overlap lies outside their outgoing edges (which

is irrelevant to their report). Hence, we let agents in 𝑆 switch their

pointing to a less preferred one.

For cases where 𝑆 = ∅, if 𝑇 consists of only agents on the cycle,

they can get traded (CTC step c-ii). Otherwise, we start from an

agent 𝑖 ∈ 𝑇 who is not on the cycle and find the last agent on the

cycle who does not have a path to her pointing only by connections

on the cycle (CTC step c-iii). This is because every agent in 𝑇 now

has an exclusive path to her pointing, and the cycle has to rely on

agents not on the cycle to stay connected. Thus, agents on the cycle

have to switch preferences first, and we start from the last agent to

maintain the completeness of the cycle to the greatest extent.

For cases where 𝑆 ≠ ∅, if 𝑆 contains an agent not on the cycle,

let her switch pointing to a less preferred one first (CTC step c-iv).

This is because such agents do not provide any connection for the

cycle and agents on the cycle have incentives to disqualify them to

eliminate path overlaps. If 𝑆 consists only of agents on the cycle,

we find the agent 𝑖 whose path covers another agent 𝑗 ’s path to

her pointing and let 𝑖 switch her preference (CTC step c-v). This is

because, to ensure everyone has an exclusive path to her pointing, 𝑖

and 𝑗 can never hold their pointing together. Agent 𝑖 should switch

preference first because her path contains 𝑗 ’s outgoing edges ( 𝑗 ’s

report has impacts on 𝑖).

We present an example to illustrate the execution of CTC in

Figure 8. In (a), everyone points to her favorite item. Since agent 1

has the minimum order, start from agent 1 and detect cycle 𝐶5 =

{1, 5}. Then, construct the minimum connected component 𝑇 =

{1, 2, 4, 5} in (b). By the Path Detection algorithm, we can see that

both agent 2 and agent 5 do not have an exclusive path to their

pointing, so 𝑆 = {2, 5}. By CTC step c-iv, let agent 2 switch her

pointing to a less favorite one. In (c), we also start from agent 1 and

detect the same cycle 𝐶5, and the same 𝑇 . Now, only agent 5 does

not have an exclusive path to her pointing, so 𝑆 = {5}. By CTC step

c-v, let agent 5 switch her pointing. In (d), detect cycle𝐶3 = {1, 5, 3}

5 4 6

2 1 3

(a)

5 4 6

2 1 3

(b)

5 4 6

2 1 3

(c)

5 4 6

2 1 3

(d)

5 4 6

2 1 3

(e)

5 4 6

2 1 3

(f)

Figure 8: A running example of CTC. The red arrow is agents’
favorite pointing. The dashed red arrow means the agent
switch her pointing to a less favorite one. The dashed box
shows the minimum connected component 𝑇 .

and construct 𝑇 = {1, 2, 3, 4, 5}. Everyone has an exclusive path to

reach her pointing, so 𝑆 = ∅. By CTC step c-iii, we start from agent

2’s pointing and find that agent 5 is the last agent whose path to her

pointing passes at least one agent in 𝑇 \𝐶3. So, let agent 5 switch

her pointing. Finally in (e),𝐶2 = {1, 5, 4, 2} is a connected cycle and
𝑆 = ∅. By CTC step c-ii, 𝐶2 can get traded and agent 3 will switch

her pointing as shown in (f). To our best knowledge, the Connected

Trading Cycles is the first mechanism that satisfies optimal-cc.

Theorem 5.7. For any order O, CTC is optimal-cc.

Proof. For any given type profile 𝜃 , if the allocation 𝜋 (𝜃 ) given
by CTC violates optimal-cc, there exists another allocation 𝜋 ′ (𝜃 )
such that every agent in a complete component 𝐵 in𝐺 (𝜃 ) is strictly
better, while others receive the same allocation. Let 𝑖, 𝑗 be two

agents in 𝐵, and 𝜋 ′
𝑖
(𝜃 ) = 𝜋 𝑗 (𝜃 ) = ℎ𝑘 . Because 𝐵 is a complete

component in 𝐺 (𝜃 ), 𝑖 can reach 𝑗 by her outgoing edge, which

means 𝑖 → 𝑗 is an exclusive path for 𝑖 . Since 𝜋 (𝜃 ) is given by CTC,

𝑗 has an exclusive path to agent 𝑘 , the owner of her allocation 𝜋 𝑗 (𝜃 )
(as in CTC step c.ii). Combining the two paths together, agent 𝑖 can

reach 𝑘 , the owner of 𝜋 ′
𝑖
(𝜃 ), by 𝑖 → 𝑗 → 𝑘 . Hence, if 𝑖 points to 𝑘 ,

CTC will not make agent 𝑖 switch her pointing to a less preferred

agents. Therefore, there exists an exclusive path for every agent

𝑖 ∈ 𝐵 to reach the owner of 𝜋 ′
𝑖
(𝜃 ), and CTC will allocate 𝜋 ′ (𝜃 ). This

means 𝜋 (𝜃 ) = 𝜋 ′ (𝜃 ), which contradicts our assumption. □
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